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Abstract: In the recent genomic epoch, the recognition of the genetic diseases is paramount. Tt is a convoluted
task to recognize a heritable disease that 1s certainly caused by genetic mutations. Identification of discase
based on mutations in the gene sequences 1s an important and challenging task m the medical diagnosis of
genetic disorders. This study addresses this problem by developing new model by extracting mutational
features as discriminative descriptors for predicting the disease accurately. The disease gene sequences are
mutated by espousing a technique like positional clomng on the reference cDNA sequence. A rare genetic
disorder such as muscular dystrophy 1s taken as a sample for this research. This disease 1s a complicated
neuromuscular ailment with a prominent social impact that impairs the working of the locomotive muscle tissues.
The versatile causes of this disease bring about the requirement of new hereditary patterns that can diagnose
patients using biological mformation. There are diverse signmificant forms of muscular dystrophy and it 1s
umperative to identify the type of muscular dystrophy for proper medical diagnosis and medication. Hence, a
data driven model is developed using pattern recognition techniques by aggregating the features related to all
kinds of mutations for predicting the disease precisely. Results indicate that the SVM classifier is found to

acquire the best accuracy of 90.5% for predicting muscular dystrophy.
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INTRODUCTION

Monogenic or polygenic diseases ground the
impairment of the normal structure or function of the
organ. Mutilation in genetic characters due to single
mutation i1 a specific gene i1s monogenic disease.
Moreover, non-genetic mutations caused in multiple
genes leads to polygenic diseases. Genetic disorders are
caused by the deformities in the mherited genes and
current encroachments 1 gene testing aids in diagnosing
people at a risk of getting a disease in advance in a head
of any indication of disease. An accurate gene test results
in finding the disease-related gene mutation. The impact
of the mutation on the gene sequence modifies the
function of the gene. Substitution 1s an exchange of one
base to another such as swapping a base from A-G.
Mutations that show an impression on protein sequence
mclude deletions,
splicing and frame-shift mutations. Missense and
non-sense are the non-synonymous single nucleotide
variants where a single change in the gene alters the
amino acid in the sequence (Ma et al., 2005; Zeng et al,,
2014). Missense mutations are the substitution in a codon
that encodes a different amino acid and alters the protein.

missense, nonsense, insertions,

Nonsense mutations are those where the protein attains
to stop codon when a change occurs m the DNA
sequence. Synonymous mutations are the silent
mutations that the variant will not show amend in the
amino acids. Silent mutations are a change in codon that
encodes for the same amino acid and therefore, the
translated protein is not modified (Kann, 2010). In
detecting the type of disease it 1s necessary to consider
the silent mutation as the changes can affect protein
folding and function. Even though several codons encode
for the same amino acid their frequency will vary and this
is referred as codon bias. The increase in the number of
the same muclectides in a location is termed as
duplications. Deletions are the mutations when a base or
an exon 18 deleted from a sequence the mutations
(Tranchevent et al., 2011). In the eukaryotic genes, the
spliceosome catalyses the intervening sequences or
introns which are spliced by the process of RNA splicing.
Any change that occurs while splicing will lead to splicing
mutation (Clancy, 2008).

Tdentification of genetic factors for complex diseases
15 a far more difficult task with the standard methods as it
15 difficult to analyze the data. The complex diseases
provide a great deal of challenges to standard data
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analysis techniques. The apparent benefit of hereditary
testing aids in identifying and understanding of risk for a
certamn disease. The traditional method of testing 1s time
consuming and incurs cost over head. Therefore, it is
essential to model and represent this knowledge in a
computational form with minimal loss of biclogical
context through a gene based approach. Disease-gene
assoclation needs to be designed to handle this type of
data (Sathyavilkashini and Vijaya, 2015a).

In this research, identification of disease i1s done with
the help of sequence data and a data driven model 1s
created using supervised learming techmques to mnfer the
disease. For this purpose muscular dystrophy disease is
considered, since, it is a monogenic disease caused by the
mutations in the genes which are in charge of ordinary
muscle function. Progressive muscle fatigue that unpacts
limb, axial and facial muscles is the fore most reason
behind muscular dystrophy (Emery, 2002). Muscular
dystrophy 1s believed as a genetic ailment run in a family,
even if only one blood relation in the ancestor 1s affected.
Rare forms of muscular dystrophy are duchenne,
becker, emery-dreifuss, limb-girdle, facioscapulohumeral,
myotonic, spinal, distal and charcot marie tooth disease.
Duchenne Muscular Dystrophy (DMD) 18 the X-Linked
and most common form of muscular dystrophy is caused
by the mutations in the dystrophin gene located on the X
chromosome. The absence of dystrophin gene occurs
when a large number out frame deletions occur which 1s
the major cause of DMD. Becker Muscular Dystrophy
(BMD) is the X-Linked less defective mutations in the
dystrophin gene display a much milder dystrophic
phenotype 1 affected patients, known as Becker’s
muscular dystrophy. The mutations in the Emerin (EMD)
and Lamin A/C (LMNA) genes cause Emery-Dreifuss
Muscular Dystrophy (EMD). The defects in Limb-Girdle
Muscular Dystrophy (LGMD) show a related distribution
of muscle weakness that has an effect on both upper arms
and legs. Charcot Marie Tooth disease (CMT) includes a
number of disorders with an assortment of symptoms
grounds damages in peripheral nerves. The disorder
affects the peroneal muscle in the lower leg and hence the
disease also is known as Hereditary Motor and Sensory
Neuropathy (HMSN) and peroneal muscular atrophy
(Uhmn et al., 2009). More than 30 forms of CMT are
noticed and 30 genes are concemed, some may show
severe brain malformations such as lissencephaly and
hydrocephalus and hearing loss (Agnes et al., 2008).

