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Abstract: Dynamic portfolio selection optimization is essential and critical objective for any investment strategy
by individuals and mstitutional investors. The purpose of this study is to verify the various factors effect on
selecting dynamic portfolio and spot a light on opportunities for future research. This study revisits existence
literature of the factors that affect in selecting the optimal portfolio in multi-stages. Dynamic portfolio selection
optimization suffers the ancient problem in estimation the risk measures and lack of information in uncertain
markets and economies with demanded investors to achieve their growing objectives. Many researches
conducting this problems offered new models, searching new constraints, relaxing existence constramnts, adding
many objectives, decreasing computation time, increasing portfolio size, reducing trading cost, finding new
sources of information, new funding sources and maintaining the objectives of investors of risk return and
liquidity. These researches success in providing mathematical and theoretical models that enriched the finance
literature but few of it satisfies the market application. This study provides a lustorical background and future
insight for future researches. As a revisit, this work derived from secondary sources. This revisit provides
researchers and practitioners with the latest improvements of approaches by minimizing their effort in collecting
the relevant matenal and selecting the suitable model that solve the problem of selecting their portfolio, a better
understanding of each factor the himitations of thewr portfolios, draw attention to specific areas for further
research.
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INTRODUCTION

Portfolio selection 1s search for the best allocation of
financial resources among a basket of financial assets.
The mean-variance MV articulation by Markowitz (1959)
offers an essential basis for portfolio selection in a
single-period (L1 and Ng, 2000). The seminal
contribution in dynamic portfolio referred back to Merton
(1972) as other researcher followed the pioneering works
of Markowitz, he aims to find the optimal portfolio by
extending lis model to more than single period
considering more mvestor risk preferences (Liu and Brige,
2012) and at the same time overcome the obstacles that
faced Markowitz static model such as a high complexity in
computing quadratic programming, the input problem in
estimating the required parameters of variance and
covariance (Mansini and Speranza, 1999) and its lack
of dynamic adaptability to the variability in market
enviromment (Alvord, 1981).

Multi-period proposed to take the advantages of
attaining information about expected fuhure returns
needed in rebalancing the portfolio. Also, it takes in its

consideration the objectives and liabilities that may face
the long-term investors at a determined date in the future
(Valian, 2009).

Therefore, optimizing a multi-period portfolio benefits
from dynamic programming which found by Richard
Bellman in 1940s m solving problems of selecting best
decisions sequentially (one after another). They
concluded that multi-period portfolio model performs
better than single-period portfolio model for the investor
in the long-run. The most important advantage from
several of the multi-pericd model is improving the
performance of the investment portfolio through the fixed
mixed rule (Mulvey et al, 2003). Topcu et al. (2008)
report in his study that nearly all of literatures actually
dealing with not more than two periods’ model and few
assets when conducting multi-period model. While, Liu
(2006) specified that the presence of a dynamic constraint
ina continuous-time model will direct the averse investor
to elininate the exposure to risky assets more than it
would have been chosen in case of its absence. Also,
Skaf and Boyd (2008) comment that published papers
deal frequently with portfolios consist of only two assets

Corresponding Author: Rula Hani Salman Al Halasch, School of Business Innovation and Technopreneurship,
University Malaysia Perlis, Perlis, Malaysia



Int. Business Manage., 10 (2): 67-77, 2016

(one risky-stock and one risk free-bond) such as Tiu
(2006) and some of them employed multiple risky assets
for example Cai ef al. (2013). In addition, the choice of
objective varies in these literatures betweer, maximizing
utility is the typical choice (Akian ef al., 2001) continuous
versus discrete time (Davis and Norman, 1990,
Ziemba and Vickson, 2006) and finite versus infinite
horizon (Cai et ai., 2013).

The decision of rebalancing the investment portfolio,
generally based on three types of costs: the tracking error
related to the deviation any portfolio from the optimal
portfolio, the trading costs related to the transactions
(buying or selling) of the assets while rebalancing the
portfolio and the expected future cost from next month
onwards given our actions m the current month. The
optimal strategy dynamically mimimizes the total cost
which is the sum of these three costs (Sun et al., 2010). In
dynamic portfolio optimization, optimal investment
strategies are nfluenced significantly by the dnft
(variation) in the price process of the underlying asset.
Conversely it is known the difficulty of estimating drift
parameters from historical asset price data which is the
prediction process of the asset price depends on
recelving new mformation about the determined asset in
this case, historical data of the asset price is information
already reflected in the market. Hence, it is normal to
comprise expert opinions or investors’ views as additional
stream of information in the calculation of optimal
portfolios (Frey et al., 2014).

Multi-period models considered more complex
comparing with single-period models, therefore some
researchers attempted to mtroduce a solution for
large-scale multi-period portfolio selection problem in the
beginmng years of Modern Portfolio Theory (MPT) as a
progression of one period models for instance (Merton,
1972, Valian, 2009).

