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Abstract: This study presents a two -layer approach to solve the Unit Commitment (TJC) problem. The first layer
uses a Genetic Algorithm (GA) to decide the on/off status of the units. The second layer uses an Improved
Lambda -Iteration (ILI) technique to solve the Economic Dispatch (ED) problem while satisfying all the plant
and system constramts. GA’s are general -purpose optimization technique based on principle of natural
selection and natural genetics. In order to deal effectively with the constraints involved in the UC problem, a
repair and approximate genetic operators were introduced. The proposed method is tested and compared with
Lagrangian Relaxation (ILR) and GA on the systems with the number of generating units in the range of 10-100.
The simulation results reveal that the features of easy implementation, convergence within an acceptable
execution time and highly optimal solution in solving UC problem can be achieved.
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INTRODUCTION

A thermal generation scheduling problem 1s the tasks
of finding an optimal schedule for each thermal unit over
a time horizon. This calculated schedule helps to
determine when to start and when to shut down units
such that the total operating cost could be minimized. A
standard thermal generation scheduling problem 1s often
formulated subjected to several constraints that includes
power balance constramt, spinning reserve constraint,
generation limit constraint and minimum up -time and
down-time constraints.

This problem 1s quite difficult due to its inherent high
dimensional, large scale, mixed -integer combmatorial
optimization problem with constraints. The exact solution
to the problem can be obtained only by complete
enumeration (Wood and Wollenberg, 1996). A survey of
literature on the UC methods reveals that various
numerical optimization techniques have been employed
to approach the UC problem. Specifically: prionty list
(Sheble, 1990), dynamic programming (Snyder et al., 1987,
Lowery, 1983; Su and Hsu, 1991; Ouyang and
Shahidehpour, 1991), lagrangian relaxation (Merlin and
Sandrin, 1983; Zhuang and Galiana, 1988), mixed-integer
programming (Muckstadt and Wilson, 1968) and branch-
and -bound (Cohen and Yoshimura, 1983).

Recently sumulated annealing (Zhuang and Galiana,
1990), expert systems (Wang and Shahidehpour, 1992),
artificial neural networks (Ouyang and Shahidehpour,

1992; Sasaki et al., 1992) and Genetic Algorithms (GAs)
(Goldberg, 1989, Kazarlis et al., 1996, Rudoll and
Bayrleithner, 1999, Xmg and Wu, 2002; Amoyo and
Conejo, 2002; Cheng and Liu, 2000) have also been used
for the solution of the UC problem. These methods can
accommodate more complicated constraints and are
claimed to have better solution quality. GA’s are a
general-purpose stochastic and parallel search method
based on the mechanics of natural selection and natural
genetics. GA’s are a search method to have potential of
obtaining near-global minimum.

Six basic methods have been reported i the
literatures that enable GA’s to be applied to constrained
optimization problem (Vassilio et al., 1998). This study
uses method 3 as a first layer in which an invalid solution
1s approximated and repaired to become a valid one. In GA
the dynamic penalty method improves the convergence
criteria but as the number of iteration increases the
penalty term included may be very high. As a result, the
best solutions may be discarded from the population. The
operator, which 1s used for repair and approximations,
reduces the tume as well as brings the solutions to the
near optimal solutions.

A repair and approximate algorithm presents three
advantages compared to penalty based genetic
algorithms: It does not work on a broad search space full
of infeasible solutions, but on bounded search spaces
(consisting of feasible solutions), thus reducing the
search burden and increasing the efficiency of the

Corresponding Author: V. Senthil Kumar, Department of Electrical and Electronics Engineering, College of Engineering,
Anna University, Chennai 600025, Tamil Nadu, India



Int. J. Elec. Power Eng., 2 (2): 85-91, 2008

algorithm, the problem of choosing penalties of different
nature for each of the constraints disappears (Arroyo and
Conejo, 2002) and possibility of neglecting the best
solutions which are infeasible regarding the violation of
constraints can be avoided. The second layer uses a
novel ILI technique to solve the Economic Dispatch (ED)
problem. ILI technique avoids premature convergence
involved in solving the ED problem using lambda-iteration
technique.

