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Abstract: The objective of this study 1s to classify few important kidney categories by characterizing the tissues
of kidney region using the unique power spectral features with ultrasound as imaging modality. The images are
acquired from male and female subjects of age 45+15 years. Three kidney categories namely normal, medical
renal diseases and cortical cyst are considered for the analysis. The acquired images are initially pre-processed
to retain the pixels-of-interest. The proposed features depend on the spatial distribution of spectral components
in the kidney region. A set of power spectral features P, P, PTRjle , PTREW12 , P$3w1 , and Pfj‘wl , are estimated at
the specific cut-off frequencies £, and €, in the spectrum and by considering global mean total power. The
results obtained show that the features are highly content descriptive and provide discrete range of values for
each kidney category. Such isolated feature values facilitate to identify the kidney categories objectively which
may be used as a secondary observer. The proposed method and features also explores the possibility of
implementing computer-aided diagnosis system exclusively for US kidney images.
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INTRODUCTION

The known facts of abdominal Ultrasound (US)
imaging like real-time, non-mvasive, non-radioactive and
inexpensive properties makes it to find wide spread
application in diagnosing soft tissue organ such as
kidney (Hangen, 1995; Pollack and Mcclennan, 2000). The
extensive use of computational knowledge to analyze the
US kidney images the researchers in this area have long
sought to extract features for the characterization of
kidney tissue. In general diagnostic studies of US images
are subjective and the resultant performance suffers from
mtra and inter-observer variability. Because unlike all
imaging modalities, US unaging is subject to number of
artifacts that degrade image quality and compromise
diagnostic confidence (Huang et af., 2004). The major
performance limiting factor m visual perception of US
imaging is a multiplicative noise called speckle that
makes the signal or lesion difficult to detect (Loi zou et al.,
2002, Eslami et al, 2005). Also other factors that

compounds are viewing distance, display size,
resolution, brightness, contrast, sharpness, colorfulness
and naturalness (Loizou et al, 2005). Due to these
constramts the possibility of segmentation of kidney
region and hence the extraction of features that helps to
evaluate the tissue characteristic of kidney objectively
becomes difficult.

The term Computer-Aided Diagnosis (CAD) refers
to the use of computers to assist doctors in objective
decision making. Although the kidney related diseases
are extremely common in adults they are not
adequately reported n CAD hitherto (Loizou et al., 2002;
Eslami et al, 2005). If a method that provides content
descriptive features exist then a CAD system to meet the
following requirements: EHstablishing a quantitative
US lidney 1images.
implementing Image Retrieval n Medical Application
(TRMA) system, making comparative study on images for
objective decision, developing an expert system that
automatically recognizes the extent of pathology or

uruversal reference for the
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normality and examining extent of healing or failure under
post-therapy observation may be realized in practice
(Bommeanna et @l., 2003; Karthikeyim ef al., 2004). The
extraction of content descriptive features may not be
possible unless a general segmentation scheme for
contouring the kidney region of different categories in S
images 1s available. Hence the implementation of CAD
system 1mtially requires a general segmentation scheme
which is then followed by the evaluation of content
descriptive features. The solution to develop such system
15 1in high demand and not been reported until now.

Most of the study on US kidney unages so far deals
with the segmentation of the kidney region using various
methodologies (Eslami et ., 2005, Bakleer et al., 1997,
Matre et al., 1999; Jun et al., 2005, Marcos and Carlos,
2005; Abouzar et af., 2004). Though the performance of
these methods is well appreciated, they fail to formulate a
general scheme by considering various kidney categories.
The local features used for finding optunum contour
are to be further investigated to explore their potential
in describing the global characteristic of kidney so
that the CAD system is made realistic. The authors
proposed a higher order spline interpolation obtained with
up-sampling of homogeneously distributed co-ordinate
(i-HSIC) segmentation scheme to contour the kidney
region of different categories (Bommanna et al., 2007).
This method helps, m specific, to retain the Pixels-of-
Interest (POI) 1.¢., the pixels of kidney region and may be
used as a general segmentation scheme.