There is a large body of work on dynamic portfolio
optimization with constraints (Skaf and Boyed, 2008). This
study has an interest in the effects of these constramts on
dynamic portfolio selection. This study attempts to review
literatures related to dynamic portfolio selection and
factors that affect dynamic portfolio selection.

DYNAMIC PORTFOLIO

The term of dynamic portfolio comprise from
applymg the characteristics of dynamic programming into
portfolio management. Dynamic portfolio defined as a
portfolio management strategy involves in rebalancing a
portfolio in order to bring the asset mix back to its
long-term target. Generally, these rebalancing nvolved
reducing positions m the best-performing asset class
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while adding to positions in underperforming assets. The
general premise of dynamic asset allocation is to reduce
the fluctuation risks and achieve retums that exceed the
target benchmark (www.investopedia). While, Wikipedia
defined dynamic asset allocation as a strategy employed
by structured investment products (mutual fund and index
fund, etc.) to achieve exposure to various mvestment
opportunities and provide 100% principal protection. It
includes Constant Proportion Portfolio Tnsurance (CPPT)
related to its components of a zero-coupon bond and an
underlying mvestment where the assets in the portfolio
shifted between them based on their performance. Even a
borrowing facility can be used if the underlying
investment products experience strong return to improve
the exposure, otherwise, the CPPI automatically
deleverages, reducing exposure i falling markets
(en.wikipedia.org).

Valian (2009) identified the term of dynamic portfolio
as the Dynamic Portfolio Model looks at the portfolio as
a moving object to achieve a maximal expected utility for
a given risk level and time horizon. Karamanis (2013)
defined Multi-stage Stochastic Programming (MSP) for
mvestor who considers the effects of the mvestment
strategies for both short and long-term. In a situation of
discrete time horizon, these strategies are achieved by
accounting for an investment planning horizon where the
investor has to make sequential decisions m order to
achieve his goals at some date m the future.

Based on the previous definitions the researcher can
give her definition as it is an investment strategy that
aiming to achieve high total return while reducing the
volatility risk via reallocate the components of the
portfolio by holding the promising or underpriced assets
by using the proceeds from and dispose the overpriced
assets during a time horizon.

FACTORS AFFECTING DYNAMIC
PORTFOLIO SELECTION

Several factors mentioned in the literatures of
selecting dynamic optimal portfolio rather than the most
attractive one of return and risk. The following this study
will review the most important studies examine these
factors:

Number of assets: Jobst et al. (2001) investigated the
impact of applying transaction roundlot (discrete numbers
of assets which are taken as the basic unit of investment),
buying in threshold (minimum level below which an asset
is not purchased) and cardinality (number of assets in the
portfolio) constraints restrictions to the portfolio selection
problem regarding Markowitz Model (MV) and the
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risk-return efficient frontier construction. Practically,
these discrete constraints are important but cause a
discontinuity for the efficient frontier. Researchers
proposed an altemative model Quadratic Mixed-Integer
Programming (QMIP) instead of quadratic programming
which makes the estimating of efficient frontier is NP-hard
computationally challenging. The limitation of the model
15 1t’s difficultly to handle trading constraints because
they introduce discontinuities in the space of feasible
portfolios. Difficulty arises when introducing additional
classes of constramts (e.g., transaction costs) or new
features in the model.

Liu (2006) shows that imposing a dynamic constraint
in a continuous-time model leads an agent to select a
smaller exposure to risky stocks than it would have been
chosen m case of its absence.

Stoyan (2009) presents three mathematical algorithms
to three well-know portfolio problem referred to risk-return
portfolios, index tracking portfolios and an integrated
stock-bond portfolio selection model. These approaches
answers and spots the light on the portfolio selection
question of money management problems where the
developments in finance are carefully researched and
examined by the mvestors especially after the financial
crises 2007 that affected the global. Different sources of
uncertainty are portrayed in a Stochastic Programming
framework and Goal Programming techniques are used to
facilitate various portfolio goals. The algorithms are
tailored to each portfolio design and involve
decompositions and heuristics that improve solution
speed and quality. The first problem investigated
limiting the number of shares in Markowitz risk verses
return portfolio which is the most interesting and difficult
constramt to include in the model. The resulted model
compared with of Jobst et al. (2001) after its implement an
algonthm proved its ability to handle problems larger than
65 times and produce respective efficient frontiers. The
second problem presented a stochastic programming
index tracking portfolio. The design of the model mcluded
a set of constramts such as mimmize a tracking error, hold
a small number of securities, minimize transaction cost,
include uncertainty in the value of future security and
possess a portfolio managing or rebalancing strategy at
future time decision distribution that used a stochastic mix
integer programming SMIP modeling structure to facilitate
future uncertainties related to security prices and index
values. The algorthm created to solve the model was
specifically aimed at model structure and satisfying the
names-to-hold constraint. Finally, the third problem
concerned with portfolio design that involve rebalancing
strategy over risky assets and nsk free asset where
portfolio goals (few number) set to match target value.
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This kind of portfolio integrates uncertainty in stock
price and portfolio in stochastic goal mix integer
programming SGMIP. The large mixed mteger
programming MIP possessed a number of sub-problems
that were sequentially solved then combined in an
algorithm that produced competitive results with respect
to various benchmarks. The advantage of this dissertation
that each model mentioned 1s m the first of their nature
and novel to the field