PROBLEM FORMULATION

The objective of the UC problem is to minimize the
total production cost over the scheduling period.
Therefore, the objective function 1s expressed as the sum
of fuel and start-up costs of the generating units. The UC
problem can be mathematically formulated as:

min TPC = (1)
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Due to the operational requirements, the minimization
of the objective function is subjected to the following
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s Start-up/shut-down cost
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ST, =

CsC, otherwise

Sd,=0 For all units
GENETIC ALGORITHMS

(GA’s are mspired by the study of genetics. They are
conceptually based on natural evolution mechanisms
working on populations of solutions in contrast to other
search techniques that worl on a single solution. The
most interesting aspect of GA’s is that all though they do
not require any prior knowledge or space limitations, such
as smoothness or convexity of the function to be
minimized they exhibit very good performance on the
majority of the problems applied.

At first a population of M solutions are generated at
random, encoded in strings (genotypes) of symbols
resembling natural chromosomes. Each member of the
population is then decoded to a real problem solution and
a “fitness” value 1s assigned to 1t by a quality function
that gives a measure of the solution quality. With the
mmtial population produced and evaluated, genetic
evolution takes place by means of three genetic operators:

Reproduction: Two genotypes are selected from the
parent population with a probability, which 1s proportional
to their fitness using Roulette wheel parent selection
algorithm.

Crossover: If a probability test is passed, the two
genotypes are combined (exchange bits) to from a new
genotype, which incorporates characteristics from both
parent genotypes. The produced genotype (offspring) is
included to the next generation’s population.

Mutation: With a small probability, random bits of the
offspring genotype flip from 0 to 1 and vice versa to give
characteristics that don’t exist in the parent population.

When M new solution strings are produced, they are
considered as a new generation and they totally replace
the parents in order for the evolution to proceed. Many
generations are needed for the population to converge to
the optimum or a near-optimum solution, the number
increases according to the problem difficulty.

GENETIC ALGORITHMS FOR UNIT
COMMITMENT PROBLEM

Implementation of the Proposed Genetic Algorithm
(PGA) for UC problem includes the following stages.
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Tnitial population: A number of S;; (say M = 500) initial
binary coded solutions (genotypes) are generated, by
committing all the units. Then, a random decommitment. is
done with some probability. Each schedule is checked for
minimum up/down time, demand and spinning reserve
constraints. A fitness score is assigned based upon their
objective function for the solutions, which satisfy all the
constraints. The objective function associated with each
solution is calculated by economically dispatching the
hourly load to the operating units using improved lambda
iteration technique as explained in this study. Based upon
the fitness values each solution is ranked in descending
order and the best 8, (k = 50) solutions are considered as
parents. The fitness score F associated with each solution
18!

F(S,) = Total fuel cost + start up/shut-down cost

Reproduction: The reproduction operator is a prime
selection operator. Two genotypes are selected using
Roulette wheel parent selection algorithm that selects a
genotype with a probability proportional to genotypes
relative fitness within the population. Then, a new
offspring genotype is produced by means of the two
basic genetic operators namely crossover and mutation.

Crossover: To get the new patterns of genetic strings
during the evolution process, two levels of crossover
operation, i.e. unit level crossover and population level
crossover are introduced. Both type of crossover is done
with fixed probability of 0.7.

Unit level crossover: A good scheduling could be
expected by exchanging the scheduling periods of the
units within the genotype. Since the partial string of
genotype has no fitness function value, the selection
processes are performed randomly with certain
probability. Here two types of unit level crossover is
implemented, Type 1 is by keeping the first half of the
strings and exchanging the second half of the strings
with randomly selected units. Type 2 is keeping the
second half of the strings and exchanging the first
half of the strings with randomly selected units to get a
better scheduling.

An example of 10 units and 24 h schedule is considered.
Type 1: Between unit 1 and unit 9

Type 2: Between unit 2 and unit 10

Before crossover

Unit1 11100011011010101101010001

Unit2 10001011110100001101101010

Unit® 01010001011001110101101100
Unit10 01011101010001010101001100
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After crossover
TUnitl 11100011011001110101101100
TUnit2 01011111110100001101101010

Unit® 01010001011010101101010001
Unit 10 10001001010001010101001100

Population level crossover: This operator 1s applied with
certain probability. When applied, the parent genotypes
are combined to form two new genotypes that inherent
solution characteristics from both parents. In the opposite
case the offspring are identical replications of their
parents. Crossover is done between the parent genotypes
obtained from roulette wheel parent selection. The
crossover scheme used is single -point crossover.

Mutation: Mutation introduces new genetic material into
the gene at some low rate. With a small probability,
randomly chosen bits of the offspring genotypes change
from ‘0" to °1” and vice versa.