The spectral features estimated by using Fast Fourier
Transform (FFT) have Tbeen used for various
analysis, diagnosis and evaluation of biological system.
Veenland et al. (1998) performed Fourier power spectrum
analysis to study the effect of image noise and blurring in
tissue structures represented by textures in radiographs.
Ciliary beat frequencies of respiratory epithelium cells
were  quantitatively  measured and analyzed with
maximum peak frequencies obtained by FFT power
specttum (Y1 ef al, 1997). Tokudome et al (1999)
assessed the role of autonomic nervous system in the
regulation of basal coronary artery tone in normal and
atherosclerotic plague segments by using intravascular
ultrasound in human. They evaluated the sympathetic and
vagal activities at rest as the integrated power of FFT
spectrum for the low frequency and high frequency
components, respectively. The
atherosclerotic plague was made by using the parameters
maximum power and spectral slope obtained from
normalized power spectrum (Spencer et al., 1997). Using
US as imaging method, Fukushima et al. (1997)
established a computer-aided diagnosis system for diffuse
liver diseases using annular Fourier power spectrum and

characterization of
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longitudinal Fourier power spectrum as two of their seven
parameters to train the artificial neural network.
Differentiation of breast tumors as malignant and
bemgn n vivo in patients with palpable breast masses
and in vitro in excised breast tissue was made using
ultrasound tissue characterization technique based on
parameters evaluated from the power specttum of back
scattered echoes (Golub er al., 1993). Allemamn et al.
(1993) used US imaging and spectrum analysis to study
the hyphema for distinguishing organized from fluid
hyphema and recent from old hemorrhage in the eye. They
concluded that spectrum analysis of high frequency
ultrasound data was able to distinguish organized from
recent hemorrhage which was clinically helpful for
planning hyphema therapy. Spectrum analysis was also
performed (L1 et al., 2002) for detection of breast cancer
using broadband microwave tomographic images. The
in vitro study for assessing node status in lymph node
(Feleppa et al., 1997) mdicates that spectrum analysis
offer excellent means of determining the presence of
metastatic cancer. A new anistrophy index was measured
(Barbara et al, 2005) wing FFT to assess the bone
structure with the help of trabecular bone radiographic
images. Also trabecular bone structure was analyzed
(Gregory et al., 1999) using Fourier transform to generate
a spectral fingerprints of an image. Principle component
analysis was then applied to identify the features from the
Fourter transform and passed to a neural network for
classification as osteoporosis and osteoarthritis. Tn a
study on walking foot pressure images (Prabhu et al.,
2001) for early detection of planar ulcers, the quantity
power ratio 1s defined to distingush between normal and
diabetic feet at different levels of neuropathy. The review
of study in the context of power spectrum analysis
deliberates the potential of spectral components under
varied environments and applications.

In this study an effort has been taken for the first
time;

To establish a new set of content descriptive features
using power spectral components to classify
different kidney category namely Normal (NR),
Medical Renal Diseases (MRD) and Cortical Cyst
(CO).

To deal with the requirements and of the CAD
system exclusively meant for US kidney images.

MATERIALS AND METHODS

Image data acquisition: The images used for the analysis
are acquired from two types of scanning systems namely,
ATL HDI 5000 curvilinear probe with transducer
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frequency of 3-6 MHz and Wipro GE LOGIC 400
curvilinear probe with transducer frequency of 3-5 MHz.
As the sonographic evaluation is made based on the
distribution of echogenity that reflects tissue
characteristics, for better echo visualization the
longitudinal cross section of kidney is taken to include
renal sinus, medulla and cortex regions as suggested by
the experts. This also ensures better visual interpretation
of the normal and diseased kidney. The transducer
frequency is fixed at 4 MHz Intotal, 150 images with
50 images in each category are obtained from male and
female subjects of age 45+15 years. The images of both
right and left kidneys are considered for the analysis.
The kidney diseases are usually categorized as hereditary,
congenital or acquired. The most common hereditary
disorder is cystic diseases which inchides simple renal
cyst and complex renal cyst or poly cyst. The kidneys
affected with these diseases are considered under CC
category. The sonographic features of renal cyst include
a well defined mass lesion, smooth wall and circular
hypo echoic mass with good through transmission. Any
congenital or acquired kidney diseases typically cause
renal infection and/or destruction of kidney tissues that
may lead to end stage chronic renal failure are considered
under MRD category. Due to tissue destruction,
anatomical separation between renal sinus, medulla and
cortex becomes difficult. The sonographic evaluation
shows hyper echoic kidney region with increased cortical
echogenity and differentiation between cortex and
collecting system is poor. The sample US kidney images
of NR, MRD and CC are shown in the Fig. 1. It can be
seen that ultrasound shows appreciable renal border in all
three cases, but intemally due to pathology involved the
echogenity varies in diseased kidneys (MRD and CC)
when compare to NR.

