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Neural Networks Approach to 3D Rigid Motion Estimation from Feature Points
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Abstract: 3D rigid motion estimation from images is crucial for many important applications. In this study, an
approach 1s proposed for 3D rigid motion estimation from feature pomnts using feed-forward neural-networks.
The correspondence of feature points between consecutive images is assumed to be established beforehand.
The proposed neural network is composed of 3 layers and 3 points are randomly selected from all points on
the object to train the network using Newton-Raphson procedure. Experimental results from synthetic data are

presented for validating the proposed approach.
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INTRODUCTION

3D nigid motion analysis 1s a fundamental problem in
computer vision research area. Its umportance stems from
wide applications it has in swface matching, surface
registration and motion pattern recognition (Srinark et al.,
2006). In the literature, a large number of techniques have
been developed to solve these problems. In general, the
problem of 3D rigid motion estimation is an ill-posed
problem and can be solved by adding constraints. Much
of the existing work advanced can be divided mto two
methods, based feature correspondence and based optical
flow. Huang (1986) estimated motion parameters by eight
feature points or more. Longuet-Higgins (1981 ) estimated
motion parameters by computing fundamental matrix.
However, these methods have to match points firstly and
decompose matrix which consumes large calculation. The
Tterative Closest Point (ICP) algorithm by Besl and McKay
(1992) 1s the most popular method. It has many derivatives
umproving the original one, e.g., using point-to-normal in
the distance evaluation instead of point-to-closest point
(Chen and Medioni, 1991). However, ICP based methods
requires good mnitial approximations for their convergence.

In order to improve the limitations of the classical
motion estimation methods, some researchers have
started to use neural-networks to solve the estimation
problem. Hutchinson et al. (1988) claimed that they could
compute optical flow by mjecting currents mto resistive
networks and recording the stationary voltage
distribution at each node. Chen et al. (1993) used neural
networks to estimate 3D rigid motion parameters based 3D
feature pomts. Tzovars ef al. (2000)used neural networks

with adjusting weights by Newton-Raphson procedure to
estimate 3D rigid motion parameters with initial 2D motion
data. Chen’s method used only one pomnt to train network,
which has problems of convergence in some case.
Tzovars used CAHYV camera model whose calibration 1s
harder than the normal pinhole camera model.

RIGID MOTION MODEL AND CAMERA MODEL

3D rigid motion model: The rigidity assumption implies
that the object motion can be decomposed into a rotation
about a point termed the center of rotation and a
translation of that center of rotation. Let us assume a 3D
point of object p whose world coordinates is P= (X, Y, Z.)
before motion. After motion, the coordinates 1s
P'=(X'", Y', Z"". The motion model is the following:

P=RP+T 1)
or

X X

Y [=R|Y|+T (2)

7! 7

Where R is rotation matrix and T is translation vector.
The problem of 3D rigid motion estimation 1s to
estimate rotation matrix R and translation vector T.
Camera model: Assuming infrinsic parameters of
camera 1s:
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Where we ignore the distortion of camera. Let us assume
the projection of a 3D pomnt P (X, Y, Z) onto the image
plane is p (x, y) while the center of camera is the origin of
world coordinate system. We have:
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3D RIGID MOTION ESTIMATION BASED
FEATURE POINTS

Let us assume the correspondence of feature points
1s available beforehand, so the translation vector of rigid
motion is simply the translation between 2 centroids
(Moravec,1981).

T| |G| S
T=|T, |=|C ||C, (6)
L] &) LG

WhereCl' = (C',, C',, C"))" is the centroid of object after
motion and C = (C,, C,, C,)" is before motion After
estimating translation vector T, we can subtract T from
every point of object to make sure only rotation motion is
left.

p'=P-T=RP (7)
The
composed of 3 layers as shown in Fig.1.

Instead of training the network only based on one
point (Chen et al., 1995). We train the network based on
3 randomly selected points and a bigger neural-network
composed of 3 small neural network are shown in Fig.1.

proposed  feed-forward neural-networks are

The purpose of neural-networks i1s to mimmize the
following error measure:

(&)

min2_ | [P, -R -B,P,~R-P,P,~R-B]|

Where P; (i =1, 2, 3) is the points’ coordinates which have
subtracted translation vector and P, (i =1, 2, 3) is points’
coordinates before motion.

