Me.dWe]l International Journal of Soft Computing 2 (4): 531-537, 2007

Onilne © Medwell Journals, 2007

A Tabu Search Algorithm for .Job Shop Scheduling Problem with
Industrial Scheduling Case Study

'P. Senthil Velmurugan and *V. Selladurai
"Department of Mechanical Engineering, Kongu Engineering College,
Erode-638 052, India
*Department of Mechanical Engineering, Coimbatore Institute of Technology,
Coimbatore-641 014, India

Abstract: The general Job Shop Scheduling (TSS) problem is of combinatorial in nature wherein it is difficult
to find the optimal solution conventionally. In recent years, much attention has been made to solve these type
optimisation problems using heuristic techniques such as Genetic Algorithm, Ant Colony Optimisation, Tabu
Search, Simulated Annealing. This study presents a Tabu Search (T3) approach to minimize makespan for the
ISS problem. The method uses dispatching rules to obtain an initial solution and searches for new solutions
based on new neighbourhood based first-last strategy with dynamic tabu length. Several benchmark problems
are tested using this algorithm for the best makespan and the obtained results are compared with benchmark
values. Finally the TS algorithm has been tested for scheduling problem in automobile parts manufacturing

industry.

Key words: Combinatorial optimisation, job shop scheduling, tabu search, algorithm, manufacturing industry

INTRODUCTION

The manufacturing industry is considered to be the
prime contributor to the growth of the competitive market
driven industrialised society. This industry must be
efficient in all respect, otherwise there will be no sales for
the products. Tn such industries, there is a need for well
designed and efficient mamufacturing systems which
incorporate global business and product strategies as well
as process and technological developments. Such
manufacturing system relies on efficient, effective and
accurate scheduling, which 1s a complex operation.
Scheduling allocates the time when a particular task or
activity 1s to be processed by a given resource in order to
optimise the requirements set by the customer. Job Shop
Scheduling (ISS) problem is one such important model in
scheduling theory and because of its combinatorial nature
1t 18 difficult to find the optimal selution conventionally.
In ISS problem, n jobs are processed to completion on m
unrelated machines. The objective i1s to minimize the
maximum completion time (makespan). This study
presents a Tabu Search (TS) approach to mimimize the
makespan C_,. for the TSS problem. TS is a meta-heuristic
approach designed for finding an optimal or near optimal
solution of combinatorial optimisations problems. Tt works
m a determimistic way trying to
memory processes.

model human

Job shop scheduling problem: In JSS problem, jobs are to
be processed on the machines with the objective of
minimizing some functions of the completion times of the
jobs subject to the constraints. The sequence of the
machines for each job is prescribed, each machine can
process only one job at a time and pre-emption 1s not
allowed. A set of jobs has to be processed on a collection
of machines and each job needs several consecutive
operations (routing) before bemng completed. The
condition of equal number of operations for all jobs is also
ensured.

Representation models: A schedule is defined by a
complete and feasible ordering of operations to be
processed on each machime and in a job shop there are
two main ways of graphically representing such an
ordering

» Disjunctive graph
+ Gantt chart

Disjunctive graph model: J5S scheduling problem can
be represented by a disjunctive graph(Laarhoven et af.,
1992). In this disjunctive graph a vertex represents an
operation. The conjunctive arcs which are directed lines
connect two consecutive operations of the same job. The

Corresponding Author:
Erode-638 052, India

P. Senthil Velmurugan, Department of Mechanical Engineering, Kongu Engineering College,

Int. J. Soft Comput., 2 (4): 531-537, 2007

Table 1: Processing time and operation sequence for 4=3 instance

Job Operation sequence (processing time)

1 1(2) 2(3) 3D
2 3 2(4) 1(D)
3 2(2) 32 1(3)
4 1(3) 33 2(D)

@ 1st operation of 1st job S = Starting, T = Terminal
- Disjunctive arc (Pair of operations on the same machine
—»

Conjunctive arc (Technological sequence)

Fig. 1. Disjunctive graph representation for 43 problem
in Table 1

26
[23]

2 4 10

W 33 IJ.-L\\\\\\\\\\\\[\\\\\\\\\\\\\\\\\\\\\\\\\\\\\‘
AHIVRAARRARVARVIAVAARY 45 ARV 90 |
A 0
[M/CIRAY 32 RARIWANWIKNY - 4

Fig. 2. Feasible Gantt Chart for the 4%3 problem with
blocks

disjunctive arcs which are pairs of opposite directed lines
connect a pair of operations belonging to different jobs to
be processed on the same machine. Two additional
vertices are drawn to represent the start and the end of a
schedule. Let us consider an example of JSS problem with
four jobs and three machines, the data are given in
Table 1. The disjunctive graph representation for the
above example problem is shown in Fig. 1.