Diagnosing muscular dystrophy 1s in progress with
the help of muscle biopsy and DNA testing. The
advantage of performing genetic testing over muscle
biopsy 1s that in genetic testing, diagnosis 13 done with
the blood sample to spot the alteration in the genes
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whereas the part of the tissue is required to perform the
muscle biopsy. Gene therapy helps in knowing the exact
mutation m the DMD gene and direct sequencing aids n
identifying missense, nonsense, mnsertions, deletions and
splicing mutations (Roberts et al, 1992). Laboratory
methods such as Multiplex Ligation-dependent Probe
Amplification (MLPA), PCR, Sanger’s full gene
sequencing 15 considered to be laborious, expensive,
time-consuming and accuracy also cannot be attained
(Chen et al, 2014; Bennett et al., 2009, Koenig et al.,
1987). To overcome the challenges i laboratory methods,
the process should be automated through the
computational methods and disease should be identified
efficiently. Machine learning techniques paved the way to
predict the type of disease in some circumstances.

In the medical applications the capability of machine
learning is well suited particularly on complex genomic
and proteomic measurements. Models based on machine
learming have been extensively used to analyze complex
diseases such as diabetes (Ban et al., 2010) hepatitis
rheumatoid arthritis (Briggs et al., 2010) schizophrenia
(Nicodemus et al., 2010). However, not many studies have
been carried out on variation of muscular dystrophy using
machine learming algorithms. Also, the classification of
this complex disease is done with the either protein data
or micro array data as their inputs. Classification of Facio
Scapulo Humeral muscular Dystrophy (FSHD) disease 18
done by momtoring of expression levels. Usually,
microarray gene expression analysis is mainly focused to
cancer diseases. In the study of Gonzalez et al. (2013) the
research proposed an approach to classifying the types
of Facio Scapulo Humeral muscular Dystrophy (FSHD).
The microarray gene expression data from the DUX4 gene
are taken mto account for classification. A model was
created using support vector machine to classify the
types of FSHD.

The research by Mercuri and Muntoni (2013)
developed a model using neural networks to identify
whether the patient 15 affected from Limb Gniddle
Muscular Dystrophy (LGMD). The data based on the
patient’s family details are collected. The classification of
disease status is made using the neural network and
achieved an accuracy of 98%. The research by
Noguchi et al (2003) constructed a protein-protein
interaction network to classify the sub-types of muscular
dystrophy through machine learning techniques.
Microarray gene expression datasets are analyzed and the
protein data and their interaction data are collected and a
network is constructed to classify the sub types. Multi
class support vector machine is applied for the
classification of 6 sub-types of muscular dystrophy.
Noguchi ef al. (2003) proposed a model to classify the
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types of Human Leukocyte Antigen (HLA) gene into
different functional groups by choosing the codon usage
bias as mput. In their research, they converted the gene
sequence nto 59 vector elements by calculating the RSCU
values for the gene sequence. A model was created using
support vector machine and achieved an accuracy rate of
99.3%. The researcher CM Nisha, Bhasker Pant and K. R.
Pardasani proposed an approach based on codon usage
pattern to classify the type of Hepatitis C Virus (HCV) that
is the primary reason for the liver infection. To classify the
sub class of its genotype a model was created using
codon usage bias as mput to multi class SVM
(Nisha et al., 2012).

Kalari (2006) identified large mutations such as
duplications and deletions through computational
approach. A system speed was developed by utilizing the
logical model tree method based on machine learning
technique for the gene BRCA 1. High specificity was
achieved with this techmque. Wu et al. (2010) predicted
the disease causing mutations through ensemble learning
technique. The protein sequence dataset from swissprot
database was used for classification. A comparative
analysis was made between the traditional approach and
ensemble approach and logit boost ensemble techmque
achieves high performance among all the methods
compared.