Crama and Schyns (2001) investigate the optimization
difficulty that rose when realistic side-constamts added to
Markowitz Model. The portfolio describe the application
of a simulated annealing approach to the solution of a
complex portfolio selection model. The model is a mixed
integer quadratic programming problem. The main
objective of this study 1s to clarify the adequacy of
simulated annealing for providing a solution of a portfolio
optimization model difficultly. Tn this study, researchers
iwvestigated the ability of the Simulated Annealing
metaheuristic (SA) to deliver ligh-quality solutions for
the model enriched by additional
constraints. They made an attempt to emphasize the
difficulties encountered designing the SA metaheuristic
to the particular problem. Notice, m particular that his
model involves continuous as well as discrete variables,
contrary to most applications of simulated annealing.
Also, the constraints are of various types and cannot be
handled in a umform way. The resulting algorithm
allowed us to approximate the mean-variance frontier for
medium-size problems within acceptable computing times.
The algorithm has an ability to deal with more classes of
constramts than most other algorithms found m the
literature. Although, there is a ¢lear trade-off between the
quality of the solutions and the time required to compute
them, the algorithm can be said to be quite versatile since
1t does not rely on any restrictive properties of the model.
On the negative side, it must be noticed that the tailoring
work required to account for different classes of
constraints and to ne-tune the parameters of the algorithm
was rather delicate. The trading constraints, 1 particular
are especially difficult to handle because of the
discontinuities they introduce in the space of feasible
portfolios. Introducing additional classes of constraints
or new features in the model (e.g., transaction costs)
would certainly prove quite difficult again.

mean-variance

Transaction cost: Skaf and Boyd (2008) consider the
problem of multi-asset multi-stage portfolio optimization
problem over a discrete time as a stochastic control
problem with minimizing the mean-square deviation to
achieve a desired wealth. With the assumption of
self-financing trade, no transaction cost and the trading
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policy is affine (total revenue from sale equals total cost
of purchase) which can be solved by wsing standard
dynamic programming.

When assuming suboptimal policy which holds
additional constraints such as the presence of transaction
costs or no-shorting constraint, the optimal policy
becomes hard to compute and required a convex quadratic
program m each stage using Bellman function to
approximate the value of future portfolios. This study
provides an example showing two suboptimal policies
with and without transaction costs and/or no shorting
constraints. This suboptimal policy 1s often achieve an
objective value close to that for the associated problem
without constraints and is therefore nearly optimal. Tn
particular, suboptimal trading policy with transaction
costs 1s perform almost as well as when there are no
transaction costs. Simulations revealed that the more
complicated suboptimal policy performs very well.

Brown and Smith (2011) studied dynamic portfolio
optimization problem in a discrete-time, finite-horizon
setting. This study attempted to propose a heuristic
model with respect of risk aversion, return predictability,
transaction cost and without shortening. A stochastic
dynamic program formulated with non-zero transactions
cost, number of the assets nearly equals the dimension of
the state space. Number of easy to compute heuristics
considered as a trading strategies, dual approach with
upper bounds based on Brown and Smith (2011) was
developed for investigating the superiority of these
heuristics. In these bounds are given after considering the
trader who has the ability to access perfect mformation on
other hand penalized lum for using these nformation. A
variety of utility functions, transaction cost forms,
constraint sets and different models for returns
considered in this general approach Monte Carlo
simulation was used to evaluate the strategies and
bounds by using numerical example with a risk free asset
and three to ten risky assets. The results of the numerical
experiments revealed that the heuristic strategy 1s
extremely near the upper bound indicating that it is
closely optimal. Furthermore, the experiments are capable
in running time, even without software optimization and
reasonable. At a high level, the key 1ssue 1s to manage the
trade-off between improving asset positions and
minimizing transaction costs. This study received a
critizem from Cai et al. (2013) that their method cannot
give the optimal portfolios.