Formulation of pre-processing procedure: The pre-
processing procedure prior to feature extraction must be
formulated such that the sonographic information of
kidney region is preserved. Hence care has been taken to
ensure, no alteration in the spatial gray level distribution
particularly in kidney region. The steps ivolved in
proposed pre-processing procedure, as illustrated in
the Fig. 2. that concern above requirement are image
segmentation, image rotation and unbounded pixel
elimination.

Segmentation is a fundamental process for higher
level medical image analysis. In the present work, i-HSIC
segmentation scheme have been used for contouring the
kidney region of different kidney categories. This scheme
is preferred as it provides a general solution for
contouring. Also the comparative study with other three
segmentation schemes namely, Modified Snake Model
Contour (MSMC) (Kass et al, 1988; Cochen, 1991),
Markov Random Field Contour (MRFC) (Marcos and
Carlos, 2005, Chen and Metaxas, 2000) and Expert
Outlined Contour (EOC) shows i-HSIC perform well to
retain the Pixels-Of-Interest (POI) that reflects the
characteristic of the kidney in all three categories. The
contour obtained using i-HSIC segmentation scheme for
NR image is shown in the Fig. 2.

Usually the transducer probe position is adjusted
during scanning for better sonographic visualization
(Hagen, 1995). This results in different orientation of
kidney region as can be seen in the Fig. 3. In the acquired
image, kidney may geometrically be viewed as elliptic. The
visual ingpection confirms that the major axis makes an
angle O (called as angle of inclination) with respect to the
horizontal or reference axis and it varies anywhere
between O to 180°. Before feature extraction, the images
are to be rotated to ensure © = 0°, This is performed to

Fig.1 a: Normal image of male with age 38 years, b. Medical renal diseases image of male with age 45 years and c.
Cortical polycystic disease image of female with age 51 vears
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Fig. 2: Pre processing steps to retain POI in US kidney images
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Fig. 3: US kidney Image of three different normal subjects showing the orientation of major axis at an angle ‘0 measured
anticlockwise with respect to horizontal axis. For (a). 3 =157°, (b). @ =2°, and (c). O = 32°

maintain uniformity in image representation, avoid
influence of varied orientation on features and define
angular radial cut-off frequencies at identical regular
interval for all images. The determination of major axis
orientation and the estimation of angle of inclination O are
made by using the co-ordinates of i-HSIC contour.

In general, the contour can be defined as a
series of points in polar co-ordinate (Friedland and
Rosenfeld, 1989) and can be represented by avector
C = {c},c,C5....,c.), where L is the number of points in the
contour. Each ¢ iz an ordered pair of the x and ¥ co-
ordinates of a point on the contour. The co-ordinates of
a particular point ¢, in the contour is taken as areference
mitially and distant measure d is estimated between c, and
all points c_. This process is repeated until all the points
in the contour have been considered as reference. This
results in p maximum distance measures. The co-ordinates
of the points that are dislocated farthest (c,¢;) is obtained
by finding the maximum of p maximum distance measures
as given in Eq. 1.
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D_. (ci’cj) = max[

Where ¢ and c; are the co-ordinates of the points
that are dislocated farthest

p.q=1.23,....L

The slope of the major axis and hence the 8 can be
determined from ¢; and ¢; value. Based on calculated 8, the
image is rotated so that the major axis ofkidney region is
oriented exactly on the horizontal axis (Fig. 2).

After the contour estimation and followed by
rotation, it necessary eliminate the
supertluous echoes that lie outside the kidney region. The
pixels enclosed by the contour “C’ are considered to be

becomes to

POI or bounded pixel ps(x,y) and pixels lies outside the
contour ‘C’ are regarded as unbounded or noize pixels
pulx,y). The histogram analysis of three kidney categories
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shows that the gray level intensity values of these pixels
vary within the range 4-228. Therefore, gray level intensity
value of contour pixels are assigned as 255 to demarcate
Pey) from py(x,y). In order to eliminate p,(x,y), the gray
level value of p,(x,y) is compared with contour pixel value.
If py(x,y) = 255, then p, (x,y) = O outside “C’. The pp(x,y) 1s
retained with same intensity value as that of acquired
image I(x,y) inside “C’. This results in a pre-processed
image T(x,y) of size MxN, where ‘M’ is the image height
and N 1s the image width, that contains only the Pixels-Of-
Interest (POI) as depicted in the Fig. 2.

