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Abstract: This study proposes an adaptive, data-driven threshold for image denoising via wavelet soft-
thresholding based on the Generalized Gaussian Distribution (GGD) widely used in mmage processing
applications. The proposed threshold i1s simple and it is adaptive to each sub band because it depends on data-
driven estimates of the parameters. In this proposed method, the choice of the threshold estimation 15 carried
out by analyzing the statistical parameters of the wavelet sub band coefficients like standard deviation,
variance. Our method describes a new method for suppression of noise in image by fusing the wavelet
denoising technique with optimized thresholding function improving the denoised results significantly.
Simulated noise images are used to evaluate the denoising performance of proposed algorithm along with
another wavelet-based denoising algorithm. Experimental results show that the proposed denoising method
outperforms standard wavelet denoising techniques in terms of the PSNR and the prevented edge information
i most cases. We have compared this with various denoising methods like wiener filter, VisuShrink and

BayesShrink.
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INTRODUCTION

Many scientific data sets are contaminated with noise
either because of data acquisition process or because of
naturally cccurring phenomenon. For example during the
image acquisition, the performance of imaging sensors is
affected by a variety of factors, such as environmental
conditions and by the quality of the sensing elements
themselves. For instance, in acquiring images with a CCD
camera, light levels and sensor temperature are major
factors affecting the amount of noise in the resulting
image. Images are also corrupted during transmission, due
to interference in the channel used for transmission.
Image denoising techmques are necessary to remove
such random additive noises while retamning as much as
possible the important signal features. The mam objective
of these types of random noise removal is to suppress the
noise while preserving the original image details.
Especially for the case of additive white Gaussian noise a
mumber of techniques using wavelet-based thresholding
have been proposed. Doncho and Johnstone (1995)
proposed hard and soft thresholding methods for
Denoising . This exterminates many wavelet coefficients
that might contain useful image information. However, the
major problem with both methods and most of its variants
1s the choice of a suitable threshold value.

The definition of coefficient independent threshold
given by Donoho (1994) depends on the noise power and
the size of the image. In practice, however, one deals with
images of fimite size, where the applicability of such a
theoretical result is rather questionable. In addition, most
signals show a spatially non-uniform energy distribution,
which motivates the choice of a non-uniform threshold.
Besides wavelet-thresholding, many other approaches
have been suggested as well. For example, wavelet-based
denoising using Hidden Markov Trees, which was initially
proposed by Crouse et al. (1998) and Romberg et al.
(1999) has been quite successful and it gave rise to a
number of other HMT-based schemes. They tried to
model the dependencies among adjacent wavelet
coefficients using the HMT and used the Minimum Mean-
Squared Error (IMMSE)-like estimators for suppressing the
noise. Since wavelet provides an appropriate basis for
separating noisy signal from image signal there has been
a fair amount of research on wavelet thresholding and
threshold selection for signal and image denoising. In this
study we present an efficient thresholding technique for
image denoising by analyzing the statistical
parameters of the wavelet coefficients based on
Maarten (2001), Vattereli and Kovacevic (1995), Chang

et al (2000 a, b, ¢)and Javier (2002). The experimental
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results show that this algorithm can outperform the
traditional ones, improving the quality of the denocised
images significantly.

MATERIALS AND METHODS

Wavelet thresholding: Wavelet thresholding 1s a simple
non-linear techmque, which operates on one wavelet
coefficient at a time. In its most basic form, each
coefficient 15 threshold by comparing agaimnst threshold,
if the coefficient 1s smaller than threshold, set to zero;
otherwise it 1s kept or modified. Replacing the small noisy
coefficients by zero and inverse wavelet transform on the
result may lead to reconstruction with the essential signal
characteristics and with less noise. Wavelet thresholding
involves threes steps A linear forward wavelet transform,
nonlmear thresholding step and a linear inverse wavelet
transform.