Gantt charts: Gantt chart 1s the graphical representation
of position of jobs and operations on the respective
machines. Tt also represents idle times, starting and
completion times of machines. In gantt chart, the various
operation blocks are moved to the left as much as
possible on each machine and this will help to have a
compact schedule which will generally minimize the
makespan measure. Figure 2 represents the gantt chart of
the feasible solution for the problem in Table 1.

TABU SEARCH FOR JOB SHOP SCHEDULING

Glover (1989, 1990) presented the fundamental
principles of TS as a strategy for combinatorial

532

optimization problems. This study indicated the basic
principles, ranging from the short-term memory process at
the core of the search to the intermediate and long term
memory process for mtensifying and diversifymng the
search. This study also, introduced new dynamic
strategies for managing Tabu lists, allowing complete
exploitation of underlying evaluation functions.

Number of researchers adopted this TS technique
for solving ISS. Taillard (1994) proposed parallel TS
algorithm which i1s more efficient than the shifting of
bottleneck procedure and simulated annealng for
minimizing the makespan. Barnes and Chambers (1993)
used dispatching rules to find the imitial solution and
introduced the concept of historical generators and
search restart in conjunction with a contiguous spectrum
of short term memory values to enhance the overall
exploration strategy. The TS algorithm based on specific
neighbourhood technique which employs a critical path
and blocks of operations notions is proposed by
Nowicki and Smutnick: (1996, 2005). They also provided
a new approximation algorithm based on the big
valley phenomenon that uses path relinking technique as
well as new theoretical properties of neighbourhoods.
Tain et al. (2000) used Nowicki and Smutnicki concept and
developed a multi level hybrid system called core and
shell based on the principle of scatter search and path
relinking and concluded that the choice of strategy to
generate a critical path has a negligible influence on the
Ponnambalam et al. (2000) used the
adjacent pair wise interchange method to generate
neighbourhoods. The performance measure considered 1s
makespan time and results are compared with sunulated
annealing and genetic algorithms. Pezzella and Merelli
(2000} proposed the shifting bottleneck procedure to
generate the imtial solutton and a dynamic list 1s
introduced to refine the solutions. Armentano and Scrich
(2000) presented a TS approach to minimize total
tardiness for the JSS problem. The method uses
dispatching rtules to obtain
Diversification and intensification

best solution.

initial ~ solution.
strategies
incorporated to the short-term memory TS.

an
Wwere

Tabu search procedure: TS Watson et al. (2003) is a local
search algorithm that requires a starting solution and a
neighbourhood structure. It proceeds by transiting from
solution to solution using the transitions (or moves)
defined by the neighbourhood structure in a systematic
way until some stopping criterion is met. TS examine all
the neighbours of the current solution and select the best
admissible move. An admissible move 1s a move which 1s
not on the tabu list, where the tabu list is a list containing

forbidden moves. Here an initial solution is obtained

Int. J. Soft Comput., 2 (4): 531-537, 2007

from any priority dispatching schedules. Tt is observed
that, given a feasible solution the makespan can be
mnproved by the exchange of two adjacent critical
operations on the same machme. These mnsights are used
to define a search neighbourhood At each move the
effect of each possible exchange is estimated. The
reversal of an operation pair exchanged during the extent
of short term memory is forbidden unless the resulting
makespan would be better than the current one.

The TS (Geyik and Cedimoglu, 2004) implementation
in connection with JSS problem is explained as follows.

Initial solution: The first step in the TS 1s to create the
mutial solution. An initial solution is obtained by selecting
from any one priority dispatching solutions. The mutial
solution affects the scheduling solution quality. In this
paper we have followed the Shortest Processing Time
(SPT) rule.

Neighbourhood structure: A detailed historical sketch
of neighbourhood was provided by Tain et al. (2000).
The first major contribution was provided by
Laarhooven ef al. (1992). A neighbourhood structure is a
mechanism, which containg new set of neighbour
solutions by applying a simple modification to given
solutions. Each neighbour solution 1s reached from a
given solution by move. A sequencing move 18 defined
by the exchange of certain adjacent critical operation pairs
within the block and then considered the exchange of
every adjacent critical operation pair on every machine. A
block 13 a maximal sequence of adjacent critical operations
on the same machine. Neighbourhood structure is directly
effective on the efficiency of TS because TS proceeds
iteratively from one neighbour to ancther in problem
solution space. Therefore, a neighbourhood structure
must eliminate unnecessary and infeasible moves if it is
possible.