Swap mutation operator: In this operator, based upon
the full -load average production cost of the generating
units, units are ranked and are arranged in descending
order. Here full load average production cost could be
obtained by calculating the net heat rate at full load times
the fuel cost. If the full -load production cost of the ith
unit ig lesser than the full -load production cost of the jth
unit and the status of the units are OFF and ON,
respectively, then the status of ith and jth units were
exchanged. For each scheduled hours tlus procedure
1s followed with some probability to avoid local
convergence. This helps in reducing the total operating

cost of the system (Jorge and Smith, 1999).

Repair operator for up-time/down-time: This operator
repairs the solutions that are nfeasible regarding minimum
up/down constraints. The state of a umt s evaluated
starting from hour “0”. If at a given tume ‘t’ the minimum up
or down time constraint 1s violated, the state (on/off) of
the unit at that hour is reversed and updated. The process
continues until the last hour.

For example if the minimum up/down time is 4 h for a
particular unit than,

Before repair operation After repair operation
001010101011011001011001 001111100001111000011111

Demand/spinning reserve approximations: This operator
approximates the solutions that are infeasible regarding
demand/spinning reserve constraints. For each hour



Int. J. Elec. Power Eng., 2 (2): 85-91, 2008

demand/spinning reserve constraint is checked. Tf it is not
satisfied, the schedule for that particular hour is retained
from the previous generation, which 1s again a satisfied
solution.

Selection: The entire population, mcluding parent and
offspring are arranged in descending order. The best K
solutions, which survive are transcribed along with their
elements to form the basis of the next generation.

The above procedure 1s repeated until the given
maximum generation count is reached. Here for all systems
maximum of 500 generations 1s considered. The above
algorithm produces only the feasible solutions, which
totally avoids penalizing of solutions.

IMPROVED LAMBDA-ITERATION
TECHNIQUE

In GA based unit commitment problem, populations
are created randomly with binary code 1's and 0°s, wlich
shows the on -off status of the generating units. The
necessary condition for the existence of a minimum cost
-operating condition for the thermal power system is that
the incremental cost (A) of all the committed units be
equal. Each generating unit has different fuel cost
coefficients. Finding the optimum incremental cost for the
randomly committed units is difficult. This study explains
the procedure for finding the optimum incremental cost
and the problem incurred in finding the optimum
mcremental cost for the randomly committed umts and the
solution for the same.

The total fuel cost 1s computed as the sum of the
hourly fuel costs by economically dispatching the load
demand to the operating units for every hour of the
scheduling period, which 1s a sub-problem in the
unit commitment problem. This could be solved using
lambda-iteration  technique. The lambda-iteration
techmque converges very rapidly for simple type of
optimization problems. The actual computational
technique 13 lightly more complex, since it 1s necessary to
observe the operating limits on each of the units during
the course of the computation (Wood and Wollenberg,
1996).

We assume an incremental cost rate and find the
power outputs for each of the N generating units for this
value of incremental cost. Our first estimate may be
incorrect. If the assumed value of incremental cost is such
that the total power is too low, A 1s mcreased and try
another solution. With two solutions, we can interpolate
the two solutions to get closer to the desired value of
total received power. By keeping track of the total demand
versus the mcremental cost, we can rapidly find the
desired operating point.

88

Toillustrate the lambda -iteration technique following
case studies are considered:

The test system in case 1 comprises of two
generating umits, unit 1 and umt 2 with the demand of
TOOMW (Kazarlis et al., 1996). Using lambda-iteration
technique mvolving interpolation, the problem 1s solved
in six iterations as shown i Table 1. In this calculation,
the value for A on the second iteration is always set at 5%
above or below the starting value depending on the sign
of error, for the remaining iterations, lambda is projected
as shown in Fig. 1. From Fig. 1 it is observed that a
lambda value of 17.0015 with an error of -95 is considered
as an imtial value and the second estimate 1s 5% of the
mmutial value, which 1s 17.8516 with an error of 210. Third
lambda value 15 obtained by interpolating between the
above two points which 1s 17.2663 with an error of -95.
This procedure 1s continued umntil convergence is
obtained.

Here A" -starting lambda, total received power = T P
and error = total received power -demand. Mathematically
lambda projection can be formulated as follows:

A= A E L ([(F-AEDASESEY] < (D, S5} K =1,2,...
ITmax

Initial guess for A”:

Pi=(Du* P, g V25 Pl e

AV=T(2aP + b¥N.

