Asian Journal of Tnformation Technology 15 (9): 1484-1493, 2016
ISSN: 1682-3915
© Medwell Journals, 2016

Analogy Based Software Effort Estimation Based on Differential Evolution and
Hybrid Fuzzy Logic and Firefly Algorithm

'I. Thamarai and °S. Murugavalli
"Department of Computer Science, Panimalar Polytechnic, Chennai, India
*Department of Computer Science, Panimalar Engineering College, Chennai, India

Abstract: The software effort evaluation has surfaced as one of the vital functions m the software project
management and therefore it is always not feasible to anticipate the precise estimates in the upgrade of
software. In this regard, the vital constraints to be taken into account for the software effort evaluation
encompass the size of the project, schedule and number of person concerned. In this document, a hybrid
technique 1s elegantly launched for the evaluation of the effort of the software product. The mmovative
approach 1s nothing but the amalgamation of the fuzzy analogy with the firefly and the Differential Evolution
(DE) techmque which 1s mtended for evaluation of the effort and considerable decrease m the error rate. Further
a differential evolution approach is employed to create the rules for the performed technique. The consequential
output is furnished as input to the fuzzy analogy with the firefly algorithm. The Firefly Algorithm (FA), in turn
is effectively utilized to optimize the rules and scale down the error rate. The Fuzzy analogy faithfully discharges
the function of evaluating the effort of the software. The epoch-making techmque 1s performed in java platform
and 1ts performance 1s effectively assessed.

Key words: Software effort estimation, fuzzy analogy, differential evolution, firefly algorithm, epoch-making

technicue

INTRODUCTION

The goal of software engineering is to develop the
techniques and tools needed to develop high-quality
applications that are more stable and maintainable. Tn
order to assess and umprove the quality of an application
during the development process, developers and
managers use several metrics (Al Dallal, 2010). Various
business and techmical motives such as shorter
development cycles, lower development costs, improved
product quality and access to source code, more and more
software developers and compames are basing their
software products on open source components
(Orsila et al., 2008). Estimating software development cost
remains a complex problem and one which continues to
attract considerable research attention. ITmproving the
accuracy of the cost estimation models available to
project managers would facilitate more -effective
control of time and budgets during software development.
The need for reliable and accurate cost estimation in
software engineering was an ongoing challenge for
software engineers in the last decade. In order to make
accurate estimates and avoid large errors, several cost
estimation techmiques have been proposed (Attarzadeh
and Ow, 2010).

The ability to accurately and consistently estimate
software development efforts, especially in the early

stages of the development life cycle 15 required by the
project menagers in planmng and conductmg software
development activities because the software price
determination, resource allocation, schedule arrangement
and process monitoring are dependent upon it. This issue
lies m the fact that software development 13 a complex
process due to the number of factors mvolved, mcluding
the human factor, the complexity of the product that is
developed, the variety of development platforms and the
difficulty of managing large projects (Attarzadeh and Ow,
2010). For effective project management such as
budgeting, project planning and control, accurate
software development cost estimation 1s inportant. Until
now, no model has proved to be unbeaten at effectively
and consistently predicting software development cost.
To estimate software development effort the use of the
neural networks has been viewed with skepticism by the
best part of the cost estimation commumnity. Although,
neural networks have shown their strengths in solving
complex problems, their limitation of being ‘black boxes’
has forbidden them to be accepted as a common practice
for cost estimation (Idri et al., 2002).

Software cost estimation techniques can be broadly
classified as algorithmic and non-algorithmic models.
Algorithmic models are derived from the statistical
analysis of listorical project data, for example,
Constructive Cost Model (COCOMO) and Software Life

Corresponding author: I. Thamarai, Department of Computer Science, Panimalar Polytechnic, Chennai, India
1484

Asian J. Inform. Technol, 15 (9): 1484-1493, 2016

Cycle Management (SLIM). Non-algorithmic technicques
include Price-to-Win, Parkinson, expert judgment and
machine learmng approaches. Machine learming 1s used to
group together a set of techmiques that embody some of
the facets of human mind, for example, fuzzy systems,
analogy, regression trees, rule induction neural networks
and Bvolutionary algorithms. Among the machine learming
approaches, fuzzy systems and neural networks and
Evolutionary algorithms are considered to belong to the
soft computing group (Hari, et al., 2010).