Power spectrum estimation and feature extraction: A 2-D
Fast Fourier transform (2-D FFT) algorithm 1s applied to
the preprocessed image [;(x,y) and magmtude square of
the spectral components F(u,v) is computed to obtain
power spectrum P(u,v) (Gonzales and Woods, 1999, Anil,
2000) by using the Eq. 2 and 3.

IN-1

1 M .
- _ vy 2
F(u,v) MN;;IB(X,y)exp[ sz(w%/[Jr /N”()
foru=0,1,2,...... M-landv=0,1,2,......, N-1.

Plu.v)= |F(u,v)‘2

In the power specttum the angular radial cut-off
frequencies (€),,) are defined at regular interval to
evaluate a set of proposed power spectral features. As
physical dimension of the pre-processed image 1s
represented by MxN, the resultant P(u,v) will also have
the same dimension. Suppose N>M, then £, are to be
defined along M direction and the maximum angular radial
cut-off frequency {2 (max) achieved is m, specified at
regular mtervals {0, 2n/M, 4n/M, 6m/M,..., w}. The
corresponding angular radial distances (€),,) are given at
interval {0, 1,2, 3,..., M/2}( Fig. 4). Similarly if M>N, then
Q_ are defined at mtervals {0, 2m/N, 41/N, 6m/N,...
with Q, at {0, 1,2, 3,..., N/2}. Hence the defimtion of £,
and €, varies with image size and direction. It can also be
observed that any further extension of maximum angular
radial distance Q {max) beyond M/2 or N/2 1s not possible
(Prabhu et al., 2001).

The solution for extending Q (max) is achieved by
two means: Computing 2-D FFT for Igx,y) after
Symmetrical Zero Padding (SZP) and Extending Q (max)

o737
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Fig. 4. The angular radial cut-off frequencies are defined
at ‘a’ and ‘b’. Here N=>M. The ), of ‘a’ to specify
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Fig. 5. The angular radial cut-off frequencies are defined
at ‘a’ and ‘b’ after SZP. Here M =N. The £ ,0of ‘@’
to specify Q. is within 0<£),. = b, where b = Q,
(max) = M = N. But P(w,v) and Pz(u,v) are not
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Fig. 6 The angular radial distance defined at “a’, ‘b* *¢’
and‘d’. Here N>M. The Q,; of ‘a” to specify {2 is

within 0<€,_ . <b, where b =M and can be further
2 2 %
J<3)

In first method, £ (max) is either M or N [ =M = N], but the
P(u,v) before and after SZP are not identical. The only
advantage of this method 1s Q_, and £, can be defined at
same mtervals urespective of umage size and direction as
represented in the Fig. 5. The optimum solution may be
achieved by the proposed second method. By referring
the Fig. 6, it can be seen that {1, may be defined
anywhere between 1 tod, which mecludes all the power

M
2

N

extended upto d = £ (max) H
2
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spectral components from low to high spatial frequencies.
This facilitates to have flexibility in defining €, and Q_
irrespective of image size and direction. Also P(u,v) is
preserved without any change. In this method, the €, are
defined at regular intervals {0, n/d, 2n/d, 3n/d,..., w}with
Qpat {0, 1,2 3, ., d}. Now the proposed power spectral
features can be estimated.

A set of ‘N’ window functions W, (wv), W,(uv),... ..,
Wyuluv) having specific lower and upper cut-off
frequencies are applied over the power spectrum at the
regular mterval, as given in the Eq. 4.