Biomformatic tools that are designed to assess the
mnpact of genetic variation on splicing are NNS plice
(Reese et al., 1997), maxentscan (Yeo and Burge, 2004)
ESEF inder (Cartegni et al., 2003), spliceman (Lim and
Farbrother, 2012), skappy (Woolfe et al., 2010) and human
splice finder (Desmet et al., 2009). Skippy 1s a web-based
tool that defines exonic variants using the genomic
features that modulate splicing. Single nucleotide variants
relevant to splice-modulating genomic features variants
are assessed and scored. Point mutations lay in the
coding region show severe effects on gene function
through disruption of splicing. Mutpred splice is a
machine learmning approach for identifying the coding
region substitutions that disrupt pre-mRNA splicing.
Disease causing splice altering variants, disease-causing
splice neutral variants and polymorphic splice neutral
variants are considered and discriminative descriptors are
extracted from gene sequences. Supervised classification
techniques such as random forest and SVM are employed
for building models (Mort et al., 2014).

The classification of muscular dystrophy continues
to evolve with the advances in understanding of their
molecular genetics. Huge number of muscular dystrophy
related faulty genes and proteins are identified but no
successful treatments are known for many of its
sub-types. The proportion of mutations in deletions,
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Table 1: Proportion of rmtation spectium in HGMD for muscular dy strophiy
disease

Disease Missense/Nonsense Insertions/Duplications Deletions Splicing

DMD 460 295 826 150
BMD 70 63 283 70
EMD 95 14 50 14
CMT 284 36 56 40
LGMD 511 67 157 72

duplications and pomt mutations differs mn each type of
disease and the present methods carmot handle the entire
mutational spectrum in a single platform. However, it is
essential to look into the accurate mutation site and to
predict the disease. HGMD-Human Gene Mutational
Database is a cluster of the mutational information in
genes coupled with the human inherited disease that is
clinched from diverse research. Table 1 depicts the
approximate number of mutational information for the
muscular dystrophy disorder from HGMD database. The
public version of HGMD is freely available to registered
users from academic institutions/non-profit organizations.

It 1s pioneered from the literatures that the disease
identification problem can be modeled as pattemn
recognition task to identify the disease. As machine
learning technique can automatically learn the model by
taking intelligent hints from the data and predicts the
output more accurately, 1t has been mfluenced in this
research to extract and pool various discriminative
features from the diseased gene sequences for building
disease prediction models.

The primary focal point of this research 1s to build a
disease identification model for diagnosing a genetic
disease by extracting mutational features from the gene
sequences. As muscular dystrophy 1s a heritable disorder
caused by the mutations in the gene sequences this
disease 1s considered for this research. Some of the
diverse forms of this a genetic disorder is Duchenne
Muscular Dystrophy (DMD), Becker’s Muscular
Dystrophy (BMD), Emery drefius Muscular Dystrophy
(EMD) Limb Griddle Muscular Dystrophy (LGMD)
Charcot Marie Tooth disease (CMT).

In the previous research by Sathyavikashim and
Vyaya (2015b) features related to non synonymous
mutations are considered and disease identification was
done by extracting discriminative features from the cloned
gene sequences. A model was developed based on
pattern recogmtion techmques and high accuracy was
attained from the decision tree classifier. In other research,
Sathyavikashini and WVijaya (2016) silent mutational
features were captured by calculating the RSCU values
from the diseased gene sequences and an
accuracy of 86% was attained using support vector
machine and 90% of accuracy was achieved from Lib D3C
classifier.
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This stimulated to perform various autonomous
implementations by increasing the dataset size to 1000 to
clagsify the disease classification through various
standard learning techniques based on all kinds of
mutational features in order to predict the type of disease.
The study 1s camried out to propose 5 different
experiments by extracting diverse features pertaining
to all kinds of mutations from 1000 mutated gene
sequences. A cohesive approach is demonstrated based
on computational intelligence technique to detect major 5
forms muscular dystrophy with diseased gene sequences
as nput. The pattern recogmtion algorithms such as
decision tree, artificial neural network, naive bayes and
support vector machine are utilized to train the model.
Machine learning algorithms are data driven and are able
to examine large amounts of data.

MATERIALS AND METHODS

Accurate prediction of genetic disorder is a
complicated task as the pattern of the gene sequence
varies for every individual. The key idea in this research
15 to pool out discriminative descriptors extracted from
diseased gene sequences associated with all types of
mutations and to provide an effective solution for
predicting the type of disease. Multi-class classification
is worked out through data modeling of gene sequences.
The synthetic mutational gene sequences are created as
the diseased gene sequences are not readily obtainable
for this mtricate disease. Positional cloning approach
supports in generating disease gene sequences based on
mutational information acquired from HGMD.
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Data acquisition through positional cloning: Synthetic
gene sequences are generated with the gene mutational
information collected from the Human Gene Mutational
Database (HGMD). The reference genes for the mutated
genes are downloaded from NCBI. The mutation position
and 1ts location on the chromoesome enable the synthesis
of cloned gene sequences by employing the positional
cloning approach.