Moallemi and Saglam (2013) the central concern of
this study is to provide a tractable framework for
determining rebalancing rules in multi-period portfolio
optimization problem. These linear rebalancing rule of past
return for predicting factors can be used in a wide range
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of portfolio selection models with practical considerations
for return predictability, transaction costs, trading
constraints (short-sale constraimnts, leverage constraints
or restrictions requiring market neutrality (or specific
industry neutrality) and risk aversion. Also, it considers
an optimal implementation problem where the liquidation
of the investor position allowed over a fixed tume horizon,
under the transaction costs and a prediction of returns.
An efficient computational procedure was made to
measure and compare the performance of the various
rules. The resulting optimal implementation problem does
not permit an exact solution. Hence, a comparison made
between the best linear policy and other tractable
approximate policies including a deterministic policy,
model predictive control and a projected variation of the
linear quadratic control formulation of Garleanu and
Pedersen (2009). By predicting of price movement of
various policies a significant differences found. The
TWAP policy, manage to mimmize the transaction cost,
fail in predicting the price movement then achieves the
worst performance. Other policies acquire higher
transaction costs than TWAP but not more than the gain
from the opportunity of timing the liquidation relative to
predictable price movements. Of the remaimng policies,
the projected L.QC and optimal linear policies achieve the
highest performance. The underlying dynamic portfolio
optimization problem 1s a convex (globally optimal policy)
programming problem and tractable numerically such
flexibility can offer significant practical benefits. Linear
rebalancing polices involved Single-period and
determimstic policies and outperforms them in optinal
rebalancing. The research concludes that the best linear
policy aftains superior performance to the alternatives.
Furthermore, a number of upper bounds on the
performance were computed for each policy in the
problem, revealed that the best linear policy 1s near
optimal with a gap of at most 5%. Moreover, this
optimality gap is a factor of two better than the next
closest policy.

This study implement numerical dynamic
programming to optimize the problem of multi-asset
dynamic portfolio involved small transaction cost (they
considered bid-ask spread transaction, even it 1s small
cost but with iterating rebalancing 1t becomes,
theoretically, high in addition to the transaction fees
representing by brokerage fees) (Cai et al., 2013).
Numerical example includes one riskless asset “bank
account” plus two to six risky assets “stocks” traded
during the period 7-360 traded periods in a finite horizon
problem. The results show that the iteration of numerical
value function able to solve multi-asset dynamic portfolio
optimization problem with transaction cost in an efficient
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and precise way. The trading strategies were illustrated
describing the no-trade regions for various alternatives of
asset returns and transaction costs. May the numerical
DP algorithms require intensive computation for large
portfolio optimization problems but this problem solved
by modern hardware? The advantage of their study is the
number of risky asset 13 more than three and rebalancing
period is greater than six.

Palczewski et al. (2014) introduced an efficient
numerical approach to recognize the optimal portfolio
strategies with state-depend-drift, long-time horizon and
proportional transaction cost. Number of scenarios arise
to explore investor behavioral biases reacting to the drift
in three cases: drift unknown; trend-follower to the stock
price movements;, naive and ignore the available
mformation. The numerical algorithm explains dynamic
optimal portfolio strategies for time-horizons of up to
40 years. Tt is useful to measure the value of information
and the loss from transaction costs using the mdifference
principle. The mathematical results revealed that
forecasting behavior has a strong influence on trading in
the existence of transactions costs. The benefits effect
can be quantify of transaction costs. Transaction costs
are most harmful to naive mnvestors. The total loss n
utility from proportional transaction costs is
approximately twice times as direct cost incurred. Tn fact,
learning decreases the losses in utility resulted from the
uncertain drift and transaction costs, particularly for long
horizons.

Information: According to Frost and Savarino (1986), the
main object of this study 1s to reduce estimation error and
maximize the portfolio return in optimizing the portfolio.
Depending on the Bawa (1979) result saying: when
portfolio  optimization is executed by historical
characteristics of stock returns, estunation error can
corrupt the desirable properties of the selected investment
portfolio. The problem raised in estimation the risk;
expected return, variance and covariance with other
security retumns are required for each security, these
measures are unknown and should be estimated either
from available historical data or depending on subjective
mformation. In this situation, it is accepted to use
Bayesian framework when imtiating portfolio selection
rules that based on maximization of expected return
conditioned on the predictive security returns
distribution.

In order to reduce estimation error a non-informative
diffuse prior has been addressed from most researchers
however, it does not minimize the estimation error directly
but mimmizes the detrimental effect of estimation risk. A

proposed informative prior derived from prior knowledge
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which is if the deviation between samples estimate of a
parameter for a specified stock and the mean of that
parameter increased, the possibility of estimating the
sample estimate with error will increase for all stocks. The
informative prior used to enhance the performance of the
portfolio at the same time eliminate estimation error. This
prior knowledge msures that all stocks have identical
expected returns, variances and pairwise correlation
coefficients. The posterior estimates that drawn for each
stock’s characteristics (expected return, variance and
pairwise correlation coefficients) toward the mean of these
characteristics reduces the estimation errors of all stocks
in the population by a Bayesian adjustment factor.