During the development process, the cost and time
estimates are useful for the mitial rough validation and
monitoring of the project’s completion process. And in
addition, these estimates may be useful for project
productivity assessment phases (Yadav and Niranjan,
2013).The hmitations of algorithmic models led to the
exploration of the non algorithmic techniques which are
soft computing based. These include:

+ Artificial neural network

* Evolutionary computation

+ Fuzzy logic models

* Case-based reasoning and

* Combinational models (Merugu ef al., 2012)

Accurate cost estimation 1s important because of the
following reasons:

¢ Tt can help to classify and priorities development
projects with respect to an overall business plan

» It can be used to determine what resources to commit
to the project and how well these resources will be
used

» Tt can be used to assess the impact of changes and
support re-planning

* Projects can be easier to manage and control when
resources are better matched to real needs

* Customers expect actual development costs to be in
line with estimated costs (7ia and Rashid, 2011)

Literature review: A number of researches have been
proposed by researchers for the estimation of Software
cost. We have also analyzed the fimdamentals of software
costing and pricing. Different techniques of cost
estimation should be used when estimating costs.
Following are few literatures applied for assessment of the
state-of-art work on the estimation of software cost.
Early stage software effort estimation was a crucial
task for project bedding and feasibility studies. Since,

collected data during the early stages of a software

development lifecycle was always imprecise and
uncertain, it was very hard to deliver accurate estimates.
Analogy-based estimation which was one of the popular
estimation methods was rarely used during the early stage
of a project because of uncertamnty associated with
attribute measurement and data availability. Azzeh et al.
(2011) have integrated analogy-based estimation with
Fuzzy numbers in order to mnprove the performance of
software project effort estimation during the early stages
of a software development lifecycle, using all available
early data. Particularly, a software project similarity
measure and adaptation technique based on Fuzzy
number was proposed. Hmpirical evaluations with
Tack-knifing procedure have been carried out using five
benchmark data sets of software projects, namely, ISBSG,
Desharnais, Kemerer, Albrecht and COCOMO and results
are reported. The results were compared to those obtained
by methods employed in the literature using case-based
reasoning and stepwise regression. In all data sets the
empirical evaluations have shown that the proposed
similarity measure and adaptation techniques method
were able to significantly improve the performance of
analogy-based estimation during the early stages of
software development. The results have also shown that
the proposed method outperforms some well know
estimation techniques such as case-based reasoning and
stepwise regression.

Alsmadi and Najadat (2011) have proposed an
approach towards the ability to predict software fault
modules and the ability to correlate relations between
faulty modules and product attributes using statistics.
Correlations and relations between the attributes and the
categorical variable or the class are studied through
generating a pool of records from each dataset and then
select two samples every time from the dataset and
compare them. The correlation between the two selected
records was studied in terms of changing from faulty to
non-faulty or the opposite for the module defect attribute
and the value change between the two records in each
evaluated attribute (e.g. equal, larger or smaller). The goal
was to study if there are certain attributes that are
consistently affecting changing the state of the module
from faulty to none or the opposite. Results indicated that
such technique could be very useful in studying the
correlations between each attribute and the defect status
attribute. Another prediction algorithm was developed
based on statistics of the module and the overall dataset.
The algorithm gave each aftribute true class and faulty
class predictions. They found that dividing prediction
capability for each attribute into those two (1e., correct

1485

Asian J. Inform. Technol, 15 (9): 1484-1493, 2016

and faulty module prediction) facilitate understanding the
umpact of attribute values on the class and hence improve
the overall prediction relative to previous studies and data
mining algorithms. Results were evaluated and compared
with other algorithms and previous studies. ROC metrics
were used to evaluate the performance of the developed
metrics.

Estimating the worlk-effort and the schedule required
to develop and/or mamtain a software system was one of
the most critical activities in managing software projects.
Software cost estimation was a challenging and onerous
task. Hstimation by analogy was one of the convenient
techniques in software effort estimation field However,
the methodology used for the estimation of software
effort by analogy was not able to handle the categorical
data in an explicit and accurate manner. Different
techmques have so far, been used like regression
analysis, mathematical derivations, simulation, neural
network, genetic algorithm, soft computing, fuzzy logic
modelling, etc. Ziauddin et ad. (2012) have aimed to utilize
soft computing techmques to mprove the accuracy of
software effort estimation. In this approach, fuzzy logic
was used with particle swarm optimization to estimate
software development effort. The model has been
calibrated on 30 projects taken from NASA dataset. The
results of this model are compared with COCOMO IT and
Alaa Sheta Model. The proposed model yields better
results in terms of MMRE.