The raw sequence obtained from HGMD is processed
to form ¢DNA sequence and the nucleotide base
alteration is done based on the mutational information.
Using the traditional positional cloning approach the
mutated sequences are generated and stored as fasta files.
Consider the missense mutational information for the
EMD phenotype from the emerin gene such as nuclectide
change is 2 T>C which indicates in the position 2 the
nucleotide changes from T-C alters the protein from met
to thr. For example the ¢cDNA sequence of EMD gene
15!

ATGGACAACTACGCAGATCTTTCGGATACCGA. ..
T

After the nucleotide change in the position 2:

ACGGACAACTACGCAGATCTTTCGGATACCGA..
T

Sample output of cloning technique for gene
sequence using positional nformation i1s shown m Fig. 1.
Figure 1 depicts the generation of mutated gene sequence
of the EMD phenotype from the emerin gene with the
mutational information. The 7 types of mutations have
been considered for generating mutated sequences. The

ka La ﬁ !E?F:Eﬂ;_futa - Notepad

File Edit Format “iew Help

=gi| 195234784 |ref 2000117 2| Hommeo sapiens
emerin (EMD), mEITA

e GACALCTACGCAGATCTTTCGGATACC
GAGCTGACCACCTTGCTGCGCCGGTACALT
ATCCCGCACGGGCCTOTAGTAGGATCALCT
COTAGGCTTTACGAGAAGAAGATCTTCGAG
TACGAGACCCAGAGGCGGCGGCTCTCGCCC
CCCAGCTCGTCCGCCGCCTCCTCTTATAGT
TTCTCTGACTTGAATTCGACTAGAGGGGATG
CAGATATGTATGATCTICCCAAGAALGAG
GACGCTITACTCTACCAGAGCAAGGGCTAC
AATGACGACTACTATGAAGAGAGCTACTTC
ACCACCAGGACTTATGGGGAGCCCGAGTCT
GCCGGCCCGTCCAGGGCTGTCCGCCAGTCA
GTGACTTCATTCCCAGATGCTGACGCTTTICC
ATCACCAGGTGCATGATGACGATCTITIG
TCTTCTTCTGAAGAGGAGTGCAAGGATAGS

~

Fig. 1: Output of gemrated mutated gene sequance
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Table 2: Genes associated with different type of muscular dy strophy

Muscular dystrophy disease

Genes associated with the disease

Duchenne muscular dystrophy
Becker’s muscular dy strophy
Emery-dreifuss muscular dystrophy
Limb griddle muscular dystrophy

Dystrophin
Dystrophin
Emerin, LMNA/C

ANOS, CAPN3, CAV3, DYSF, FKRP, FKTN, LMNA, MYOT, POMGNT],

POMT1,POMT2, 8GCA, SGCB, 8, GCD, SGCG, TCAP, TRIM32, TTN

Charcot marie tooth disease AARS, AIFMI,

BSCL2, DHTKDI,

DNM2, DYNCIHI, EGR2, FGD4, FIG4, GARS, GDAPIL,

GIBL, HSPB1, HSPBS, INF2, KARS, KIF1B, LITAF, LMNA, LRSAMI, MED25, MFN2, MPZ, MTMR2,
NDRGL, NEFL, PMP22, PRPS1, PR, RAB7A, SBF2, SH3TC2, TRPV4, YARS

55 types of genes associated with the five types of
neuromuscular disorder are studied. An analysis 13 made
of fifty-five genes that are associated with five types of
muscular dystrophy like DMD, BMD, EMD, LGMD and
CMT. Table 2 summarizes genes associated with the
disease. Several types of mutated sequences based on
mutations like Missense, Nongense, synonymous,
Insertion/duplication, deletion mutations and splicing
mutations are collected. For the purpose of this
research in each category of muscular dystrophy disease,
200 synthetic mutated gene sequences are generated and
a corpus comprising of 1000 sequences for all five
categories of muscular dystrophy 1s developed.

Feature extraction: Change or mutation in the gene
sequence, alters the structure of the sequence which
umplies the cause of disease. These structural changes are
captured as features of mutational sequence to learn the
prediction model. So far in the literature no attempt was
made to build disease identification model by aggregating
all kind of mutational descriptors and hence, it 1s
significant to build this type of disease identification
model. The mutational features to discriminate the disease
are carefully examined and extracted. The 106 evocative
features are cumulated and feature vectors are created for
learning the disease prediction model.