Let us consider a signal {x;,1,7=1,2... N} denote the
N.N matrix of the original image to be recovered and N 1s
some integer power of 2. During transmission the signal
1s corrupted by noise

v, x+te. Lij=12 . .......N

Where, g; independent and identically distributed
(1.1.d) zero mean, white Gaussian Noise with standard
deviation ¢ i.e. N (0, ¢°). From this noisy signal vi, we
want to find an approximation % .. The goal 1s to estimate
the signal x;; from noisy observations y; such that Mean
Squared Error (MSE) 18 mimimum. 1.e.,

1
N

L]

Lety = {y;}. . x = {x;}, . e = {g;},, will denote the
matrix representation of the signals under consideration.
LetD =W, C=W_e=W, denote the matrix of wavelet
coefficients of v, x, z respectively. Where, W is the
two-dimensional dyadic orthogonal wavelet transform
operator. It 1s convenient to label the sub bands of the
transform as in Fig. 1. The sub bands, HH,. HL,,. LH, are
called the details, where k = 1,2...7 1s the scale, with T
being the largest (or coarsest) scale in the decomposition
and a sub band at scale k has size N/2° X N/2%. The sub
band LL; 15 the low resolution residual and is typically
chosen large enough such that N/2' = N, N/2 = 1. The
wavelet-thresholding  denoising method filters each
coefficient Y, from the detail sub bands with a threshold
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Fig. 1: Two-Level Image decomposition by using DWT

function to obtain X;. The dencised estimate is then
¥ =W %, where, W is the inverse wavelet transform.

Wavelet transform of noisy signal should be taken
first and then thresholding function i1s applied on it
Finally the output should be undergone inverse wavelet
transformation to obtain the estimate® . There are two
thresholding functions frequently used, ie. a hard
threshold, a soft threshold. The hard-thresholding
function keeps the mput 1if it 18 larger than the threshold;
otherwise, it 1s set to zero. It is described as:

m () =wl (W T) )

Where, w is a wavelet coefficient, T is the threshold
and I(x) is a function the result is one when x is true and
zero vice versa. The soft-thresholding function (also
called the shrinkage function) takes the argument and
shrinks it toward zero by the threshold. Tt is described as:

M, (W) = (w - sgn(w)T )T (| w | > T) @)

Where sgn(x) is the sign of x. The soft-thresholding
rule 18 chosen over hard-thresholding, for the soft-
thresholding method yields more visually pleasant images
over hardthresholding.

While the idea of thresholding is simple and effective,
finding a good threshold is not an easy task. For one-
dimensional (1-D) determimstic signal of length , Doncho
and Jolnstone (1995) proposed for VisuShrink the
universal threshold, which results in an estimate
asymptotically optimal in the minimax sense (minimizing
the meaximum error over all possible -sample signals). One
other notable threshold 1s the SURE threshold , derived
from minimizing Stein’s unbiased risk estimate when soft-
thresholding is used. The SureShrink method is a hybrid
of the universal and the SURE threshold, with the choice
being dependent on the energy of the particular sub band.
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Estimation of parameters for threshold value: Finding an
optimum value for thresholding 1s not an easy task. A
small threshold value will pass all the noisy coetficients
and hence the resultant denoised signal may still be
noisy. A large threshold value on the other hand, makes
more number of coefficients as zero which leads to
smooth signal and destroys details and in image
processing may cause blur and artifacts. So, optimum
threshold value should be found out, which is adaptive to
different sub band characteristics. Here, we describe an
efficient method for fixing the threshold value for
denoising by analyzing the statistical parameters of the
wavelet coefficients.

2

Threshold T is given as T= BG—
Ox

(1)

This study focuses on the estimation of the GGD
parameters, 0, and p which in tumn yields a data-driven
estimate of T(o,), that is adaptive to different sub band
characteristics. The noise variance ¢’ mneeds to be
estimated first. It may be possible to measure ¢ based on
mformation other than the corrupted image. If such 1s not
the case, it is estimated from the sub band HH, by the
robust median estimator,

median

Y,
0.6745

2

_ (2)

Where, o’s the noise variance, 0, the signal standard
deviation. The parameter ¢ in the expression, o, the signal
standard deviation needs to be estimated.

From the observationmodel Y =X + ¢, with X and €
independent o each other we have

cl=c.+¢c
Where o7, is the variance of Y. Tt can be found by

1 n
2 2
GYiiz Y1]

1,7=1
From this 0, can be derived as

3)

a

2 2
% max(Gch ,0).