The proposed a hybrid method to increase the
accuracy of development effort estimation based on the
combination of fuzzy clustering, ABE and ANN methods
(Khatibi et al., 2012). In the proposed method, the effect
of irrelevant and inconsistent projects on estimates was
decreased by designing a framework in which all the
projects were clustered. Two relatively large datasets were
employed to evaluate the performance of the proposed
method and the obtained results were compared to eight
other estimation methods. These methods were selected
from the most common algorithmic and non-algorithmic
methods used extensively in the field of software
development effort estimation. All comparisons were
performed based on MMRE and PRED (0.25) parameters
using three-fold cross validation technique. According to
the obtained results, the proposed method outperformed
the other methods and sigmficantly improved the
accuracy of estimates m both datasets.

The effort invested in a software project was
probably one of the most important and most analyzed
variables in recent years in the process of project
management. The limitation of algorithmic effort
prediction models was their inability to cope with

uncertainties and imprecision swrounding software

projects at the early development stage. More recently
attention has turned to a variety of machine learning
methods and soft computing m particular to predict
software development effort. Soft computing was a
consortium of methodologies centering in fuzzy logic,
artificial neural networks and evolutionary computation.
It was 1mportant to mention here that these
methodologies are complementary and synergistic,
rather than competitive. They provide in one form or
another flexible information processing capability for
handling real life ambiguous situations. These
methodologies are currently used for reliable and
accurate estimate of software development effort which
has always been a challenge for both the software
industry and academia.

Sehra ef al. (2011) was to analyze soft computing
techniques in the existing models and to provide in
depth review of software and project estimation
techmques existing in industry and literature based on the
different test datasets along with thewr strength and
weaknesses.

Software development effort estimation was a
daunting task that was being carried out by software
developers as not much of the mnformation about the
software which was available during the early stages of
development. The information that was to be gathered for
various attributes of software needs to be subjective
which otherwise leads to umprecision and uncertamnty.
Inaccurate estimation of the software effort and schedule
leads to financial loses and also delays in project
deadline. Kad and Chopra (2012) have presented the use
of soft computing techmique to build a suitable model
which improves the process of effort estimation. To
do so, various parameters of Constructive Cost Model
(COCOMO) II are fuzzified that leads to reliable and
accurate estimates of effort. The results showed that the
value of Magnitude of Relative Hrror (MRE) obtained by
applying fuzzy logic was quite lower than MRE obtained
from algorithmic model. By analyzing the results further it
was observed that Gaussian Membership Function
(gaussmf) performs better than Triangular Membership
Function (trimf) and Trapezoidal Membership Function
(trapmf) as the transition from one interval to another was
quite smoother.

Software development estimation accuracy was one
of the greatest challenges for software developers. Formal
effort estimation models, like Constructive Cost Model
(COCOMO) are limited by their mability to manage
uncertainties and impression surrounding software
projects early in the project development cycle. A
software effort estimation model which adopts a soft
computing techmque provides a solution to adjust the

1486

Asian J. Inform. Technol, 15 (9): 1484-1493, 2016

uncertain and vague properties of software effort drivers.
Singh and Misra (2012) have proposed a model in which
COCOMO was used as algorithmic model and an attempt
was being made to validate the soundness of artificial
neural network technique using NASA project data in
order to investigate the effect of crisp inputs and soft
computing technique on the accuracy of system’s output
when proposed model applied to the NASA dataset
derive the software effort estimates. Proposed model
validated by using 85 NASA project dataset. Empirical
results showed that application of the ANN model for
software effort estimates resulted in slightly smaller Mean
Magnitude of Relative Error (MMRE) and probability of
a project having a relative error of <0.25 as compared with
results obtamed with COCOMO was improved by
approximately 17.54%.