Features of missense and nonsense mutations: The
missense and nonsense mutational features are based on
annotation, structure and alignment of the diseased gene
sequences. The amnotation features mcludes gene ID,
gene symbol and chromosome number. Length of the
sequence, alteration type, protein changed, reference
allele, observed allele, mutation position, mutation start
position, mutation end position, position of mutation in
gene sequence amino acid change leads to stop codon,
stop codon, position of start codon in cDNA sequernce,
position of stop codon in DNA sequence, the nucleotide
composition of A, G, C, T, AT and GC component
composition constitutes the structural features. The
alignment features are edit distance scores, phred quality
scores, substitution scores. These features are identified
and defined as non synonymous
features.

mutational
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Gene 1dentifier and symbol of the gene 1s unique for
every gene sequence. As many to one relationship oceur
between gene and the disease these features are captured.
55 genes are involved in five types of muscular
dystrophy. Some form of MD was affected by the
mutations in more than 20 genes and so, annotation
descriptors are considered to differentiate the gene
sequence.

The alteration type such as missense, nomnsense,
silent, deletion and duplications are encoded to numeric
values from 1-5. The reference allele is the actual protein
that is present in the ¢DNA sequence file and the
observed allele 1s the protein observed after alteration.
The length of the sequence plays an important role in
examining the difference in length of the sequence. When
the insertion or deletion mutation occurs the length of the
sequence gets varied automatically.

The base composition A, C, G and T which 1s umque
for every gene is calculated to count the number of
occurrences of the four different micleotides (“A”, “C”,
“G” and “T”) in the sequence. One of the most
fundamental properties of a genome sequence 1s its AT
and GC content. GC content is the fraction of the
sequence that consists of Gs and Cs, i.e., the GC content
is calculated as the percentage of the bases in the genome
that are Gs or Cs that is:

AT content = Number of As+Number of Tsx
100/genome length

GC content = Number of Gs+Number of Cs x

100/genome length

The position of the Stop codon reveals the end of the
coding part in the sequence. The position of the stop
codon reveals the end of the coding part in the sequence.
To find the position of start codon match pattern ()
function 1s used. Alignment scores are considered as the
important feature for disease prediction. The global pair
wise alignment based on edit distance is done with the
mutated sequence against with the reference cDNA
sequence and the alignment scores are calculated using
edit distance scoring method. The phred quality measures
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are calculated with the pattern quality and subject quality
to examine the quality-based match and mismatch bit
scores for DNA/RNA. The substitution scores are
calculated by setting the error probability to 0.1.

Features of silent mutations: A codon is the triplet of
nucleotides that code for a specific aminoe acid. Many to
one relationship occur between the codon and amino acid.
Many amino acids are coded by more than one codon
because of the degeneracy of the genetic codes. A total
number of codons in a DNA sequence counts to 64.
Since, Amino acids methionine (ATG) and Tryptophan
(TGG) posses only one codon, they are not included as
their RSCU values are always equal to 1. The three stop
codons (TGA, TAA, TAG) are also, not included.
Accordingly, the number of codons considered here 1s 59.
The differences m the frequency of occurrence of
synonymous codons are referred as codon usage bias.
The calculation of RSCU 15 done by dividing the number
of times a particular codon observed relative to the
number of times that the codon would be observed in the
absence of any codon usage bias. The RSCU carries the
value 1.00 1f the codon usage bias of that particular codon
is absent. If the codon is used less frequently than
expected, the RSCU values tend to have the negative
values. Following equation 1s used to calculate RSCU:

.
RSCU = o @
(<8 X5 =L n})
Where:
X, = Number of occurrences of the jth codon for the ith
amino acid
n, = Number of alternative codons for the ith amino

acid

If the synenymous codons of an amino acid are used
with equal frequencies then their RSCU values are 1. The
RSCU values are derived for 59 codons from each mutated
gene sequernce and feature vectors are created.

Features of insertion/duplication, deletion mutations:
The exonic and mtromic features are considered from
diverse gene families if extract the well defined descriptors
related to msertion, deletion and duplication mutations in
the mutated gene sequences. The extrinsic and intrinsic
features more solely depend on the exons and introns that
aids in 1dentifymg the disease affected by large msertions
and deletions. Gene identifier, symbol of the gene, gene
start position, gene end position, sequence length,
number of excns mserted/deleted, exon and intron
boundry, deletion type, exon type, alignment scores,
conservation score, nucleotide composition values are
identified as features of this kind of mutation.
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In gross insertions and gross deletions, the numbers
of exons inserted or deleted were noted cautiously as the
count also, aids in deciding the type of the disease.
Severe effect on the deletion of exons leads to DMD and
mild deletion of exons will results in BMD. Location of the
exons will be varied when a mutation occurs. The boundry
of exons and mtrons were captured to identify the
differences m the boundry between the normal and the
diseased sequences. Deletion type is a contributive
feature in identifying the type of the disease as in some
diseases like BMD the sequence can be read after deletion
and in some diseases like DMD the sequence cannot be
read after deletion as it is outframe. Depending on
location of the exon, the type may be initial, internal,
terminal and single exons. The mutation in each type of
exon has its own severity. The structure or the fimction of
the sequence is identified by aligning the sequence with
all organisms. University of California Santa Cruz (UJCSC)
genome browser 1s  employed the
conservation score.

