Medwen

Online

ISSN: 1816-9303
© Medwell Journals, 2007

International Journal of Soft Computing 2 (5): 595-598, 2007

Exloring Mathematical Software

Kostas Zotos
Department of Applied Informatics, Umiversity of Macedonia, Thessaloniki, Greece

Abstract: Today, it 13 not uncommon for software teachers to recommend that no function or method should
be longer than a few lines. A few decades ago, the recommendation was the opposite: Don’t put something in
a separate subroutine if it 15 only called once. The reasons for this shift in software writing style are that
mathematical projects have become bigger and more complex, that there is more focus on the costs of software
development and that computers have become more powerful. The high priority of structured software
development and the low priority of program efficiency are reflected, first and foremost, in the choice of
programming language and interface frameworls. This study explores these considerations.

Key words: Mathematical software, programming in Mathematics, class design

INTRODUCTION

Making programs can be hard, but making code that
is easy to maintain and extend is definitely hard,
especially when the size of the program grows. Without
careful planning and detailed specifications of the
program it quickly becomes impossible to implement
anything but the simplest program. As a consequence,
different approaches to go from some problem through
specification to an actual program exist and a plethora of
programming languages have been created to aid the
programmer to create correct programs faster.

It 18 widely admitted that traditional imperative
programming languages such as FORTRAN or C are not
the best suited for developing mathematical software.
They present major lacks for extensibility, maintainability,
or reusability, which are crucial objectives in designing
libraries. Object-oriented design provides
opportunities to overcome limitations of traditional
languages. Their major drawing power is to offer the

excellent

opportunity to encapsulate complex coding and
provide user-friendly interface (Pierre, 1994). My re-
commendation is to use the Java programming language.
A strong driver for this decision 1s the widespread
adoption of the Java language and its accompanying
documentation and tools. Second, it supports safety,
analyzability and flexibility.

STARTING NEW MATHEMATICAL SOFTWARE

Before starting new mathematical software, it is
important to decide which programming language is best
suited for the project at hand. Low-level languages are

595

good for optimizing execution speed or program size,
while high-level languages are good for making clear and
well-structured code and for fast and easy development
of user interfaces and interfaces to network resources,
databases, etc.

Tt should be clear, that the choice of programming
language is a compromise between efficiency, portability
and development time. Interpreted languages are out of
the question when efficiency 18 unportant. A language
based on mtermediate code and just-in-time compilation
may be a viable compromise when portability and ease of
development are more important than speed. This
includes languages such as C#, Visual Basic NET and the
best Java implementations. However, these languages
have the disadvantage of a very large runtime framework
that must be loaded every time the program is run. The
time it takes to load the framework and compile the
program are often much more than the time it takes to
execute the program and the runtime framework may use
more resources than the program itself when running.
Programs using such a framework sometimes have
unacceptably long response times for sunple tasks like
pressing a button or moving the mouse. The NET
framework should definitely be avoided when speed 1s
critical.

The fastest execution 1s no doubt obtained with a
fully compiled code. Compiled languages include C++,
Pascal, Fortran and several other less well-known
languages. C++ is supported by some very good
compilers and optimized function libraries. CH++ is an
advanced high-level language with a wealth of advanced
features rarely found in other languages. But the CH++
language also mcludes the low-level C language as a

Int. J. Soft Comput., 2 (3): 595-598, 2007

subset, giving access to low-level optimizations.
Most C++ compilers are able to generate an assembly
language output, which is useful for checking how well
the compiler optimizes a piece of code. Furthermore, most
C+t+ compilers allow assembly-like intrinsic functions,
mline assembly or easy linking to assembly language
modules when the highest level of optimization 1s needed.
The C++ language is portable in the sense that CH+
compilers exist for all major platforms. Pascal has many of
the advantages of C++ but is not quite as versatile.
Fortran 1s also quite efficient, but the syntax 1s very old-
fashioned.