Problem definition: Software effort estimation is the
process of predicting the most realistic amount of effort
required to develop or mamtain software based on
mcomplete, uncertain and noisy input. In order to perform
cost-benefit analysis, cost estimation 1s to be performed
by client or developer. The common problem in existing
software estimation method is given below:

* Software cost estimation 1s a complex activity that
requires knowledge of a number of key attributes that
affect the outcomes of software projects. The most
critical problem is the lot of data is needed, which is
often impossible to get in needed quantities

¢ One of the major challenges is effort estimation
aceuracy

* Numerous effort estimation methods have been
proposed, the accuracy of estimates is not satisfying
and the attempts continue to improve the
performance of estimation methods

¢ The main reason for the project failure of the software
effort estimation is 1mprecision of the estimation
model

* Understanding and calculation of models based on
historical data are difficult due to mherent complex
relationships between the related attributes

These are the main drawbacks of various existing work
which motivate us to do the research on analogy based
software effort estimation.

MATERIALS AND METHODS

The software effort estimation has emerged as one of
the vital functions n the software project management
and hence 1t 13 always not feasible to anticipate precise
evaluations in the development of the software. With a

I]I:> Input
Data base dataset

Rule generation

using differential
|HI:> evolution

algorithm

Effort estimation

Fuzzy with Rule
[o i
using FA

Fig. 1: The block diagram of the proposed method

view to ascertain d the effort estimation of the software
a mnovel techmque dependent on the fuzzy analogy
coupled with directional evolution algorithm and the
firefly algorithm is proficiently launched. Initially, we
choose the input dataset from the database In our
eye-catching technique, we have followed the NASA
dataset as the input dataset which is initiated on the
differential evolution technique for configuring the rules
which are subsequently furmished as the mput to fuzzy
analogy couple with the firefly algorithm for evaluating
the effort of the software product. The modus operandi of
owr milestone method is colorfully pictured in the block
diagram shown in Fig. 1.

Differential evolution algorithm: The DE technique, in
turn, characterizes a population based approach such as
the genetic algorithms making use of the identical
operators such as the crossover, mutation and selection.
The vital differentiation in configuring the superior
solutions relies on the fact that the genetic algorithms are
invariably dependent on the crossover while DE 1s
basically based on the mutation function. The major task
wnvariably depends on the divergences of arbitrarily
sampled couples of solutions in the population.

The novel technique employs the mutation function
as a search mechanism and the selection function to
manage the search toward the potential zones in the
search space. Further, 1t utilizes a non-uniform crossover
which is capable of taking the child vector parameters
from one parent more frequently than in the case from
others. By means of the segments of the current
population members to configure trial vectors, the
recombination (crossover) operator effectively shuffles
the data on thriving combinations, thereby leading the
search towards a superlative solution space. The wvital
involved in the innovative technique are furnished as
follows:

1487

Asian J. Inform. Technol, 15 (9): 1484-1493, 2016

ITnmitialization

1

It at ioa

ST

Crossower

T

Selectiom

Fig. 2: Flowchart for the DE algorithm

s TInitialization
» Mutation

+ Crossover

s+ Selection

The flowchart for the differential evolution techmque
appears below in Fig.2.

Initialization: At the outset, let us suppose that the
solution comprises n individuals. §;, represents the ith
individual of gth generation of the solution. At first, the
mmutial solution 1s chosen arbitrarily.

Sig:{ss s, } 1)

138558,
Where, n corresponds to the number of individuals.

Mutation: There is a feast of various method mtended for
the mutation of individuals in differential evolution. As a
rule, the mutation vector is generated as per Equation (2).

M “rl:Sl’g“rCF(Srl,g*Sl,g)J"SF(SrZ,giSflg) @

13g

where:

itandrl, 12, r3? {1,2, .n}

CF corresponds to the combination factor
SF signifies the scaling factor

Crossover: The parent vector is blended with the mutated
vector to generate a fresh vector.

3)

if (rand < CR)orj = my
et s, if (rand > CR)andj # m,

Where:

] = 1,2,.D,

Rand = [0, 1]

CR = Crossoverrate [0, 1]
m, = (1,2,..D)

Selection: The entire solutions in the population enjoy an
identical option of being shortlisted as the parents
regardless of their fitness values. The child generated
after the mutation and crossover functions 1s subjected to
assessment. Subsequently, the performances of the child
vector and its parent are assessed and contrasted,
thereby leading to the choice of the superior one out of
them. In the event of the parent maintaming the superior
position, it continues to sustain the population. By means
of the innovative algorithm, it is easy to achieve the
superlative rules and apply them as the input of the fuzzy
analogy controller for evaluating the effort. Subsequently,
they are harmonized with the help of the firefly algorithm
which proves its mettle in considerably cutting back the
MMRE fault, thereby ushering in eye-catching outcomes
for achieving the effort and the attendant expenses of the
software product. The effort estimation procedure is
discussed in a nutshell in the upcoming pages.