to calculate

Features of splicing mutations: The discriminative
descriptors aids in diagnosing the identification of exonic
single base substitutions that modulate splicing. exon
number, variant exon number, exon boundary, intron
boundary, sequence length, gene ID, gene symbol,
chromosome number, splice site distance, phylop score,
phastcons score, donor site score, acceptor site score,
branch site score, ESR change, distance of alteration from
5 splice site, distance of alteration from 3° splice site,
scoring splice site with PWM, flanking mntron size, GC
content, exon size, constitutive exon, exon type, coding
region score. These are defined as contributive features
of this splicing mutation.

Variant exon number gives the mutant exon’s number
in the target 1so forms. The boundary of the affected
exons and introns and the length of the sequence are
captured using geneious pro tool. The other annotation
descriptors are examined using genomic features in
MATLAB. Features related to SNP are vital in identifying
the disease and the mutations that disrupt splicing are the
single nucleotide variants occwr in both coding and
non-coding regions. The distance of the substitution from
the variant to the nearest splice site 13 identified and
recorded as splice site distance. Phylop is an evolutionary
conservation element that computed the base-wise
sequence conservation score of single base substitution
which 1s calculated based on multiple sequence alignment.
Phastcons is a base wise conservation element examined
from probability for substitution site, based on multiple
alignments. Phylop and Phastcons scores are downloaded
from the UCSC genome browser.
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Acceptor site cut off score, branch site cut off score
and donor site cut off score are calculated using ESE
finder tool. Distance of alteration from 5 splice site,
distance of alteration from 3 splice site are the distance
between the variants and splice sites 3° and 5°. The
regulatory sequences located within the exon and
promoting exon mclusion are referred to as Exonic
Splicing Regulatory (ESR) elements. ESR change identifies
the change in the frequency of ESR elements with respect
to single variants. To strengthen or repress the elements
in the secquences Exonic Splicing Enhancers (ESE) and
Exonic Splicing Silencers (ESS) is calculated using ESE
finder tool. The ESR changes helps in recogmzing the
adjacent splice site. Counting the occurrences of
nucleotides at each position within the 5 splice site 1s
done usmg PWM-Position Weight Matrices that is
calculated as log odds score.

The vanation in the protemn coding region makes a
major impact on the gene and those exon-based
descriptors focus mainly on the exons. Flanking intron
size is the length of the base pairs of the up stream and
down stream introns nearby the target exon. Constitutive
exon is the boolean value that specifies whether the
variant exon is present in every transcript. The score of
the coding region was calculated using protein coding
region calculator.

Data driven approach for machine learning algorithm:
Data driven systems solves the problem by developing
own models based on the examples and experiences.
These methods develop intelligent systems that discover
patterns  from large datasets based on computational
analysis that provides concrete theory and predictions.
Four data driven supervised learming algorithms
commonly used for classification task were used in this
research of genetic disorder prediction. Decision tree,
artificial neural network and support vector machine are
the supervised learning algorithms employed to build
disease 1dentification model using MATLAB.

RESULTS AND DISCUSSION

features five
independent experiments were carried out in this study
using decision tree, naive bayes, artificial neural networlk
and support vector machine. Disease identification based
synonymous —mutational
identification based on-synonymous mutational features
disease identification based on insertion/deletion and

Based on various mutational

on non features disease

duplication mutational features disease identification

based on splicing mutational features disease

Table 3: Training datasets

Types of Mutation No. of Features Dataset Size of dataset
Non-synonymous 26 NSM 1000%26
Synonymous 59 SYM 1000x59
Insertion/duplication

and deletion 25 DM 1000=25
Splicing 24 SPM 1000=24
Aggregated 106 AGM 1000x106

identification based on aggregated mutational features.
The 10 fold cross validation 1s used to test the models and
results are analysed.

Training dataset: The features extracted from each
disease gene sequence forms a feature vector. Depending
on the type of mutation the mutational features are varied
and the size of the feature vector also varies here. Since,
four kinds of mutations are taken mto account, four
exclusive datasets have been formed Non-Synonymous
(NSM), Synonymous (SYM) Tnsertion, Duplication and
deletion (IDM) and Splicing Mutation (SPM) are the four
datasets with different dimensions. By pooling all the
mutational features, AGM (Aggregated mutational
features) dataset is formed which is of dimension 106.
Since, the corpus consists of 1000 diseased gene
sequences all the above five datasets contamns 1000
feature vectors. For each feature vector the class label 1s
assigned a sequence number 1-5 according to the
category of disease. Table 3 depicts the type of datasets
with its dimensions.