Tn the neural-networks, the inputs of the first layer are
three points” coordinates. In small neural network, the
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Fig. 1: The proposed neural-networks for 3D rngid

motion estimation

weights between the first
rotation matrix:

and the second layer is the

Wy W, Wi 9
W=|w, w, w, ( )
W31 W32 W33

Where W, is weight between the No. j neuron of the first
layer and the No. i neuron of the second layer, so W =R.
The weights between the second and the third layer are
constan,

-1 0 0
v={0 -1 0| (10)
0 0 -1
Let ¢ = [e, €. e.]" be the output of the small neural-
network,

e=P-RP (11)

In order to mimmize error measure, let the output vector be
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The motion parameter vector is:
_ T (13
W= W W Wiy W Wi Was Wiy Wig , Wis | (13)

In 1deal case, the outputs of neural network are zero.
Weights are updating by Newton-Raphson procedure:

WO — W _ I (14)

Where 11 158 learming rate and] = JE/GW 15 Jacobian matrix
which is calculated by the following,
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Table 1: Results of rigid motion estimation

n Actual motion Estimated result Error
0.69350493 —0.33263814  0.63906705 0.69353509 —0.33259091 0.63905579
0.003 R 063899374 0.69361573 -0.33239859 0.63905579  0.69353509 033259091 0.000175
~0.33270556 0.63889432  0.69358337 ~0.33259091 0.63905379  0.69353509
0.69353509 —0.33259091 0.63905579 0.69358748 —0.33233473  0.63902193
0.01 R | 063905579 0.69353509 -0.33259091 0.63881004  0.69364578 —0.33266783 0.000237
~0.33259091 0.63905579  0.69353509 ~0.33271891 0.63899392  0.69351396
0.41496068 —0.77504909 0.47653762 041492507 —0.77503961 0.47660345
0.01 R | 048562741  0.63159001 0.60423452 048553500 0.63161546 0.60441518 0.000170
—0.76929653 —0.01932884 0.63845146 ~0.76947576 —0.01937935 0.63838190
0.69353509 —0.33259091 0.63905579 0.69350070 —0.33240741  0.63910413
0.01 R| 0.63905579  0.69333309 —0.33259091 0.63898039  0.69355994 —0.33265257 0.000156
~033259091 0.63905579  0.69353509 ~0.33270904 0.63906664  0.69342661
[2e,Px 2¢, Py 2e,Pz 0 0 0 0 0 0
0 0 0 2e¢ Bx  2¢ Ry 2¢ PRz
0 0 0 0 0 0 2e . Px  2¢. Py 2¢ Pz
2¢,,Px 2¢, Py 2¢, Pz 0 0 0 0 0 0
J=eEEW=| 0 0 0 2,Px 2e,Py 2Pz 0 0 0 (15)
0 0 0 0 0 0 2e,.Px 2¢, Py 2¢,Pz
2e,,Px 2e, Py 2¢,Prz 0 0 0 0 0 0
0 0 0 2e;, Px 2¢, Py e, Pz 0 0 0
| 0 0 0 0 0 0 2e.,Bx 2e. Py 2e, Pz |
RESULTS translation vector 1s almost right, so it 18 not listed in

In the simulation experiment, feature points are
randomly generated. The range of coordinates are
between (0, 200) and the mtrinsic parameters of camera are
assumed as:

10 0 160
0 10 120
0 0 1

As the rotation parameters have only three degrees
of freedom, it 1s generated and converted to rotation
matrix using Eq. (16) as follows:

I=1]1|

(16)
R =cos{| 1)1+ (1—cos{|1Nrr" +sin{ 1 P[r]x
Where | 1| is the norm of rotation vector r and
U A
[fl,=r, 0 -r (17
-r, r, 0

The results of 3D motion estimation are shown mn the
Table 1. Tt should be point out that the estimated

Table 1. Meanwhile the estimated results are compared
with the actual and error is calculated by following
equation:

_ || estimate — true || (18)
| true ||

CITOT

Where estimate 1s the estimated rotation matrix and #rue
1s the actual motion parameters.

CONCLUSION

In this study, the neural-networks approach is
proposed to 3D rigid motion estimation problem based on
feature points. Three points are randomly selected to train
the neural-networks. The weights are adjusted by
Newton-Raphson procedure. Experimental results show
good robustness of our approach.
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