Effort estimation using fuzzy analogy with firefly
algorithm: The Fuzzy logic is a fantastic method, well-
geared to arrive at appropriate solutions to the vexed
1ssues saddled with complications which cammot be
comprehended quantitatively, through the fuzzy set
theory. In fact, a fuzzy set can be explained scientifically
by allotting to each potential individual in the universe of
discourse a value characterizing its rank of membership in
the fuzzy set to a bigger or smaller level as revealed by a
greater or lesser membership grade. A fuzzy set represents
a membership function, which correlates with each point
in the fuzzy set an authentic number in the interval [0, 1],
termed a degree or grade of membership. The membership
function can be categorized into three types such as the
triangular, trapezoidal and Gaussian. In our document, we
opt for the triangular membership function for the purpose
of effort estimation. The roadmap of the Fuzzy logic
involves three phases as shown below:

+ Fuzzification

» Fuzzy Rule-Based System

» Defuzzfication

s Stage 1: Fuzzification: In this stage, a crisp input is
modified into a fuzzy set

» Stage 2. Fuzzy Rule-Based System: In this system,
fuzzy IF-THEN rules are employed

1488

Asian J. Inform. Technol, 15 (9): 1484-1493, 2016

¢+ Fuzzy Inference Engine: After all the crisp input
values are fuzzified into their related linguistic values,
the inference engine gets into the fuzzy rule base to
arrive at the linguistic values for the intermediate and
the output linguistic variables

¢ Stage 3: Defuzzification: In this phase, the fuzzy
output 13 converted into the crisp output

Fuzzy analogy: The Fuzzy Analogy characterizes a
‘fuzaification’ of the traditional comparison process. It
flows through three phases as follows: identification of
cases, retrieval of similar cases and case adaptation.

Step 1: identification of a case: The underlying motive
behind this stage relates to the classification of the entire
software projects by means of a set of attributes. Each
software project 18 defined by a set of chosen attributes
which are determined by linguistic values. For example, let
us assume that there are M attributes and for each
attribute (M) determine the lingwistic variable (L,). Each
linguistic variable is characterized by a fuzzy set with the
membership function (M;). The fuzzy set and theiwr
membership functions are described with the help of
automated and pragmatic methods. In the case of
automated approaches the membership function is
configured from the historical data. On the other hand,
pragmatic approach arrives at the membership function
through specialist knowledge.
technique, we follow the generation of the membership
function from the historical data. Another appealing

In our innovative

aspect about the amazing fuzzy analogy approach is that
it duly takes into account the importance of each
shortlisted attribute in the case detecion. With the help
of the above procedure, the rules are created and
furnished as the input of the firefly algorithm. Given below
15 a descripton of the gradual procedure for the
innovative technique.

Rule optimization by firefly algorithm: In the mnovate
technique, we deploy the firefly algorithm to adapt the
created rules. Here, each solution 1s arbitrarily arrived at
within a definite search space. Further each solution is
characterized as rules P,, where: P .= {p ,p ».p } At
first, the fitness value of each rule 1s estimated. The rules
which usher in the superlative fitness values are
shortlisted as the current best rules. Subsequently, a
ranking of the rules is performed in accordance with the
fitness value:

¥
fitness = minz MMRE 4

x=1

Initialize the solution

[Compute Fitness]

1L

| Rank the solution |

JL

Find Attractiveness

E Update initial solation J

If max

iteration

reached

Fig. 3: The flowchart for firefly algorithm

We estimate the fitness values of the rules. The
fitness value of each ith rule is analyzed and contrasted
with the jth neighboring rule. If the fitness value of
neighboring rule is found superior, we estimate the
distance between every rule by means of the Euclidean
distance measure. Now, the distance is employed to
estimate the attractiveness (A):

A=Ae-vyd’ (5)

Where:

Ay = Refers to the preset attractiveness

v = Represents the light absorption coefficient

d; = Denotes the distance between ith rule and jth
neighboring rule

The new attractiveness value 13 employed to update
the original rules with the help of Eq. &

PiX:Pix*A(PJX*PiX)+U~(5*”2) ()]

Here, ¢ and & denocte the evenly distributed values
between 0-1. Therefore, the updated attractiveness values
encourage the rule to inch towards the current best
fitness value. If the fitmess value of the new rule is
superior to the original, it gets substituted by the new
rule. Or else, the original rule continues to be in the
population for the subsequent iteration. The total process
gets repeated tll the satisfaction of the stopping
benchmark. The entire process 1s elegantly exhibited in
the flowchart Fig.3.