Elton and Gruber (1987) questioned and want to
know 1if all investors i the market are only informed about
the grouping of the stock plus average characteristics of
the stocks in a group at best, what knowledge one can
gain from portfolio theory about optimal decisions? Other
previous literatures m selecting optimal portfolio assumed
that an agent received all required information to make his
estimation of the expected return for each security, the
variance and covariance matrix between securities to make
his investment decision. This 1s a theoretical assumption
and differs from actual practice where the mvestor just
receives a list of discrete ranked securities (from one to
five) and maybe some risk information.

Given this data how can an investor make optimal
portfolio decisions? In their attempt to find the theory that
maintain the process of decision making to be more
useful, they explored a number of rules and reached to the
following results. For example, if the grouping 1s based on
expected return and no additional information 1s used:

»  The whole groups are selected or rejected

»  Select the whole group when its expected return
exceeds the risk free rate

¢ Invest equal amount in each security

*  Each security proportion to be invest is related to the
excess return of a group

They set different rules for different alternatives
result from different beliefs used to form the groups. In his
study, he derived appropriate rules for alternative sets of
grouping criteria that are used in the financial community
without complex computation.

Nuaimi (2004) categorize the knowledge in two
types explicit knowledge represented by the quantitative
techniques and software and the implicit knowledge
represented by the experience and skillful of the manager
which cannot be participate or communicate. The portfolio
manager as a decision maker is welling to acquire both
types to trade of between risk and return to optinize his
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portfolio. Many models built-called as explicit financial
knowledge to solve the portfolio models problems, the
searching continued in this sector to develop these model
through studying the model’s varable representing in risk
and return which one can express them by quantitative
values not by guessing and hushing but the problem still
unsolved. Here, the role of implicit knowledge appears to
capture the portfolio features in term of return and risk.
Mansour et al. (2007) employed the imprecise GP to
develop model for portfolio selection problem within
a decision-making characterized by
imperfection of the information. They built the most
satisfactory portfolio seeking to integrate explicitly the

environment

portfolio manager’s intuition, experience and judgment.
The concept of satisfaction fimetions will be utilized to
mtegrate explicitly the preferences of the portfolio’s
manager. The considered criteria in thewr model are as
follows: the return, the risk and the liqudity of portfolios.
In order to deal with the imprecision related to the model
parameters, they express the goals as intervals. The
developed model has been applied to portfolio selection
within the Tunisian stock exchange market. They
concluded that the model can be applied for cases with
large size portfolio selection problems.

Valian (2009) in her dissertation introduced a model
to get the optimal sequence of actions of a dynamic
portfolio under uncertainty. These actions were measured
based on estimated drifts. Uncertamnty, parameters were
taken into account because the price of the assets at
specific moment 1s only accessible information for agents
at this time since, the underlying Brownian Motion and
the drift process of the asset prices are not directly
observable (incomplete nformation). These parameters
are measured as stochastic variables. Filtering theory was
applied to obtain the unobservable rate of retuns as an
optimal estimator.

In order to set up the results, the optimal sequence
structure of actions i the presence of incomplete
mnformation was formally defined in mathematical terms.
Then, a comparison made between the optimal actions of
the mvestor considering the error of predicted drift
(uncertain parameters) of asset prices and the optimal
actions of an investor considering fixed parameters. That
means, the impact of the uncertainty of parameters was
identified by comparing the solution of fixed parameters
with the solution of uncertain parameters. This
comparison revealed that the risk-averse agents usually
forced by uncertainty of parameters to select a higher
trading volume. However, these trading volumes may be
lower m cases where the agent’s assessment of drift is

lower than the mean of drift.
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Liu (2009) examine the impact of using
high-frequency data on the portfolio optimization
decision. Trying to locate a best estimator to reduce
tracking errors and propose a solution for benefit of the
professional investment manager who is looking for
pursuing the S&P 500 with the 30 Dow Jones Industrial
Average stocks (30 DIIA), a framework was built by
constructing several covariance matrix estunators
depending on the daily return an intraday return to
execute the optimal portfolio. A significant result was
found in which the type of data to be used 15 depending
upon two factors the rebalancing frequency and
estimation horizon. If the investor rebalanced his portfolio
meonthly for a 12 months daily return data, the daily return
will act as the high-frequency data (intraday data)
performed, potentially. The investor needs to make a
substantial improvements to his portfolio by switching to
high-frequency data if he rebalancing his portfolio daily
or his estimation horizon <6 months.