Development in CH++ i1s quite efficient thanks to
the availability of powerful development tools. One
popular development tool is Microsoft Visual Studio.
This tool can make two different implementations of
C+t, directly compiled code and intermediate code for
the common language runtime of the NET framework.
Obviously, the directly compiled version 1s preferred.
An important disadvantage of C++ relates to security.
There are no checks for array bounds violation, mteger
overflow and invalid pointers. The absence of such
checks makes the code execute faster than other
languages that do have such checks. But it is the
responsibility of the programmer to make explicit checks
for such errors m cases where they cannot be ruled out by
the program logic. C++ is definitely the preferred
programming language when the optimization of
performance has high priority. The gain in performance
over other programming languages can be quite
substantial. This gain in performance can easily justify a
possible minor increase in development time when
performance 1s important to the end user.

There may be situations where a high level
framework based on mtermediate code 1s needed for other
reasons, but part of the code still needs careful
optimization. A mixed implementation can be a viable
solution 1n such cases. The most critical part of the code
can be implemented in compiled C++ or assembly
language and the rest of the code, mcluding user interface
etc., can be implemented in the high level framework. The
optimized part of the code can possibly be compiled as a
Dynamic Link Library (DLL) which 1s called by the rest of
the code. This is not an optimal solution because the high
level framework still consumes a lot of resources and the
transitions between the two kinds of code gives an extra
overhead which consumes CPU time. But this solution
can still give a considerable improvement in performance
if the time-critical part of the code can be completely
contained i a DLL.

596

PURE COMPUTER SCIENCE MEETS PURE
MATHEMATICS

Computer science techniques from
engineering and Mathematics and adapts them to the new
context. For example, Mathematics uses the concept of
problem reduction that reduces one problem to an
equivalent but a simpler problem that is more amenable to
formal treatment. This technique is also very useful in
computer science, for example, it is used to find
computational thresholds or to convince someone that it
is unlikely to find an efficient algorithm for certain
problems. As an example, consider the set of equation

Teuscs

systems where all equations are of the form x+y+z =1. All
variables are either one or zero and our goal 1s to find an
efficient algorithm that satisfies the optimum fraction of
the equations m a given equation system. The technique
of problem reduction 1s used to show that the fraction 4/9
of the equations can be satisfied by an efficient algorithm.
Tt is also used to show that it is unlikely that there is a
better algorithm because the set of equation systems
where the fraction 4/9 + e can be satisfied is NP-complete
for arbitrary small e (Golden Ratio) (http://www.ccs.neu.
edw/research/demeter/papers/mary-cs/mary4. PDF).

Students in computer science learn Object-oriented
techmques as a method for designing software systems
without explicitly knowing it they learn fundamental
prnciples of abstract Mathematics. In Table 1, we are
going to
also very well suited for implementing “Mathematics™
(Mare , 2003).

There are close conceptual links between Object-
orlentation and certain mathematical structures such as
rings and groups (Marc Conrad, 2004). Figure 1 shows an
UMI, diagram example. An abstract base class Ring
requires from its child classes the implementation of the
basic arithmetic (addition, multiplication, etc). A second

see that object-oriented principles are

class RingElt stores the information about the elements of
a ring. Each RingElt instance a belongs to an instance of
a child class R of the Ring. Examples for R are the ring of
integers, rational numbers or a polynomial ring.