Then the parameter ¢ can be found as

L
B—log(EJ
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Where, 1. is the number of wavelet decomposition
level, k 1s the level at which the subband is available (for
HL,, k=2)

Image denoising algorithm: This study describes the
image-denoising algorithm, which achieves near optimal
soft thresholding in the wavelet domain for recovering
original signal from the noisy one. The algorithm 1s very
simple to implement and computationally more efficient. It
has the following steps:

1. Perform the DWT of the noisy image up to 2 levels
(I.=2) to obtain seven sub bands, which are named as
HH,, LH, HL, HH,, LH,, HL, and L.L,.

2. Compute the threshold value T for each sub band,
except the LL, band usmg Eq. 1.

3.  Obtan the noise variance using the Eq. 2

4. Calculate the signal standard deviation o, by the
Eq 3.

5. Find out the parameter o from Eq. 4

6. Threshold the all sub band coefficients using Soft
Thresholding given in Eq. 1 by substituting the
threshold value obtained from the step 2.

7. Perform the imverse DWT to reconstruct the

denoised image.
RESULTS AND DISCUSSION

The 512*512 grayscale mmages “Lena,” and “gold
hill,” are used as test images with different noise levels o
=10, 20, 30. The wavelet transform employs Daubechies’
least asymmetric compactly supported wavelet with eight
vanishing moments with four scales of orthogonal
decomposition. To evaluate the performance of the
proposed method, it is compared with BayesShrinl,
Normal shrink, oracle shrink using Peak Signal to Noise
Ratio (PSNR), which is defined as

PSNR = 10log,, -
MSE

Where, MSE denotes the Mean Square Error between
the original and denocised mmages and 1s given as

b
MN *

MSE = (X(L7)- Y{ij)

L=
i[1=

1=

Where, M, N- Width, Height of mnage,Y - Noisy
Image X - Original Image

We have also made comparisons with the Wiener
filter, the best linear filtering possible. The version used
1s the adaptive filter, wiener 2, m the MATLAB image
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Tablel: Comparison of PENR of different wavelet filters for different images cormupted by Gaussian noise

Peak Zignal to Moise Ratio in dB (PENR)

LT T e e
(512%512) g Weiner filter Oracle shonk Bayes shrink NormalShnnk Proposed method
Lena 1a 33.5793 336114 334104 335380 33.6241

Gold tull 31.0043 31.2734 31,6704 31.5108 31.6346

Lena 20 28.9868 303813 30.2258 30.3530 30.3724

Goldhill 28.2604 287682 28.6570 28.6590 287524

Lena 30 256915 28.6009 28.4901 28.5330 286121

Goldhill 25.3490 271687 27.2133 270963 27.1246

Fig 2: Comparing the performance of (a) Noisy Lena at g = 30 with (b) Wiener filter (c) NormalShrink and (d) proposed

Shrink

proceszing toolbox, The PSNR resultz are shown in
Table 1 and they are considerably worse than the
nonlinear thresholding methods, especially when o is
large. The image quality is also not as good as those of
the threshol ding methods. It is clear from Table 1 that the
proposed thresholding technique outperforms the
NormalShrink and the filters like wiener. The proposed
method removes noise significantly and remains within
3246 of the NormalShrink. Moreover, the computational
time iz 4% for BayesShrink. Figure 2 shows the noisy
image and resulting images of wiener filter, Normal Shrink

and proposed method of Lena image.
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CONCLUSION

Since, the proposed threshold estimation method is
based on the analyzis of stafistical parameters like
standard deviation, variance of the sub band coefficients,
it iz more sub band adaptive. The image-denocizing
algorithm uses soft thresholding to provide smoothness
and better edge preservation at the same fime.
Experiments are conducted on different natural images
corrupted by wvarious noise levels to wvalidate the
performance of proposed thresholding method in
comparison with NormalShrink, BayesShrink and filters
like wiener. Since the denoising of images technique has
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possessed better PSNR, this method applicable to images
those are corrupted during transmission, whiuch 1s
normally random in nature.
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