1489

Asian J. Inform. Technol, 15 (9): 1484-1493, 2016

Step 2: retrieval of similar cases: This phase is
dependent on the selection of a software project similarity
measure. In fact, the choice assumes greater sigmficance,
as 1t 13 bound to affect the fact regarding the analogies
which are located We have envisaged a set of candidate
measures for software project resemblance. Let us assume
two projects wl and w2. We are competent to assess the
overall resemblances of the two projects by integrating
the individual resemblances of wl and w2 linked with
several attributes L.

Step 3: case adaptation: The underlying motive behind
this phase is to develop an estimate for the new project by
means of the identified effort values of identical projects.
Here, we are faced with tackling of two vital challenges.
The former relates to the selection of the number of
identical projects to be utilized in the adaptation, whereas
the latter lends itself the task of deciding the method to
customize the shortlisted analogies so as to usher in an
estimate for the new project. Each historical project
contributes its mite in the evaluation of the effort of the
new project, based on the level of resemblance with the
related project.

Cost estimation: Software cost estimation is important
cost estimation n software engineering that has become
even more important in business software development
due to chenging requirements (Malathn and Sridhar, 2012).
The paramount purpose of this function is generally to
evaluate the dimensions of the software product. In this
regard, there are two leading kinds of cost evaluation
techniques such as the algorithmic and non-algorithmic
methods. The algorithmic techniques, in tumn, are capable
of incredible modification in the statistical elegance.
Certain methods are dependent on easy arithmetic
formulas employing summary statistics like the mean and
standard deviations. Some other approaches invariably
rely on the regression models together with the
differential equations. The primary measure to evaluate
the cost 1s to armrive at the expenditure needed for the
purpose of procurements. The subsequent stage
constitutes the evaluation of the cost of the tramung
intended for the software project. Hence, the procedure
for evaluating the effort and cost of software product may
be carried out by means of the DE algorithm as well as the
Fuzzy analogy with FA technique.

RESULTS AND DISCUSSION

The proposed method 1s implemented m JAVA. The
dataset used in the study is NASA 60. The NASA 60

dataset comprises of 60 complete projects Table 1 having

Table 1: Effort comparison of NASA 60 datasets

No of project Actual effort Estimated effort
20 295.25 309.23

40 215.19 221.113
60 406.413 410.448

500

400

300
i H Actual effort
200
B Estimated effort
100
0
20 40 60

No of projects

Effortvalue

=

Fig. 4: Effort comparison of NASA dataset

17 independent variables of which 15 are categorical. The
effort values obtained in NASA 60 dataset 1s described
below.

In Fig. 4 demonstrates the effort comparison of
number of projects for NASA 60 dataset. If the number of
project is 20 the actual effort of the dataset is 295.25 and
the estimated output of the implemented method 1s
achieves 309.23. Then the number of project for the
NASA 60 dataset 1s taken as 40, the actual effort value is
215.19 and the estimated effort 1s 221.113. If the number of
project is 60 the actual effort of the NASA 60 data set is
406.413 and it achieves the estimated effort 1s 410.448.

Performance analysis: To measure the accuracy of the
estimated effort generated by the proposed method we
use the following metrics. Common method for evaluate
the effort estimation 1s Mean Absolute Relative Error
(MARE), Mean Magnitude of Relative Error (MMRE) and
Prediction (PRED).

Mean Absolute Eelative Error (MARE):

MRE:li‘aCtEﬁm-eStgﬁm‘ (7)
nig act g .