The first experiment aims in predicting the disease
using of NSM dataset. Point mutational features such as
structural, annotation and alignment descriptors are
considered to be the non-synonymous mutational
features. The predictive performance of the disease
classification shows that SVM classifier yielded a best
accuracy of 84.9% and the results are tabulated in
Table 4.

In the first experiment only non synonymous
mutational features are taken into account to identify the
disease where the silent mutational features are recuired
to identify the disease that 13 caused due to synonymous
mutations. Relative Synonymous Codon Usage (RSCU)
values for 59 codons forms synonymous mutational
features. The second experiment is conducted by learning
SYM dataset using decision tree, naive bayes, ANN and
support vector machine. The predictive performance of
the disease classification shows that decision tree
classifier yielded a best accuracy of 86% and the results
are tabulated in Table 5.

Insertions/duplications and deletions alter the
structure of the sequence and throws a heavy mmpact and
therefore in the third experiment imperative extrinsic and
intrinsic descriptors are considered for learning the model
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Table 4: Predictive performance of the classifiers (non-synonymous mutations)

Performance criteria Decision tree classifier Artificial neural network Naive Bayes classifier SVM
Correctly classified instances 805.000 793.000 698.000 849.000
Tncorrectly classified instances 195.000 207.000 302.000 151.000
Prediction accuracy (%) 80.500 79.300 69.800 84.900
Precision 0.800 0.793 0.689 0.849
Recall 0.815 0.785 0.678 0.846
F1 score 80.900 78.800 69.900 85.100
Cohen’s Kappa 0.802 0.793 0.692 0.841
Time taken to build the model (sec) 8.400 10.700 9.600 7.000
Table 5: Predictive performance of the classifiers (synonvmeous mutations)

Performance criteria Decision tree classifier Artificial neural network Naive Bayes classifier VM
Correctly classified instance 860.000 833.000 840.000 846.000
Incorrectly classified instance 140.000 167.000 160.000 154.000
Prediction accuracy (%6) 86.000 83.330 84.000 84.600
Precision 0.860 0.831 0.835 0.841
Recall 0.854 0.830 0.841 0.850
F1 score 85.600 83.100 83.300 84.800
Cohen’s Kappa 0.860 0.810 0.830 0.840
Time taken to buildthe model (sec) 7.470 11.700 12.700 10.500
Table &: Predictive performance of the classifiers (insertion/duplication, deletion mutations)

Performance criteria Decision tree classifier Artificial neural network Naive Baves classifier SVM
Correctly classified instance 853.000 856.000 831.000 863.00
Incorrectly classified instance 147.000 144.000 169.000 137.00
Prediction accuracy (%6) 83.300 83.600 83.100 86.30
Precision 0.853 0.860 0.831 0.863
Recall 0.850 0.800 0.830 0.87
F1 score 85.300 85.900 83.100 86.30
Cohen’s Kappa 0.880 0.862 0.810 0.86
Time taken to build the model (sec) 8.700 9.600 11.70 7.60
Table 7: Predictive performance of the classifiers (splicing mutations)

Performance criteria Decision tree classifier Artificial neural network Naive Bayes classifier SVM
Correctly classified instances 849.000 835.000 813.000 867.000
Tncorrectly classified instances 151.000 165.000 187.000 133.000
Prediction accuracy (%) 84.900 83.500 81.300 86.700
Precision 0.849 0.830 0.810 0.860
Recall 0.846 0.815 0.800 0.870
F1 score 85.100 82.900 79.900 86.700
Cohen’s Kappa 0.841 0.810 0.802 0.867
Time taken to build the model (sec) 7.000 8.000 13.600 6.500
using supervised classification algoritims.  This caused in the gene sequence may not be known explicitly

experiment was carried on IDD dataset and the predictive
performance of the disease classification shows that SVM
classifier yielded a best accuracy of 86.3% and the results
are tabulated in Table 6.

The exons are formed by splicing out the introns
during transcription and the mutations occurred while
spicing should be considered to know the alteration after
the splicing process. Hence, in the next consecutive
experiment, exon, SNP and gene features are taken into
account for building the model. The training was
performed usmg SPM dataset and the predictive
performance of the disease classification shows that SVM
classifier attains an accuracy of 86.7%. The results are
tabulated in Table 7.