The strength of this study 1s based on its application
in real world. Although, prior literatures such as Merton
(1972) valued estimating volatility based on high
frequency return, this research constructed the volatility
based on daily return rather than intraday return to
avoid the problem representing with leptokurtosis in
high-frequency data characteristics, autocorrelation in the
returns, deterministic patterns and volatility clustering n
intraday variance. At the same time researcher considered
that the accurate estimation of the drift generally requires
long spans of data, regardless of the frequency with
which returns are sampled. The weaknesses of this study
that researcher used the traditional risk measure variance
to measure the return volatility when it is valid if return
distribution achieve the normality. Researcher may use
other measures of risk such as VAR it is more suitable
with quadratic utility. Other thing he didn’t take the
transaction cost in his when it become necessity due to
rebalancing.

Frey et al. (2012) investigated the strategies of
optimal portfolio regarding expert’s opimions as partial
information and modeled the asset price as diffusion and
derives its drift by Markov chain Y as hidden finite-state
(continuous-time). In addition to the observation of the
stock price made by mvestors at a marked pomnt process
and depending on current state of expert opinion Y, they
can decide the Jump-size distribution. According to this
process, Frey ef al. (2012) develop a fimte-dimensional
filter p, under complete information, more than that they
formulate the equation of the wvalue function V for
dynamic programming problem and proposing a solution
for it assummg that the equation accepts a classical
solution. The results shows that the myopic strategy 1s
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very close to first approximation on the policy
improvement then conclude that additional information
permits for precise estimates for the drift which are close
to the actual values. As a result, the mvestor has nearly
full information on the drift and both, the optimal strategy
under incomplete information and the myopic strategy are
close to the optimal strategy under full mformation. The
advantage of this study that researchers used external
source of information to estimate drifts even they
employed the continuous-time because drifts tend to
fluctuate over time and still it is need a long time series to
be estimated precisely. The model 1s theoretical and
solved by example not applied to real world portfolio it
may considered as disadvantage.

Frey et al (2013) inspect the effect of drift of the
market determined by unobserved Markov chain on the
optimal portfolio  strategies. The information was
obtained on Markov chain from stock prices and expert
opimions as signals at arbitrary discrete time points. By
using stochastic filtering under full nformation as by
Frey et al. (2012), the original problem transformed to
optimization one and they used a state variable as the
filter for the Markov chaimn. This problem was mvestigated
with dynamic programming techmques and regularization
arguments in order to overcome the main difficulty
accompanied the classical solution of the dynamic
programming represented by the shape of the equation
where 1t 13 not strictly elliptic if the number of states of Y
is larger than the mumber of assets.

In order to complete what they began in their
previous study, this study grows from wmpublished paper
of Frey et al. (2013). Frey ef al. (2014) addressed the same
problem with dynamic programming equation but
mvestigate it m addition to regularization argument a
viscosity solution technique. In analyzing the dynamic
programming equation there 1s a major challenge related
to number of states of Y, the challenge began when
number of states of Y exceeds the number of assets
affecting the elliptic shape of the equation. Due to this
difficulty, there 13 no possibility to reach the classical
solutions to this equation by employing any of the known
results. Therefore, they studied two ways to deal with this
problem. First, by following the results revealed that the
value function of the related dynamic programming
equation is a viscosity solution. However, the
methodology of the viscosity solution does not offer any
mnformation on the (nearly) optimal strategies. The second
approach conducted using regularization arguments
additional noise term. The results show an existence of
classical solution for the dynamic programming equation
accompanied with the regularized optimization problem.
Fmally, the optimal strategy for the regularized problem
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can be characterized as solution of a quadratic
optimization problem that mvolves Vm and its first
derivatives. But, it 13 not sufficient to proof the corollary.

Palczewska et al. (2014) offer an efficient numerical
algorithm to solve the optimal portfolio problems under
certain condition of state-depend-drift, long-time horizon
and proportional transaction cost. This scenario develops
when investors have a bias behavior or drift is known to
him. The numerical algorithm solved dynamic optimal
portfolio problems for time-horizons of up to 40 years. The
mathematical results revealed that forecasting behavior
has a strong influence on trading in the existence of
transactions costs. Using the indifference principle, the
value of mformation can be measured of transaction cost.
Information 1s most valuable to the least risk-averse
investor.

Liquidity: Parra ef al. (2001) studied a multi-objective
portfolio problem consists of three criteria: risk (variance),
return (expected retumn) and liquidity for a private investor
and discussed how to develop technical decision rules for
buying, holding and selling both risky and riskless assets
over time in consistency with investor’s preferences.
Researchers assumed no considerable loss in converting
the investment into cash and the investor desires greater
liquidity. A capable model assists the private mvestor to
locate hus efficient portfolio that verifies his preferences
resulting from their study. Also, they determine the target
value of the three criteria for each type of investor. The
risk averse investor should exposure to small target value
of risk; on the contrast, the risk seeker mnvestor demand
higher level of risk and profitability target at the same time
lower target of liquidity. Furthermore, the model able to
find out mnfeasible combination and helps the investor in
improving his expectations.