Where,

k = Represents the iteration count.

3 = Represents the total received power.

D, = Represents the demand for the h-th hour.

P, = Represents the generation output for the i-th unit.

In case 2, three generating units were considered,
unit 1, unit 2 and unit 5 for the demand of 850MW. Using
lambda-iteration technique involving interpolation, it is
observed that in the 3rd and 4th iterations the total
received power 18 same. The reason being, for a change in
the lambda value change m the total received power 1s
zero, because of the operating limits involved in each unit.
Though the number of iterations increases lambda value
remams same and it falls mto premature convergence
(infeasible) as shown in Table 2. The lambda projection
for case 2 (infeasible) is shown in Fig. 2. From Fig. 2 it is
observed that, while interpolating between second lambda
value of 17.3351 with an error of -220 and third lambda
value of 17.9932 with an error of 85, the 4th lambda value
obtained is 17.8098 with an error value of 85. Since the
error value remains same for a change in the lambda value
it reaches the premature convergence.
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Table 1: Economic dispatch solution for case 1

Lambda  Total received Unitl Unit 2 Error
ITterations A ($'MWh)  power (MW)  POMW)  P(MW) (MW)
1 AP 17.0015 605 455 150 -95
2 Al 17.851¢6 910 455 455 210
3 A2 17.2663 605 455 150 -95
4 A2 17.448¢6 759.19 455 304.19 59.19
5 A4 17.3786 646.29 455 191.29  -53.71
6 A’ 17.4119 700.00 455 245 0.0
Table 2: Economic dispatch solution for case 2 (infeasible)
Tatal
received
Lambda power  Unitl Unit2  Unit5 Error
Iterations A ($/MWh) (MW) PMW) PMW) PMW) (MW)
1 A" 182475 935 455 455 25 85
2 Al 17.3351 630 455 150 25 =220
3 A?17.9932 935 455 455 25 85
4 A 17.8098 935 455 455 25 85
5 A4 17.8098 935 455 455 25 85
250
17.8516 (1)
2004
1504
g 1004
w S04
L
1p.8 4 176 1B
_50H 17.4119 (5)
17.3786 (4)
-106; 17.0015(0) 17.2663 (2)
-15

Fig. 1: Lambda projections for case 1
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Fig. 2: Lambda projection for case 2 (infeasible)

This problem could be solved using Simple Lambda
Tteration (SLI) technique without including interpolation
i.e., by increasing or decreasing a small value of lambda
based upon the sign of error. Which takes more number
of iterations.

A= AEAA
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Table 3: Dispatch result of three-unit system with 850MW (feasible
solution)
Total
received
Lambda power Unitl TUnit2 Unit5 Error
Tterations A ($MWh) (MW)  PMW) P(MW) PMMW) (MW)
1 AP 18.2475 935 455 455 25 85
2 Al 17.3351 630 455 150 25 =220
3 A 17.9932 935 455 455 25 85
4 A% 17.8098 935 455 455 25 85
5 At 17.7208 935 455 455 25 85
[ A 17.6322 935 455 455 25 85
7 A8 17.5440 935 455 455 25 85
8 AT 17.4563 796.595 455 316.595 25 -53.404
9 A% 17.4901 851.188 455 371.189 25 1.1884
10 A% 17.4894 850.001 455 370.001 25 0.0009
c€88 8
a 90 SO o
150-45—3—3—8—5&—
hoe N R b
wed B En5 S s = 182475(0)
ol 2 8
NI Liambda
s S H
g 1f2 | 1'5.4%/ 176 M8 18 182 14
E -50+ i
-100- I
-1504
i
-200+ H
250 17.3351(1)

Fig. 3: Lambda projection for case 2 (Feasible)

Where:
AA =0.005 times A"

To avoid the premature convergence and increase in
the number of iterations an improved lambda -iteration
technique is developed, in which the lambda value is
varied locally until an error value 1s obtained. Once an
error value is obtained it reaches the convergence within
few number of iterations as shown in Table 3. From 4th
iteration to 7th iteration lambda value 1s varied locally
until there is a change m error value. In 10th iteration it
had obtained the convergence. The lambda projection for
case 2 (feasible) is shown in Fig. 3. From Fig. 3, it is
observed that the error value remains same in 3rd and 4th
iterations. To avoid this, the lambda value 1s varied locally
until there is a change in the error value. Tn 8th iteration,
change in the error value is obtained and the convergence
1s obtained in 10th iteration.