Neighbourhood strategy: In this proposed methed only
one critical path i1s generated. In the given blocks, swap
the first two operations and last two operations on each
block. In the study where the block contains only two
operations, then these operations are swapped.

Move: The best neighbour which is not in Tabu or
satisfies a given aspiration criterion is selected as a new
seed solution. The best neighbour is one whose objective
function C,,, is minimum. If the entire neighbour is in
Tabu or no neighbour satisfies the aspiration criterion
then the oldest neighbour entering the tabu lList at first 1s
selected as new seed solution.

533

Tabu list: The purpose of the tabu list is to prevent the
search from degenerating by starting to cycle between the
same sclutions. In tabu list, the elements added on the list
are attributive to save computer memory. The tabu list 15
started with empty. The length of tabu list 1s important for
selection of best solution. If the list 18 long more
diversification 1s allowed due to which getting best
solution is difficult. Contrary, if the list is too short cyclic
occurs. The length of the tabu list is problem dependent
and varies dynamically. Tt is evident that, the average
mumber of explored solutions increases as the length of
the tabu list increases (Pezzella and Merelli, 2000).

Aspiration criterion: The aim of the aspiration criterion,
when 1t 1s necessary, 13 to override the Tabu status of a
neighbour. The aspiration criterion 1s used as follows: if
the move yields a solution better than the best obtained
so far, then the move 1s performed even if it 1s in Tabu.

Termination criterion: When the number of disimproving
moves reaches to a maximum set value and tabu length
criteria is met or the best obtained solution equals the
lower bound, then the TS algorithm is terminated.

Let us consider the example problem in Table 1. The
TS algorithm is explained with this example problem. The
imtial solution 1s obtamed by SPT rule. A feasible
schedule of this problem 1s represented in Fig. 3.

The critical path for the above solution 1is
{7—+8-9—-10—11-3—-4—=5-6} with makespan length of
26. The obtamed solution 1s only one of the possible
ones and its optimality for makespan is not guaranteed.
Here, the obtained solution is stored as the current seed
and the best solution. The critical path can be
decomposed into a number of blocks. A block is a maximal
sequence of adjacent critical operations that require the
same machine. In Fig. 3, the critical path is divided into

—» Sequence of operation on M/C 1
——» Sequence of operation on M/C 2
—3» Sequence of operation on M/C 3

Fig. 3: Feasible sequence for the problem described in
Table 1

Int. J. Soft Comput., 2 (4): 531-537, 2007

Table 2: Tabu Search for problem in Table 1

Tter. No. Neighbours Cra Move Tabu list
1 10-9, 3-11, 4-3 21, 22,22 10-9 9-10
2 4-3, 3-11, 10-1 17,21, 21 43 9.10, 3-4
3 10-1, 4-11 16,17 10-1 9-10, 3-4, 1-10
4 11-8, 4-11 17,17 11-8 9.10, 3-4, 1-10, 8-11
5 8-11, 4-8 16, 16 4-8 9-10, 3-4, 1-10, 8-11, 84
6 4-11, 6-9, 3-8 14, 18, 20 411 9.10, 3-4, 1-10, 8-11, 84, 11-4
7 5-12,1-10,12-2 13,14, 16 5-12 9-10, 3-4, 1-10, 8-11, 8-4,11-4, 12-5
5 § 9 10 neighbourhood strategy by swapping its neighbour.
Lwerl U Al] 22 3 231|0 Neighbours which have minimum makespan are stored as
Imica]l 31 12 22 431 best which satisfies the aspiration criterion or not in tabu
4 [13 . . L.
MT3] il [32 1 az_ | K]] list. This new schedule acts as mitial schedule for the next