Where: n =Ts the number of projects

Mean Magnitude of Relative Error (MMRE): The MMRE
can be measure by the following formula:

1 1
MMRE =—>"MRE, ()
n 1

1490

Asian J. Inform. Technol, 15 (9): 1484-1493, 2016

Table 2: The MARE, MMRE and PRED measures of NASA 60 datasets

Table 4: comparison result of our proposed method

No of projects MARE (%) MMRE (%) PRED (%)
20 0.0636 0.0426 45

40 0.0658 0.0448 72.5

60 0.04140 0.0273 88.33

Table 3: Execution time and memory value of proposed method

No of projects Execution time memory
20 5735 6509712
40 6849 6803056
60 5703 3864895
0.07
0.06
0.05
E %
= 004 7
4 Vs W MARE (%)
2 003 7
b m MMRE (%)
002 1
001 ¥~
[T

20 40 60

No of projects

Fig. 5: MARE and MMRE measures of NASA 60 datasets

o ®PRED
%)
20 a0 60

Fig. 6: PRED measures of NASA 60 the datasets

=
(=}
=]

o
(=3

=]
(=}

PRED value
=
=]

B
(=]

Prediction (pred):

k = The number of observations whose MRE 1s less or
equal to 25

n = Number of observation

The MARE, MMRE and PRED measures for the NASA 60
dataset on effort estimation process 1s described m Table
2 and Fig 5,6 Tt is tabulated in the below section:

Table. 3 is tabulating the execution time and memory
value of the implemented method with different number of
projects for NASA 60. The execution time and memory
value is plotted in Fig.7 and Fig.8. Tt is shown in below
section:

PRED(25)= L @)
n

Comparative analysis for our proposed work with
the existing works: The comparative analysis of our

Existing method
(Idri et al., 2002)

Metrics (%) Malathi and Sridhar, 2012) Proposed method
MMRE 0.26 0.03825
PRED 67 68.61
MARE 0.0988 0.05694
2000
7000
6000 /\‘
g 5000
= 4000
'E 3000 —#—Execution time
2000
1000
0
20 40 60

Fig. 7: Execution time of proposed method

7000000
6000000

ts)
3

4

55000000 | '_
%4000000 d
23000000 +
€ 2000000
2 1000000
0 _ . -
20 10 60
No of projects

B memory

L

Fig. 8: Memory value of proposed method

01
0.08 +~
006

0.04 4 m MARE (%)

MARE value

002 4~

Proposed method

Existing method

Fig. 9: Comparison value of proposed MARE with
exisiting method

proposed method 1s compared with the various existing
method is tabulated and the result are plotted given
below: n Table 4

The PRED measure of the proposed method is
described in Table 4 and the comparison of the PRED
measure with existing method 1s deseribed in this
study.

The comparison of proposed method with the
existing method based on the MMRE and MARE measure
1s plotted in Fig. 9 and 10. Here, the MMRE and MARE
measure of NASA 60 dataset of the proposed 1s minmimum
error value when compared to the existing method.

1491

Asian J. Inform. Technol, 15 (9): 1484-1493, 2016

03 -
0.25

0.2
0.15 = MMRE (%)

MMRE value

0.1

0 - T f

Existing method [17] Proposed method

Fig. 10: Comparison value of proposed MMRE with
exisiting method

(]
68.5
68
67.5 A m PRED (%)
67
66.5 .
| . T

66

PRED value

Existing method [17] Proposed method

Fig. 11: Comparison value of proposed PRED with
exisiting method

The proposed software effort estimation model
shows that, it achieves lower MMRE, MARE and higher
PRED (25%) (Fig. 11). The estimated efforts are more
accurate than other models. Thus, the proposed method
of cost estimation system based on soft computing
technique is effectively estimate the effort and cost of the
software.

CONCLUSION

In this study, the mmnovative hybrid method based
fuzzy with firefly and differential evolution algorithm 1s
elegantly launched for evaluating the effort of the
software product. The epoch-making techmque 1s
performed in the JAVA platform. For producing the rules
for the dataset 1s carried out by differential evolution
algorithm. Now, the hybrid fuzzy with firefly algorithm is
used to evaluate the effort with optimal rules. The Firefly
algorithm discharges the task of harmomizing the rule with
least error rate. Thus, we are gladdened to note that our
charismatic techmque comes out with flying colors in
realizing superb outcomes vis-a-vis the parallel technique.
It 18 hoped that the upcoming investigator will have ample
opportunities to carry out their platform with their own
unique optimization approaches so as to usher in superb
outcomes.