W, (wv) - {1 0., ()0, <0, (u) )
0 elseehere
Where
n 1,23,....N
N = d/L is the number of window functions
L 1s the length of the window measured m pixel

radians

. (1) is the lower angular radial cut-off frequency
measured n pixel radian

). (u) is the upper angular radial cut-off frequency
measured n pixel radian

The selection of window length 1s arbitrary. For
L =1, the window functions N available are d. In the
present research, it will be shown that for a constant
length of L = 10, the derived features provide appreciable
discrimination between 3 kidney categories. Therefore,
the window functions available are d/10. The fixing of
window emphasis to a ssign lower and upper cut-off
frequency to each window as detailed in the Table 1. The
power spectral components P (u,v) that corresponds to
each window is obtained by multiplying P(uyv) with

W.(wv). Using these power spectral components
the power spectral features P, P, PTR-1w12= PTREWH, TREWM
and Pf*,  are estimated by using the Eq. 5-10.

If the power spectral components within the window
W,(wv) is denoted by P,(u,v), then the total power under

W,(u,v) is represented by p™  as givenin Eq. 5.

Oreltuy

Z Z PZ (u,V)

u,v=0m1w

(5)

o
Pt =

The lower cut-off frequency Q_, (1) of window 1s 1 (1.e., 1t
does not include DC component) and the upper cut-off
frequency €,,(w) is 10m/d. Using the power spectral
components P,(u,v) obtained with W,(u,v), the second
feature P s defined as the total power within W,(u,v) 1s

estimated as mentioned in the Eq. 6:

Oragu

> 2 PR(u,v)

u,v= Omzm

(6)

LA
P =

Here the lower cut-off frequency Q_;(1) and upper cut-
off frequency € ,(u) is 11w/d and 20m/d, respectively
Table 1.

The influence of power spectral components of NR,
MRD and CC image data set on the features 9™ and
P can be studied by two parameters, global mean total
power within windows W,(u,v) and W,{uv) and global
mean total power within all the windows, W (uv) to
Wy(u,v). Using these parameters, four power ratio’s are
defined as represented inEq. 7-10 to study the efficacy
of p and p™ and to identify the lkidney category.

h
Pr

Py -
é;(a‘”‘ (i) + PG

T-Wp

7

Table 1:Power spectral components P, (1,v) and respective window finctions W (u,v) having specific lower and upper angular radial cut-off frequencies

Window function Length of Lower and upper cut-off frequency

S1.No. W(u,v) window (L) QD) 2 Q<0 (1) Power spectral component P.(u,v)
1 W, v) 10 103 <10m/d P, (1,v) = Plu,v) =W, (1,v)
2 W,(u,v) 10 11m/d=Q < 207/d P, (u,v) = P(u,v)xW,(u,v)
3 W, v) 10 21m/d=€) < 30mid P5(1,v) = Plu,v) =W, v)
4 W,(u,v) 10 31/d<Q < 40m/d P,(u,v) =Pu,v)xW,(u,v)

5 W, v) 10 Amid= <« 30mid Ps(1,v) = Plu,v) =W, v)
6 W,(u,v) 10 51m/d<Q < 60m/d P;(u,v) = P(u,v)xW;(u,v)
7 W, v) 10 61m/d=<C) < 70m/d P, (1,v) = Plu,v) =W, iu,v)
8 Wa(u,v) 10 F1m/d<Q < 80m/d P:(u,v) = P(u,v)xW;(u,v)
9 W, v) 10 81m/d«C) < 90m/d Pp(1,v) = Plu,v)=Wyu,v)
10 Wi, v) 10 917/d<Q < 1007/d Pp(u,v) =Pu,v)xWu,v)
11 W, 10 101m/d=C3 < 110m/d P (1,v) = Plu,v)= W, ,v)
12 Wi, v) 10 1117/d<C3 < 1207/d Po(uv) =Pu,v)xW,,v)
13 WL, v) 10 121m/d=C3, < 130m/d P5(1,v) = Pu,v)= W, ,v)
14 Wi,u,v) 10 131m/d<Q = 1t P yuv) =Puv)xW,u,v)
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w Py
Priw, = 15w - (8)
=SSP+ B
Kz( @) + B (1))
Pk.; — :P"['V‘i
ELE Cw iy, O
EZ(PT @+ Pr @) + oo+ P (D))
i=1
B
Prl ey = (10)

%ZK: (B G) + P (@) + oo+ PR (1))

i=1

Where K is the total number of images in the database.

PA(i), Py (i) andPy¥ (i) are the global total power of
respective windows estimated by considering all the
imagesin the database.