RESULTS
A ten-unit system data and load demands are

considered for case study (Kazarlis et al., 1996). The 20,
40, 60, 80 and 100 umt’s data are obtammed by duplicating
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Table 4: Simulation results for up to 100-unit systems

PGA
LR GA
solution solution  Best cost Worst cost
Difference

Units  Operating cost $ Operating cost $ (%)
10 565,825 565,825 564,367.5 564,367.5 Q.0
20 1,130,660 1,126,243 1,124,893.3 1,125072.1 0.02
40 2,258,503 2251911  2,245,827.7 2,249,600.5 017
60 3,394,066 3,376,625 33685375 337540125  0.20
80 4,526,022 4,504,033 44978715 4,507,177.5 0.21
100 5657277 5627437  5.622.746.0 5,638,858.0 0.28

Table 5: Comparison of average number of iterations of ILI and SLI

Units TLT (iterations) SLI (iterations)
10 141 2968
20 144 3273
40 151 5222
60 166 8033
80 154 9059
100 153 10649

Table 6: Comparison of average CPU time (Sec) of PGA using ILI and

SLI
PGA with PGA with
Units ILI (sec) SLI (sec)
10 11.75 67.75
20 20.968 152.562
40 42.796 407.515
60 67.078 845.937
80 97.406 1165.72
100 127.343 1807.81

the base case (10 units) with a 24 h demand schedule,
whereas the load demands are adjusted in proportion to
the system size. In the simulation, the spinning reserve is
required to be 10% of the load demand. In order to avoid
misleading results due to the stochastic nature of the
PGA, 20 runs were made for each problem set, with each
run starting with different random populations. For a
specific problem set, every one of the 20 runs was
terminated at the same generation limit. The population
size was 50 genotypes in all runs. The simulation was
carried out on a Pentium IV, 2 GHz processor.

The test results are shown m Table 4. For the
PGA, both the best and worst solutions produced are
reported together with their difference as a percentage
of the best solution. The results reported in PGA
represents the average of the entire population across
20 runs. The difference between the average best and
the average worst runs is calculated to mdicate the
likelihood that the PGA will reproduce the same range
of solutions. In comparison with the LR and GA as
reported by  the references the PGA method obviously
displays a satisfactory performance (Kazarlis et al., 1996,
Cheng et al., 2000).

Table 5 shows the comparison of average number of
iterations of IILT and SLI in solving the ED problem for the
urits up to 100 and 24 h schedule. Comparison reveals the
effectiveness of the algorithm and also it helps in
reducing the execution time for large-scale problems.
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As the number of units increases the time increases
linearly. Table & gives the average time in 20 trial runs for
unit’s up to 100 and 24 h schedule, while comparing PGA
using T1.T and PGA using SLI techniques. Here the number
of iterations is fixed to 500 for all the units to show the
effectiveness of the algorithm.

CONCLUSION

This study presents a two-layer approach to solve
the unit commitment problem. The first layer uses a
penalty less genetic algorithm and it is proved as an
effective algorithm in obtaining the near global solution.
The second layer uses an improved lambda-iteration
technique to solve the economic dispatch problem to
avoid the local convergence. Finally, it can be said that
the proposed solution approach represents an interesting
and promising method. The simulation results reveal that
the features of easy implementation, convergence in an
acceptable time and highly optimal solution in solving the
unit commitment problem are achieved.

The list of symbols used in this study is as follows:

TPC . Total Production Cost.

F.(P,) : Fuel cost function of the i-th unit with
generation output, Py, at the h-th hour.

a, b, ¢ : Costcoefficients of the i-th unit.

N : The number of available generating units.

H : The number of hours.

Pin : The generation output of the i-th unit at the
h-th hour.

ST, : Start-up cost of the i-th unit.

SD, : Shut-down cost of the i-th unit.

U, . On/off status of the i1-th umt at the h-th hour
and U,, = 0 when off, U,, = 1 when on.

D, . Load demand at the h-th hour.

R, : Spinning reserve at the h-th hour.

Pims  Minimum generation limit of i-th unit.

P  Maximum generation limit of i-th unit.

up; : Minimum up-time of i-th unit.

down, : Minimum down-time of i-th unit.

HSC, : Hot Start Cost of i-th unit.

C8C, . Cold Start Cost of i-th unit.

CSH, : Cold Start Hours of i-th unit.
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