REFERENCES

validation of
cohesion metrics. Int. T

Al Dallal, J., 2010. Mathematical
object-oriented class
Comput., 4: 45-52.

Alsmadi, I. and H. Najadat, 2011. Evaluating the change of
software fault behavior with dataset attributes based
on categorical correlation. Adv. HEng. Software, 42:
535-546.

Attarzadeh, I. and SH. Ow, 2010a. A novel soft
computing model to increase the accuracy of
software development cost estimation. Proceedings
of the 2nd International Conference on Computer
and Automation Engineering (ICCAE) 2010,
February 26-28, 2010, TEEE, Singapore, ISBN:
978-1-4244-5586-7, pp: 603-607.

Attarzadeh, T. and S.H. Ow, 2010b. Proposing a new
software cost estimation model based on artificial
neural networks. Proceedings of the 2nd International
Conference on Computer Engineering and
Technology (ICCET) 2010, April 16-18, 2010,
TEEE, Chengdu, China, ISBN: 978-1-4244-6347-3, pp:
487-491.

Azzeh, M., D. Neagu and PI. Cowling, 2011.
Analogy-based software effort estimation using
Fuzzy numbers. J. Syst. Software, 84: 270-284.

Hari, C.H., R.P. Prasad, M. Jagadeesh and G.S. Ganesh,
2010. Interval type-2 fuzzy logic for software cost
estimation using TSFC with mean and standard

Proceedings of the
Conference on Advances m Recent Technologies in
Communication and Computing (ARTCom) 2010,
October 16-17, 2010, TEEE, Kottayam, India, TSBN:
978-0-7695-4201-0, pp: 40-44.

Idri, A, T M. Khoshgoftaar and A. Abran, 2002. Can
neural networks be easily interpreted n software cost

Proceedings of the 2002 ITEEE
International Conference on Fuzzy Systems, May
12-17, 2002, IEEE, Honolulu, Hawan, [SBN:
0-7803-7280-8, pp: 1162-1167.

Kad, S. and V. Chopra, 201 2. Software development effort
estimation using soft computing. Int. J. Mach. Learn.
Comput., Vol. 2,

Khatibi, B.V., D.N. Jawawi1, S.Z. Hashim and E. Khatibi,
2012. TIncreasing the accuracy of
development effort estimation using projects
clustering. Software IET ., 6: 461-473.

Malathi, S. and S. Sridhar, 2012. A novel approach to
estimate the software effort based on fuzann
technique. Eur. I. Sci. Res., 81: 563-574.

deviation. International

estimation?.

software

1492

Asian J. Inform. Technol.

Merugu, RR.R. and V.R K. Dammu, 2012. Effort estimation
of software project. Int. . Adv. Res. Comput. Eng.
Technol.,, 1: 33-41.

Orsila, H., T. Geldenhuys, A. Ruokonen and T. Hammouda,
2008. Update Propagation Practices in Highly
Reusable Open Source Components. In: Open Sowrce
Development, Commumities and Quality. Russo, B.
and E. Damiani (Eds.). Springer, Berlin, Germany,
ISBN: 978-0-387-09684-1, pp: 159-170.

Sehra, SK., Y.5. Brar, and N. Kaur, 2011. Soft computing
techriques for software project effort estimation. Int.
I. Adv. Comput. Math. Sci., 2: 160-167.

, 15 (9): 1484-1493, 2016

Singh, BK. and AK. Misra, 2012. An alternate soft
computing approach for efforts estimation by
enhancing constructive cost model in evaluation
method. Int. J. Innovation Manage. Technol., Vol. 3.

Yadav, RK. and S. Niraman, 2013. Software effort
estimation using fuzzy logic: A review. Intl. J. Eng.
Res. Technol., 2: 1377-1384.

Zia, 7. and A. Rashid, 2011. Software cost estimation for
component based fourth-generation-language
software applications. Software IET., 5: 103-110.

Ziauddin, SK.T., K. Zaman and S. Z1a, 2012. Software cost
estimation using soft computing techmques. Adv.
Inf. T echnol. Manage., 2: 233-238.

1493

	1484-1493_Page_01
	1484-1493_Page_02
	1484-1493_Page_03
	1484-1493_Page_04
	1484-1493_Page_05
	1484-1493_Page_06
	1484-1493_Page_07
	1484-1493_Page_08
	1484-1493_Page_09
	1484-1493_Page_10