Such global parameters are used to measures the
stability of features PY" and P;* in discrimination, if any
exclusion orinclusion of images in the database iz made.
Any change in data set may alter global parameters value
to the extent that classification may fail. Therefore, in-
depth analysis on these power ratio’s is necessary to
identify their non-overlapping range by finding the
minimum and maximum tolerable value of denominator
terms in the Eq. 7-10 to ensure acceptable classification of
kidney categories.

RESULTS

The power spectrum P{u,v) of the pre-processed
images for NR, MRD and CC is shown in the Fig. 7. The

MZNZ o W/2.N72

>,

& oo ?
S
W2 M2

2N ] vln

W2 N#2
BT

Ny &
Ehe

MmN vl

low frequency components are centered and high
frequency components are distributed angularly through
shifting and folding operations. The visual inspection of
the spectrum confirms the absence of any conclusive
distribution of spectral components that provides basic
knowledge on kidney category. Thiz emphasizes the need
for establishing reliable power spectral features to
investigate the power spectrum. For this purpose, specific
cut-off frequencies are defined in the spectrum as given
in the Fig. 8. Since the pre-processed images have
dimengion of 120x 252, the value for ‘d*is 140. WithL =
10, the £ can be defined at intervals {0, 107/14, 207/14,
307/140,..., ©} with corresponding {2, at {0, 10, 20, 30,...,
140}. Therefore the total number of window functions
available for power spectrum study is 14. The P (u.v)
within each window W (u,v) having specificlower £2_(1)
and upper C_(u) cut-off frequencies Table 1 are then
evaluated and investigated.

The Fig. 9 shows the variation of Cumulative Total
Power (CTP) for the images of respective kidney category,
measured at upper cut-off frequencies €_(u), from
10m/140 to 7. It can be seen that the CTP for MRD is high
followed by NR and CC. But for few images the total
power Py within each window gets overlaps with inter
category and impedes the process of classification. The
variation of total power within each window iz shown in
the Fig. 10. It is evident that the total power F}* and P}
calculated by using the windows W ,(u,v) and W, (u,v) are
well separated. For other windows functions, Wy{u,v) to
W(uv), the total power gets indistinguishable. As the
total power of windows W ,(u.,v) and W_(u,v) offers better
separation in their values for inter category, the maximum
and minimum values of Py and P+ are estimated by
considering all the images. The result obtained is shown

W2 MA2 o W22

D22

b
AR

i _ s ne
e s .
SN2 M2 v

AR

o 22

Fig. 7: The power spectrum P(u,w) of NR, MRD and CC US images of (a). Male subject of age 51.9 (b). Female subject
of age 56.2 (c). Male subject of age 49.5. The low frequency power spectral components are centered and

distributed angularly
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Fig. 10: Variation in total power (Pf“) within each
window functions having specific lower and
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Fig. 11: The maximum and minimum value of mean total
power p¥ and p¥

in the Fig. 11. The attempt has been made to study
the effect of global mean power parameters on P}
and Py* in classifying the kidney category using
power ratio’s. For thus purpose the maximum allowable
limit of denommator of Eq. 7 and 8 which gives the
mean total power of first and second window and
the denominator of Eq. @ and 10 that provides mean
total power of all the 14 windows 1s evaluated and
presented.