RingElt Ring
-myRing:Ring [V | s - n
ing: ! t2dd(a: RingElt, b: RingElf): RingElt
~duta: Object - mouli(e: RingELL, b: RingElf): RingEl

4

IntegerRing
‘+add(e: RingEH, b: RingEl): RingElt
+mult(e: RingEl, b: RingEl): RingElt

Fig. 1: Example of a ring

Int. J. Soft Comput., 2 (3): 595-598, 2007

Table 1: Object-oriented principles are also very well suited for implementing “Mathematics”

Object-oriented software Math example
| Vehicle | | Quadratic extension Fvd) |
Inheritance: Give one class r Y
(the child class}) all the
methods and data of Complex field C
another class (the parent | Car | | |
class): An "isa" .
relationship. The class car gets all C=R(¥-1) "isa"
methods of the vehicle + quadratic extension of R
additional own methods.
‘Vehicle
RAR R
Inheritance hierarchies Rix]
usually have a tree or Car Bicycle \
directed graph structure
[Feg)-FxaF |
[Esme | | Hatohback 1
[c=ra-1]
Overtiding methods: Vehicle: Fd):
Reimplement a method of Implement a method Implement multiplication
the parent class in the move(). C (inherits Fiyd)):
child class. Car (inherits Vehicle): Re-implement
Also implements a method multiplication, e.g. using
move(). polar coordinates in some
Car objects execute the cases.
move() method defined in
the Car class.
An advantage of A class Driver can be Define a polynomisl ring
overriding methods: associated with the Vehicle over an arbitrary ring of
(Generic algorithms class. The Driver can move coefficients and obtain
the Vehicle moving in fact polynomials over C, 3,
a car or a bicycle. F{d) etc.
Abstract methods That is, the driver moves Similarly a Ring class does
absiract classes, only Cars, Bicycles, but not need to define addition
not a "Vehicle". In fact the and multiplication. (But it is
‘Vehicle class does not need obvious, that a Ring has
to define the move() method. addition, multiplication, etc.)
Abstract methods: Declare Vehicle: ARingR:
a method in the parent class Declare a method move(). Declare multiplication.
implement in the child class. Car {inherits Vehicle): C (inherits R):
Also implements a method Implement multiplication.
move().
Car objects execute the
move{) method defined in
the Car class.
CONCLUSION

The very nature of mathematical software makes
the designing of a system difficult. Unlike other areas
of design, such as bulding construction and car
manufacturing, the final product of software design is
abstract and intangible. “It 1s not constramed by
materials, govemned by physical laws or by
manufacturing processes” (Marc, 2004). This 1s botha
positive and a negative characteristic of software. It 1s

597

positive in the way that there are no physical limitations
of what software can accomplish, yet n egative due
to the fact that such systems can easily become largely
complicated and difficult to comprehend. A commeonality
between designing software and designing other
15 that there is no single correct solution.
or task to

products

Given a particular item to develop,
complete, developers are faced with multiple design
solutions where the one to mmplement 13 not always

apparent. In addition, design involves many differing

Int. J. Soft Comput., 2 (3): 595-598, 2007

dimensions, for example cost, reliability, maintainability
and efficiency, all of which require optimisation. Tt is
essential for the developer to find the nmght balance
between these dimensions for their particular solution.

software

at a pomt In

structured, top-down design

We are currently

development where
methods are no longer sufficient for handling the
complexity of problems possible with today's hardware.
We need to find a paradigm of software development
that
courses in programming nowadays stress the importance

of

modularity,

can handle the added complexity. Umversity

structured and Object-oriented programming,
reusability and systematization of the
software development process. These requirements are
often conflicting with the requirements of optimizing
the software for speed or size. In mathematical
academic environments software often seems to grow,

598

without a clear plan or explicit intention of fulfilling
some need or purpose, except perhaps as a vehicle
for research.

REFERENCES

Marc Conrad, 2003. Abstract Classes-pure computer
sclence meets pure mathematics.

Marc Conrad, 2004. Tim French. Exploring the synergies
between the Object-oriented paradigm and
mathematics: A Java led approach. Internatonal
Journal of Mathematical Education Science
Technology.

Pierre Manneback, 1994. Guibo Peng. Towards an Object
Oriented Distributed Matrix Computation Library
above C and PVM, Laboratoire P.IP.

Sommerville, 1., 2001. Software Engineering. Pearson
Education Ltd.