Fig. 4: Gantt chart for the optimum sequence

two blocks Bl and B2 that are processed on machines 1
and 3, respectively. Block Bl consists of the operations
in nodes 9 (33), 10 (41) while B2 is made up of the
operations 11(42), 3 (13), 4 (21). The sequence of
are as follows: M,
{72125 and M,

operations on machines,
{129-10—-6}, M,
{81134},
Using pair wise exchanges, the neighbourhood 1s
generated for this schedule. For each schedule, makespan
times are calculated and schedule which has minimum

makespan time is talen as the initial schedule for the next
iteration. The neighbours found are 10—9, 3—11 and 4—3.
After reaching neighbour solution, sequencing move 1s
done by swapping the critical operation pairs. The
completion time of each neighbour is calculated. The
makespan obtained for the neighbour 10—9, 3—11 and
4—=3 are 21, 22 and 22, respectively. The move selects the
neighbour 10—9 because its makespan value is minimum.
This neighbour satisfies the aspiration criterion that,
this neighbour is not in the tabu list. So, the neighbour
10—9 1s added to the tabu list. The schedule for
neighbour 10—9 is taken as the initial schedule for the
next iteration. The process is repeated until a set
termination criterion is met. The Table 2 exlubits the
details about Tabu implementation and Fig. 4 represents
the gantt chart for the optimum makespan 13.

TS IMPLEMENTATION

The initial schedule i1s created based on SPT rule,
makespan is found and stored as best. Initially the tabu
list 18 started with empty. The blocks are created based
on critical path and neighbours are identified using
first-last neighbourhood strategy. The pseudo algorithm
for the procedure applied to find first and last
neighbours 1s indicated m Fig. 5. Makespan 1s obtained
for each pair with in the block which satisfies the above

534

cycle. If the makespan value for new schedule is less than
the existing makespan value, the new schedule is the best
schedule. The above steps are repeated till it meets the
termination criterion. By tlus way all the schedules are
generated and the best result is found. The dynamic tabu
length strategy is followed by us. When cycle occurs elite
solution sequence was used as a new sequence and
proceeds further. Initially the length of tabu list 1s set as
eight and varied dynamically to a maximum of fourteen.
The tabu list length is changed randomly at equal
intervals of maxiter value, where maxiter represents the
maximum number of allowed iterations 1f no improvement
occurs in the current solution and is set as 5000. Number
of elite solutions varies between 5 and 8.

TS Algorithm : Find neighbours

Parameters : k = Points the last neighbour
noofmach =The number of available machines
numblock[i] = The number of blocks in ith machine

block[i][j].node[k] = Holds the posistion of kth node in the
jth block of ith machine

= Holds the total number of nodes in the
jth block of ith machine

neighbourlist[i].start =Holds the start node of ith neighbour

neighbourlist[i].end =Holds the end node of ith neighbour

block[i][j].count

k=0,
for(m=0;m<noofmach;m++)

for(1=0;l<=numblock[m];1++)
ifblockm][1].node[O] =0)
{

assign block[m][1].node] 0] to neighbourlist]k]. start
assign block[m][1].node] 1] to neighbourlist[k].end
kt+;

if(block[m][1]. count>1)

{

assign block[m][1].nodes[block[m][1].count-1] to neighbourlist[k].start
ssign block[m][1].nodes[block[m][1]. count] to neighbourlist[k].end
k++;
}
}
}
}

Fig. 5. Pseudo algonthim for the procedure applied to find
first and last neighbours

Int. J. Soft Comput., 2 (4): 531-537, 2007

TS ALGORITHM

Step 1. Set cycle number as 0. Imtialize tabu length and

maxiter. Generate initial solution by using SPT

rule and store it as current solution and best
solution.

Increase cycle number by 1. If the termination

criterion s met, go to step 6.

Find the critical path and list of neighbours for

the current solution and sort neighbours

according to the makespan.

Step 4. 1. Select the first neighbour from neighbour list.
Repeat the steps 4.2-43 until aspiration
criterion is met or all neighbours are
examined.

2. If aspiwation criterion 13 met, add this
neighbour to tabu list and set it as best
neighbour. Go to step 5.

3. If aspiration criterion 1s not met, select te next
neighbour and go to step 4.2

4. Tf none of the neighbour is found, select the
oldest neighbour from tabu list and set it as
best neighbour.

Find the current solution according to current

best neighbour. If current solution is lower than

the best solution, store current solution as best

solution. Go to step 2.

Output the best solution.

Step 2:

Step 3:

Step 5:

Step &:
RESULTS AND DISCUSSION

The proposed T3S algorithm 15 coded in C++ language
on Linux platform with the configuration of AMD Athlon
2600+, 2GHz and 512 RAM. The performance of TS
algorithm 1s tested on twenty mine J3S instances of
different sizes (6=6, 10x 5, 15x 5, 20x 5, 10x10) which are
available in the OR-library. The obtained makespan values
for different instances are compared with best benchmark
values available m OR Library and the results are
presented m Table 3. The percentage relative error is also
calculated for each instance.