Agent action: Valian (2009) developed a model to
comprehend the optimal action of non-price taking agent
with and without debts. These agents regard how to
select thewr trading strategies considering their price
impact to maximize their objective function (expected
utility), depending on their own action in addition to other
traders’ actions. The agent 13 full of aware of both facts
that its action has an impact on its payoff at a given
period and the available opportunity in the future. A game
Theory was applied to figure out the optimal action of the
large agent during infinite time period. Uncertainty is
considered because the return of most assets is uncertain
and the agent has no information about the probability of
the future return, besides the unavailability of information
about other agents” action within the environment. Each
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large agent considers some constraints forced by its
information because of the limitation on mformation that
alters the agent’s behavior. The availability of information
classified into two categories; imperfect information game
and a perfect mformation game. The results of the study
revealed that higher level of debts obliged the agent i to
sell more regardless information from his competitor agent
] as an optimal action. An agent turn into bankrupt when
he cannct settle his debt obligations, it occurred when the
marginal returns much lower than extra output.

Short sell: Elton and Gruber (1987) developed a
multi-grouped model and index model employing
quadratic programming and compared between both
models in presence of short selling and when it is not
allowed. He attempted to solve the problem comes up
from the complexity of producing inputs to the portfolio
model in its general form, resulting in the difficulty in
training portfolio manager to manage risk-return trade off
time and cost accompanying solving quadratic
programming. The research has been applied in the real
world choosing a sample consists of chemical and steel
stocks. The research got the following results about the
characteristics of stock to be included in optimal portfolio:
in case of multi group short sell is allowed: if the excess
return over standard deviation 1s greater than the group
constant the stock should be bought, if not sold short.
The optimum amount to invest M, in each security is
determined easily by scaling the objective function
(Z/EN,).

In case of multi-group short sell is not allowed: all
securities with higher excess return to standard deviation
gained a positive amount 7; will be in the optimal
portfolio, otherwise not included. The optimal amount
should be invest in each security is determined by
dividing each objective function of each group by the
sum of objective function for all groups (7Z,/E7.s). In
case of multi-index short sell i1s allowed: researcher
recommended that this case is negotiable.

In case of multi-index short sell is not allowed:
determined that:

¢ TInclude all securities with positive P, and ratio of
excess return to beta 1 greater than the cut-off point

¢ Exclude all securities with positive p, and ratio of
excess return to beta i less than the cut-off point

* Include all securities with negative P, and ratio of
excess return to beta i less than the cut-off point

¢ Exclude all securities with negative P, and ratio of
excess return to beta 1 greater than the cut-off point

In considering new security to include in optimal
portfolio the cut-off point can determine quickly the effect
of new security on the optimal portfolio by following:
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s Tfthe value of excess return over beta [(R,-R;)/p,] for
new security 1s less than the constant value of the
group, it can be safely discarded

. If the value of excess return over beta [(R;-Rp)/B,] for
new security is more than the constant value of the
group, it must be included and optimum recalculated.
Yet, new calculation may need but the amount of
computation 1s very small

This study derives its strength from the developed
decision rules that permits the investor to find the
optimumm  solution for s portfolio without any
complicated mathematics in addition to the implicit and
facile calculation of security characteristics that made it
desirable. This study offers and formally validates a
simple ranking approach for short selling n optinal
portfolio selection under institutional procedures (Kwan,
1995). It also grants economic msights of the clear
solution of the portfolio problem. This approach is
appropriate to different treatments of the short-sale
incomes and any margin deposits. This approach does
not mvolve the assumption that exaggerate short-sell
gains to maintain the analytical tractability like previous
approaches and it has the ability to identify and filter out
stocks that are unafttractive for investing or for short
selling. Thus, this study can improve the effectiveness of
portfolio modeling for supporting practical investment
decisions.

Tacobs et al. (2005) presents a fast model for tracing
out efficient sets of portfolio which consists of large
number of components, when a factor, scenario or
particular lustorical model of risk (covariance) is assumed
at what time investor allowed selling his stocks short.
Currently, with controlled other conditions. This algorithm
is valued because other models such as Monte Carlo
algorithm needs many reoptimization and may simulation
run when the investor have no time to do this duty to take
his decision of rebalancing his portfolio.

The results show according to the “Property P™ 1s the
sufficient condition that assures the existence of
(originally long-only) factor or scenario code will compute
the correct answer to the long-short problem. The
long-short model 1s achieved when risk algorithm (factor
or scenario) 1s assumed and Property P 1s satisfied. Here,
no needs for new programming. The long-only program
generates the right answer to the 2n-variable long-short
problem, m spite of the “error” i assumption. Also, the
fast algorithm for lustorical covariance matrices (when the
nmumber of stocks greatly exceeds the number of
observations) generate right answers to the 2n-variable
long-short problem whether or not property P holds.