DISCUSSION

It can be seen from the Fig. 9, the CTP increases from
12816668 to 45128164 forNR, 15695925 .8 to 50309728 8 in
case of MRD and it varies between 11283633.2 and
41677921 .3 for CC. Generally the tissue characteristics of
kidney determine the magmitude of CTP. In MRD,
sonographic evaluation demonstrates unclear
differentiation between renal sinus, medulla and cortex
region, due to tissue destruction. As kidney region
appears to be hyper echoic with high and widely varying
spatial gray level intensity values, larger value of CTP
over the angular radial frequency may be observed. For
NR, the hyper echoic components are less compared to
MRD, because of hypo echoic medulla and surrounding
cortex. This leads to lesser CMTP for NR compared to
MRD. In case of CC, the sonographic evaluation of renal
cyst 15 a circular hypo echoic mass with good through
transmission. For poly cystic diseases, the cyst may be
large enough to obliterate the renal sinus and multiple
circular hypo echoic masses at isolated location in renal
parenchyma may be seen. This results in more hypo
echoic cystic region with low variation in spatial gray
level intensity. Therefore, the CTP for CC is less against
NR and MRD. Though the anatomical definitions are
clearly reflected in the quantitative measure CTP, there
exist overlapping between inter category.
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The distribution of total power contained within the
each window is depicted in the Fig. 10. As the total power
of window functions W,(u,v) to W (u,v) gets overlap for
three kidney category, it becomes impossible to
differentiate the category using these power spectral
components. Hence these components are not helpful for
classification and not been considered for the analysis.
But the total power within the window functions W,(u,v)
and W,(u,v) are well separated and more insight has been
given for further investigation on p* and p¥:. The
mmimum and maximum value of p¥ for NR 1s 12013152
and 14509184, in case of MRD the obtamned value 1s
14971125 and 17319056 and for CC the value is 10239912
and 11803450. The evaluation of p¥ indicates that the
maximum and mimmum value for NR, MRD and CC 1s
20543685 and 18715428, 25372807 and 21021983, 17373807
and 15611286, respectively. The study on p¥ and p¥=
reveals the existence of definite and discrete range of
values for all three kidney categories. This proves the
performance of the features p¥ and pY¥ m 1dentification
and classification of kidney.

The global parameters, the mean total power of first
and second window Eq. 7 and 8 and mean total power of
all the windows Eq. 9 and 10 are calculated by takmng into
account all the images in database. The values obtained
for these terms are 20041895 and 45705271 In order to
dentify ther maximum tolerable Lhmit in case any
modification in data base 1s made further analysis on mean
total power terms is carried out. The results indicate that
the non-overlapping range of mean total power for the
feature p¥ 15 19692043 = 20041895 = 20397990 and for
P 1819585896 =20041895=20508511. Likewise the non-
overlapping range of mean total power of all the windows
measeof ¥ 18 44907529 =45705271 = 46517349and for 7%
15 44665428 = 45705271 = 46769386, Therefore, if the
variations of these global mean total power parameters are
within the derived limit, the features p* and p:
maintain their stability and provide reliable classification
of kudney category. Also it can be seen, compared to p™
better range 1s offered by p¥: . Thus shows that the power
spectral components of window W,(u,v) allow increased
change in the mean total power. Using these global mean
total powers, the power ratio features are evaluated and
results are depicted in Table 2. It can be noticed that for
each kidney category, the discrete range persists which
ensure efficient identification. This indicates that any
change 1n global parameters 1s within the specified limit
the power ratio features may also be used for objectively
classification of kidney.

The analysis of the US kidney images by the
proposed features proves the efficacy of power spectral
¢ omponents 1n fulfilling the requirements of CAD system.
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Table 2:  Power ratio’s evaluated for three kidney categories using global
mean total power parameters
Kidney category
Power ratio’s NR MRD CcC
p?_vﬂ 0.5994-0.7239 0.7470-0.8641  0.5109-0.5889
p%z% 0.9338-1.0250 1.0489-1.2660  0.7789-0.9338
P?—Wi 0.2628-0.3175 0.3276-0.3789  0.2240-0.2583
p?_vﬂ 0.4094-0.4495 0.4599-0.5551  0.3415-0.3801

The category of kidney has been identified and in turn
quantified with the wvalues of the features. These
numerical values provide a universal reference for each
category. This facilitates to perform objective diagnosis
by comparing similar past cases. The availability of
numerical rtesult also explores the possibility of
implementing CAD system exclusively for US ladney
umages.

CONCLUSION

In this study, a new method for diagnosing and
classifying the US kidney images is proposed. The power
spectral features are obtained by defining angular radial
cut-off frequencies at specified mterval m the spectrum.
It has been identified the power spectral components
within the cut-off frequencies 1 <Q,_<10m/dand 11 w/d <€),
< 20m/d are highly significant in categorization of images
as NR, MRD and CC. The defimite and discrete range of
feature values exists between the categories. For the
purpose of stability measure the variation of these
features with respect to global mean total power is
investigated. The maximum allowable limit beyond which
the stability fails is identified and presented. The study
reveals that the method not only helps in classification
but also extends its potential in diagnosing and
developing the CAD system for US kidney images.
Further investigation on values of the parameters can be
made for early detection of pathology that finds extensive
application in ¢linical diagnosis.
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