INDUSTRIAL CASE PROBLEM

This case study describes a ISS problem encountered
in a brake drum line of M/S salkthi auto components
limited, erode located mn southern part of India. In this
machine shop, brake drums required for light motor
vehicle wheels are machined. The brake drum (Fig. 6) is
attached to the wheel and provides the rotating surface
for the brake linings to rub against to achieve braking
action. It 1s grooved to mate with a lip on the backing

Table 3: Comparison of makespan values

Test Best solution Obtained RE

instances Size known solution (%0)

LA 01 10=5 666 666 0.00
LA 02 10=5 655 655 0.00
LA 03 10=5 597 597 0.00
LA 10x5 590 590 Q.00
LAOS 10x5 503 593 Q.00
LA 06 15x5 926 926 Q.00
LA 07 15%5 890 890 0.00
LA 08 15%5 863 863 0.00
LA 09 15%5 951 951 0.00
LA 10 15x5 958 958 Q.00
LA1l 205 1222 1222 Q.00
LA 12 205 1039 1039 Q.00
LA 13 205 1150 1150 0.00
LA 14 205 1292 1292 0.00
LA 1S 205 1207 1207 Q.00
LAl6 10=10 945 946 Q.10
LAl7 10=10 784 784 Q.00
LAlS 10=10 848 848 Q.00
LA19 10x10 842 842 0.00
LA20O 10x10 902 202 0.00
ORBO1 10x10 1059 1064 0.47
ORBO02 10=10 888 888 Q.00
ORBO03 10=10 1005 1005 Q.00
ORB04 10=10 1005 1011 0.59
ORBOS 10x10 887 887 0.00
ABRZ05 10x10 1234 1236 016
ABRZ06 10x10 943 943 0.00
FT 06 0606 55 55 Q.00
FT10 10x10 930 935 0.53

Section AA

Not to scale

Fig. 6: Rear brake drum

plate that provides the rotating seal to keep water and dirt
from entering the brake assembly. Tn this brake drum line,
special purpose machines are loaded with various jobs
with pre-determined process sequence and tine with
continuous production. The processing times are
functions of the handling time and machiming time of the
jobs.

The process sequence and number of operations are
not the same for all brake drums. There are 6 different
brake drums being machined m 7 different machines. The
order in which the machimes are required to process a job
is called process sequence of that job. Though the
operation number in the operation sequence of a job
remains the same, the processing times for various jobs
on a machine may differ. The operation and machine
description to perform these operations are described in
Table 4. The job description and sequence of operations
are indicated m Table 5. The orders for these brake drums

Int. J. Soft Comput., 2 (4): 531-537, 2007

Table 4: Operation Sequence with machine details

Operation No. Operation description Machine No. Machine name

1 Outer diameter finishing CN 09 CNC tuming machine

2 Tnternal diameter finishing CN 23 CNC tuming machine

3 Grooving GL 22 Grooving lathe

4 Drilling DL 15 Radial drilling machine

5 Chamfering DL 18 Radial drilling machine

6 Tapping DL 19 Radial drilling machine

7 Honing SM 10 Vertical spindle honing machine
8 Final inspection CMM Co-ordinate measuring machine
9 Cleaning and packing

Table 5: Job description with operation sequence

Job no. Jab - break drum Operation sequence

A Honda rear brake drum 1 2 3 4 5 6 7

B Maruthi Model “B” rear brake drum 1 2 3 4 5 - --

C Maruthi Model “C” rear brake drum 1 2 6 3 4 5 7

D Maruthi Gypsy Van front brake drum 1 2 5 3 4 - --

E Maruthi Gypsy Van rear brake drum - 2 - 4 5 6 -

F Maruthi 800CC rear brake drum 1 2 3 4 5 - -
Table 6: Processing times and operation sequence for the Brake drum line

Job Operation sequence (Processing time in min)

A 1(512) 2 (678) 3 (352) 4 (430) 5(98) 6(98) 7 (186)
B 1(585) 2 (720) 3 (560) 4(550) 5(420) (@) (0)

C 1(552) 2 (831) 6 (201) 3 (29%) 4(108) 5(108) 7 (206)
D 1(765) 2 (765) 5(249) 3(254) 4(132) (@) (0)

E (© 2 (1170) () 4 (411) 5(213) 6(411) {0)

i 1(423) 2 (1152) 3(187 4(98) 517D (@ (0)

are fluctuating with respect to time and it varies from
manufacturer to manufacturer. Hence order data has been
collected for six months time and the average batch size 1s
taken to calculate the setup time and operation time.