The strengths of this study are the fast model
includes more than one constraint referring to the real
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world circumstances, the hypothetical assumption of the
economy models representing in “one can sell stock short
without limit and use the proceeds to buy stocks long™ 1s
unrealistic. Also, fast algorithm modeled the constraints
faced from brokers, clients, regulations and investor
himself related to the long-short portfolios variation over
time and at a given moment, On the contrary of other
literature such as Elton and Gruber (1987). The results of
this study generalized attributable to the results of Kwan
(1995). But, their results still restricted since the model not
applied in real world condition.

CONCLUSION

Various researchers have been conducting studies of
dynamic portfolio selection to solve the problems faced
by the market traders such as the size of the portfolio and
the proportion invested in each asset, the investment
amount and the ability to leverage or borrow 1t, availability
of information to estimate the required mvestment
measures, the accuracy and speed of the used model, the
cost of the investment process which increase with
rebalancing, predictability of other agent actions and
portfolio liquidity. This study reached to the following
results and conclusions the investors become more aware
about the investment process and the innovations in
modeling the problem and factors including i it,
especlally after financial crises of 2007 for that researcher
proposed a flexible and robust model in dealing with
uncertainty comparing with othe models and limiting the
size of portfolio (Stoyan, 2009), some proposed a model
but not tolerance additional constraints (Jobst et al.,
2001), the effect of portfolio size on the dynamic portfolio
selection represents by if the portfolio size increased the
friction will increase in the presence of multi-period which
will affect the profit at the same tune mcrease the
complexity of the model in tun will affect the CPU even
with the existence of software. Therefore, there is a
direction to limit the portfolio size.

The effect of transaction cost on dynamic portfolio
selection: the more the constraint in the model the more
complexity and difficulty of solving this model, the
tendency to decrease number of constraint. While,
researchers build mathematical models they aimed to
relieve the effect of increasing number of constraint,
especially transaction const. Some of researcher success
i that for example, Skaf and Boyd (2008) proposed a
meodel and examine it, results that the model act well 1n
presence of transaction cost as absence comparing with
the determined upper bound. Brown and Smith (2011)
mtroduce model with large number of assets, capable in
rumung-time software not required but this model not

75

reach optimal portfolio. The gap in the model of
Moallemi and Saglam (2013) in the presence of transaction
cost 18 5% comparing with upper bound. Cai et al. (2013)
1n his model fail to manage the nmumber of risky asset 1s
more than three and rebalancing period is greater than six
without modern hardware. Transaction costs are most
harmful to naive investors (Palczewski ef af., 2014). The
total loss m utility from proportional transaction costs 1s
approximately twice times as direct cost incurred. In fact,
learning decreases the losses in utility resulted from the
uncertain drift and transaction costs, particularly for long
horizons.

The effect of information on dynamic portfolio
selection: some of the article concludes that risk-averse
agents usually forced by uncertamnty of parameters to
select a higher trading volume. Other report, the least
risk-averse investor is most valuable from information.
Frey et al (2012) and Mansour et al. (2007) valued the
subjective mformation as alternative source of
information. Elton and Gruber (1987) derived appropriate
rules for alternative sets of grouping criteria that are used
in the financial community without complex computation.
Liu (2009) advice to use high frequency data when the
investor rebalance its portfolio daily or the estimation
length <6 months.

The effect of liquidity on dynamic portfolio selection:
the risk averse mvestor should exposure to small target
value of risk; on the contrast, the risk seeker mvestor
demand higher level of risk and profitability target at the
same time lower target of liquidity. The effect of short sale
on dynamic portfolio selection: the investor deal with this
condition depending on his expectation that the stock
price will decrease in future. Therefore, he borrow it now
from his agent and return it back when price decrease but
the agent has the right to call his stock at any time, the
risk 13 appear mn this situation. Elton and Gruber (1987)
model do not need complex calculation, example if the
excess return over standard deviation of one group is
greater than the group constant the stock should be
bought. Jacobs et al. (2005) presents a fast model to trace
the optimal portfolio without further computations.

This study concludes that all researchers do their
efforts to facilitate the mvestors’ mission by introducing
the different mathematical approaches m different
conditions and different point views three of the reviewed
studies applied on the real portfolios which form a small
percentage while the other stands as a theoretical models.
This gives the researcher of this study an insight to
propose future implementations for these approaches to
prove their validity. This effort may help the aware
ivestor to choose and benefits from a collection of
relevant information and models. This study provides a
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broad view of historical and modern studies in this topic
which save his time and efforts, at the same time open the
door for further research such as use other risk measure
than variance such as MAV and apply the previous
models in real markets.
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