M@dWell ISSN: 1990-7958
CENEEEN © Medwell Journals, 2008

International Journal of Electrical and Power Engineering 2 (2): 77-80, 2008

Numerical Solution of Hallen’s Integral Equation by the Chebyshev
Pseudospectral Method

Amjad Alipanah
Department of Applied Mathematics, University of Kurdistan, Sanandaj, Iran

Abstract: This study present a numerical method for solving Hallen’s integral equation based on Chebyshev
pseudospectral method. The method consists of representing the solution of the Hallen’s integral equation by
Nth degree interpolating polynomial, using Chebyshev nodes and then discritizing the problem using a cell-
averaging technicue. Properties of Chebyshev pseudospectral method are presented, then utilize to reduce the
computation of Hallen’s integral equation to some algebraic equation. The method computationally attractive
and applications are demonstrate through an 1illustrative example.
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INTRODUCTION

The class of solution methods based on orthogoenal
polynomials have become known as spectral methods.
Spectral methods are implemented in various ways. For
example, the tau, Galerkin and collocation methods have
all been proposed as implementation strategies (Gottlieb
and Orszag, 1989, Foruberg, 1996). The collocation
method (also known as the pseudospectral method) has
established itself as the one that permits the most
convenient computer 1implementation. However, in
pseudospectral methods the nodes must correspond to
the zeros of the derivatives of classical orthogonal
polynomials on the interval [-1,1], including the end
points. These points are generally based on the Legendre
or Chebyshev polynomials.

Hallen (1965) wrote his famous mtegral equation to
give an exact treatment of antenna current wave reflection
at the end of the tube shaped cylindrical anterma in 1956,
but his first research on this subject (Hallen, 1938)
probably goes back to 1938. This equation enabled lum to
show that on thin wire the cuwrent distribution is
approximately sinusoidal and propagates with nearly the
speed of the light. The Hallen integral equation is a
Fredholm mtegral equation of the first kind.

This equation for the thin-wire cylindrical antenna of
length | and radius a with a « 1 1s given by
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There are two choices of K(x', y'). The 2 kernels are
usually referred to as the exact and the approximate or
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reduced kernel. With the approximate kemel, the integral
equation has no solution.

Nevertheless, the same numerical method 15 often
applied to both forms of the integral equation (Fikioris and
Wu, 2001). The approximate kemel, which we used in this
study, 1s given by
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TnEq. 1 and 2 and £, = 120w and p = 2n/A is the free
wavenumber where A is wavelenght, I(y") is the current, V

1s the driven voltage and A 13 a constant to be determined
from the conditions I (-8/2) =1 (8/2)=10.

(2

CHEBYSHEY PSEUDOSPECTRAL METHOD

Proposed method: The Chebyshev pseudospectral
method 1s one special case of more general class of
spectral methods. The basic formulation of these methods
involves two essential steps: one 1s to choose a fimte-
dimensional space (usually a polynomial space) from
which on approximation to the solution of differential
equation is made. The other step is to choose a projection
operator, which imposes the differential equation in the
finite-dimensional space. One important feature of spectral
methods, is that the underlying polynomial space is
spanned be orthogonal polynomials that are infinitely
differentiable global function. Among of these orthogonal
polynomial are Legendre and Chebyshev polynomials
which are orthogonal on the interval [-1,1], whith
respect to an appropriate weight function (w(x) = 1 for
Legendre polynomial and w{x) = (1-x”) -} for Chebyshev
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polynomial). Let Py denote the space of algebraic
polynomial of degree «N and let T, (x), m» 0, -1<x<1,
denote the orthogonal family of Chebyshev polynomial of
the first kand m this space, with respect to the weight
function w(x) = (1-x")-%.

We choose the grid points (interpolation) to be

XJ:COS(%} j=0,1--- N (3)

of the Nth order Chebyshev polynomials Ty (x), xe [-1,1].
These points are x,; = -1 <%, -1 <... <x, <x, =1, also views
as the zeros of (1 -x*)Ty; (x), where T); (x) = dT},/dx.

In order to construct the interpolation of a function
fix)atthe pointx € [-1, 1]andk =0, 1, ¢ + » | N, we define
the following Lagrange polynomials

(1= T 2 ETEITE (4
e N*{x—x) -

o (x)=
Cy =0 C;
Which ¢, =c;=2andc¢=1,j=1,2,¢¢¢ N-1.
Tt is readily verified that

(3)

Associated with the N+1 Chebyshev nodes (grid
points), 1s a unique Nth-degree interpolating polynomial
(projection operator) Ty, f(x)

I,f(x)= ZN:q)J(x)f(xj) (6)

Such that I, f(x,) =f(x,), k=0,1, ¢+ + N. Alternatively,
the interpolating polynomial T, f(x) can be expressed in
terms of series expansion of the classical Chebyshev
polynomials

1,f(x)= iT} OF(x;) (7)
Where
_ 2 N Tr(xj f(x,) )

It 18 well known that the spectral projection operators,
such as I, based on Chebyshev nodes x; are well behaved
compared to those based on equally grid points (Elnager
and Kezemi, 1998). Clearly IN 1s a linear projection
operator on C[-1, 1], the banach space of continuous, real-
valued function on [-1, 1].
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Discretization of integral: We shall use the cell-
averaging Chebyshev integration rule (Elnager and
Kezemi, 1998). This rule states that there exists an N = (N
+ 1) matrix Ry, 1 <j<N, O<k<N such that forallfe C'[-1, 1],
r =0, we have