After performing the machining operations the
inspection for quality work is performed using co-ordinate
measuring machine. Dusts and foreign materials are
removed in the cleaning section. Before dispatching, the
product is oiled to avoid rust and paclked with dust free
polythene cover.

Based on the above details the problem has been
formulated as ISS problem and are shown i Table 6. The
TS algorithm has been used to find the optimal machine
sequence and total malkespan time. The optimum
makespan obtamned with one set of machine sequence 1s
5776 min. It 1s found that the CNC turming machines CN
09 and CN 23 are fully utilised with zero idle time for the
operations internal diameter finishing and outer diameter
finishing. The optunum makespan 1s obtamed in the 12th
iteration itself. The different machine sequences can be
optioned by varying TS parameters but with the same
makespan value.

CONCLUSION
In this research, a TS algorithm is presented for

solving ISS problem. The objective function considered
15 the mimimisation of the makespan time. Schedules are

536

represented using an operation-based representation. The
initial solution has been obtained by SPT time rule. The
new first-last neighbourhood structure with dynamic tabu
length has been proposed. Software has been developed
in C under Limx environment for the TS algorithm. The
performance of proposed T3 algorithm has been tested on
different benchmark problems. The optimal solutions are
found for all tested instances with less than one percent
relative error. This proposed TS algorithm has also been
implemented in automobile parts manufacturing industry
to find the optimal machine sequence.

REFERENCES

Armentano, V.A. and C.R. Scrich, 2000. Tabu search for
minimizing total tardiness in a job shop, Int. I. Prod.
Econ., 63: 131-140.

Barnes, W.J. and J.B. Chambers, 1995. Solving the Job
shop Scheduling Problem with Tabu Search, IEEE.
Trans., 27: 257-263.

Chu, C., IM. Proth and C. Wang, 1998. Improving
job-shop schedules through critical
exchanges, Int. I. Prod. Res., 36: 683- 694.

Dauzere-Peres, 5. and Jan J. Paulli, 1997. An mtegrated
approach for modeling and solving the general
multiprocessor job-shop scheduling problem using
tabu search, Ann. Operations Res., 70: 281-306.

pairwise

Int. J. Soft Comput., 2 (4): 531-537, 2007

Geyik, F. and L. H. Cedimoglu, 2004. The Strategies and
Parameters of Tabu Search for Job Shop
Scheduling, J. Intelligent Manufacturing, 15: 439-448.

Glover, F., 1989. Tabu Search-Part I, Operations Research
Society of America. J. Comput., 1: 190-206.

Glover, F., 1990. Tabu Search-Part TI. Operations Research
Society of America, . Comput., 2: 4-32.

Jain, A.S., B. Rangaswamy and S. Meeran, 2000. New and
Stronger Job-Shop Neighbourhoods: A focus on the
method of Nowicki and Smutnicki, J. Heuristics,
6: 457-480.

Laarhoven, V.P., E. Aarts and J. Lenstra, 1992. Job Shop
Scheduling by Simulated Annealing, Operations
Res., 40: 113-125.

Nowicki, E. and C. Smutnicki, 1996. A Fast Taboo Search
Algorithm for the Job Shop Problem, Manage. Sci.,
42: 797-813.

Nowicki, E. and C. Smutnicki, 2005. An Advanced Tabu
Search Algorithm for the JTob Shop Problem. T.
Scheduling, 8: 145-159.

Pezzella, F. and E. Merelli, 2000. A Tabu Search Method
guided by Shifting Bottleneck for the Job Shop
Scheduling Problem, Eur. J. Operational Res.,
120: 297-310.

Ponnambalam, 5.G., P. Aravindan and S.V. Rajesh, 2000.
A Tabu Search Algorithm for Job Shop Scheduling,
Int. J. Adv. Manmufacturing Tech., 16: 765-771.

Taillard, D., 1994, Parallel Taboo Search Techniques for
the Job Shop Scheduling Problem, ORSA. I. Comput.,
6: 108-116.

Watson, J.P., I.C. Beck, AE. Howe and L.D. Whitley,
2003. Problem Dafficulty for Tabu Search in Job-Shop
Scheduling. Artificial Intelligence, 143: 189-217.

537