In all the previous experiments, autonomous disease
identification models were built based on the specific
mutational features. But normally the type of mutation
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and hence, all the mutational features are accumulated by
eliminating the repetitive losing
information to facilitate efficient learning for predicting the
disease caused by any mutation. In this experiment AGM
dataset is employed for training the decision tree, naive
bayes, ANN and SVM models. The cross validation
results of the classifiers are shown in Table 8 and
llustrated in Fig. 2.

features without

Feature selection: Feature selection or attribute subset
selection look for the best descriptors for model
construction. It aids in wunproving the accuracy and the
learning time of the classifiers. The information gain
selection attribute method is used here to select the
subset of attributes and 73 lighly ranked attributes are
chosen The experiment was carried out with selected
subset of attributes and a model is built using the
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Table 8: Predictive performance of the classifiers (pooled features)

Performance criteria Decision tree classifier Artificial neural network Naive Baves clagsifier SVM
Correctly classified instance 847.000 829.000 823.000 872.000
Tncorrectly classified instance 153.000 171.000 177.000 128.000
Prediction accuracy (%) 84.700 82.900 82.300 87.200
Precision 0.847 0.829 0.823 0.872
Recall 0.847 0.820 0.820 0.881
F1 score 84.100 82.100 82.100 87.200
Cohen’s Kappa 0.847 0.830 0.830 0.870
Time taken to build the model (sec) 7.000 9.700 9.700 5.200
Table 9: Predictive performance of the classifiers (pooled features) after applving feature selection
Performance criteria Decision tree classifier Artificial neural network Naive bayes clagsifier SVM
Correctly classified instance 878.000 863.00 856.000 903.00
Incorrectly classified instance 122.000 137.00 144.000 97.00
Prediction accuracy (%6) 87.800 86.30 85.600 20.30
Precision 0.870 0.86 0.853 0.90
Recall 0.871 0.87 0.850 0.9
F1 score 87.800 86.30 85.100 90.10
Cohen’s Kappa 0.880 0.87 0.850 90.0 0
Time taken to build the model (sec) 5.200 4.70 6.100 4.000

94 - 98

92 96 -

90 94 -

88 9 -

g 861 5 90 -
= =

84 S gg -

82 36 -

80 4 84

78 82 A

76 L i LT T 80 T T T T

Decision tree ANN Naive Bayes SVM Decision tree ANN Naive Bayes SVM
Accuracy Accuracy

Fig. 2: Prediction accuracy of classifiers using pooled
features

standard pattern recogmtion algorithms. The performance
of SVM classifier observed better accuracy of 90.3%. The
results of the classifiers are shown i Table 9 and
illustrated in Fig. 3.

From the above experiments it was observed that the
performance of the classifiers 15 lugh when traming
dataset contains summative features. The classification
models built using non-synonymous mutational features
produced an accuracy of about 84.9%. The classification
models built using features related to synonymous
mutations produced an accuracy of about 86%. About
86.3% accuracy was attained when insertion/duplication
and deletion mutational features are taken into account.
Disease prediction model reached an accuracy of 86.7%
when splicing mutational features are considered. When
all the mutational features are pooled together, the models
showed an accuracy of about 87.2%.

Downsizing the features tlrough feature selection
expedites to unprove the outcome and the prediction

683

Fig. 3: Prediction accuracy of classifiers using pooled

features

accuracy of the SVM classifier built using high ranked
features was hoisted to 90.3%. Hence, it 15 observed that
pooling the descriptors associated with all type of
mutations produced an augmented trained model for
meticulous disease prediction. In this research the
mutation spectrum accompames all types of muscular
dystrophy diseases for modeling and therefore the task of
full sequencing is eliminated. This approach generalizes
the disease identification task as an automated practice
which can be applied to identify any kind of genetic
disease. Also, the prediction model 1s more effective and
reliable, since, it is generated based on intelligent hints
collected from mutated gene sequences.

CONCLUSION
This study demonstrates the modeling of disease

identification research as the problem of learning
multi-class classification system that can suits in
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bioinformatics environment to identify the disease
effectively. Tt describes the implementation of supervised
learning approach for identifying the genetic disease
based on the mutational features. Five different models
were built to identify the disease based on diverse
features associated to different kind of mutations.
Currently, this problem has not been broadly studied in
the literature and existing approaches are either restricted
to a small number of classes due to computational issues
or insufficient data. The fore most task in this research is
to design the discriminative features from the mutated
gene sequences and to build a data driven models for
identifying the type of the genetic disorder. The proposed
AGM Model is a generalized model which can identify
any kind of disease effectively by aggregating all type of
mutational features. The outcome of the experiments
proves that the disease identification model is effectual
when the collective features are used in learning. The
experiments conducted on the diseased gene sequences
and assessed with evaluation method on the model built,
show that our method is valuable than existing disease
identification procedures with respect to significant
features.
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