®; =

N s u N
fl f(x)dx = JZ;I] fedx = E(Xj_l — xj)fHJ

-1 w
- Z; (Xj—l - ) kZ; Rf (x;)
= -
(9)
Now let that
w
W, = E(Xj—l_xj)R’jk (10)
=1
then the Eq. 9 can be written as
nw
fllf(x)dx =5 wi(x,) (11)
B k=0

Where the cell-averages

f,f%’...7
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are related to f{x,), f(x,), « « + , f(x)) throught the matrix Ry,
1 <j<N, O<k<N. The entries of the cellaveraging matrix R,
1<j<N, O<k<N are given by

R, =g, (Xra) (12)
Where
i1
. :COS[U 2)“] as)
-7 N
and also we have that
1+0,T; (x,)U, o +
_ 14
g, (X = Ne, ZN: T (0o, U, 0 -0, _,U,_, 0] 14)
=2 <,
Which
) [r +1 ]
sin T 1.
Sigma, = LA ;o U=—-T_
(r+1) sm[l] r+1
2N
(15)
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DISCRETIZATION OF HALLEN’S
INTEGRAL EQUATION

First, we mtroduce the transformations x’ = #/2x and

v’ =82y The Hallen’s mtegral equation and the condition
1(-8/2) = 1(#/2) = Omay be writing as follows

e

X,%y)l(y)dy =fx), -1<x<l (16)

I(-DH=T11)=0 (17)

Where

fxy= %Vsin(ﬁ%x‘) JrAcos(B%

0

x),-1<x<1

When x =y, the kernel in Eq. 16 1s sharply peaked,
particulary for small value of a. Therefore, from the
computational pomt of view, it would be advantageous to
isolate and extract the singularity from kernel. This may be
accomplish by writing K (0/2x, /2y )as

K(%X,%y):Kn(%x,gy)JrKs(%x,gy) (18)

Where K, (#/2x, #/2y) and K, (¢/2x, #/2y) denote the
nonsingular and singular parts of kemel K, respectively
and are given in Fornberg (1996) as

1
Ko (§x5v)= 4 (;x—gy)zﬂf (19)
Leoty=1 !
KS(2X72y) 4“J(%X7%y)z+a (20)
By using Eq. 18 we can express Eq. 16 as
_f Abx by lindy +2 fK o

(§X?§y)I(Y) v=Ffco,-1<x<1

The integrand of the first integral in Eq. 21 is well
behaved and as a consequence may be evaluated
numerically. The integrand of the second integral in
Eq. 21 cantain a singularity and will be evaluated as
follows. Let
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éf_lle (%X %y)l(y)dy =80 +8,60 (22
Where
500 = EJ:K (%X»%Y)(I(y)— Icoydy  (23)
and
(24)

1
B, = I(X)f,lKﬂ (%x,%y)dy

The integrand of the integral in Eq. 23 is well behaved
and the integral in Eq. 24 can be evaluated as

g( :2yﬁy*
iln["(lx_l) +4da’ +1x—1

dnl | J(x —1Y +4a° —1x—1

Hax =
(25)

In view of Eq. 18-25, 13 is expressed by

£l 1o g £l (g ¢
EﬁlKn(gqu)l(Y)dy+5£1KE(§X,§3’)
(I(y)—1<x>)dy+§l(x>H<x>:f(x),-1<x<1

(26)

Now we discretize Hq. 24 by using Chebyshev
pseudospectral method. For this propose, we use Eq. 6to
approximate

1) = S 26,001y, @n

RESULTS AND DISCUSSION
Where y, and ¢y, (y) for 0<j=<N, respectively are given
Eq. 3 and 4. A collocation scheme is defined by

substituting Eq. 25 into 24 and evaluating the result at the
pomts x, for O<k<N given m (3). This give we

dy+

_Zf ( Xkazy)Cb ()y
Y I TN YR O I

dy+§1(xk)H(xk) —£(x,),k=0,1,--N

Where we used I(x,) = 0 I(x;) = I for O<j<N.
Furthermore, since the integrals in Eq. 28 are well
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Fig. 1: The magnitude current [(y) for | = A/2
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Fig. 2: The magnitude current I(y) for 1 = A/2

behaved, by using cell-averaging approximation of
mtegrals in Eq. 11, we approximate the Eq. 28 as follows

o

Z(Ij — Ik)WjKE (%Xk,%yj)

=0

1 & 1 1 1

%IkH(xk) —f(x,), k=01--N

(29)

By sclving the system of linear Eq. 27, we can find I,
forj=0,1,o++ ,N-1.

Numerical results: In this study, a numerical example 1s
represented to illustrate the validity and the merits of this
technique. In this example data are given for two selected
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wire length so that they include special cases of practical
interest, e.g 1 A/2 and 1= A. The magnitude of currents I(y)
are shown for N = 5, 10and 20 in Fig. 1 and 2, respectively
for and. We can see in Fig. 1 and 2 that by increasing the
values of N the solution converges rapidly.

CONCLUSION

In this study, we have investigated the application of
Chebyshev pseudospectral method for the solution of
Hallen's integral equation. The results given, show the

superiority of this method m comparison with other
methods.
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