Asian Journal of Tnformation Technology 15 (9): 1425-1430, 2016

ISSN: 1682-3915
© Medwell Journals, 2016

A Novel Improved Honey Bee Based L.oad Balancing Technique in Cloud
Computing Environment

Geethu Gopinath and Shriram K Vasudevan
Deptartment of Computer Science and Engineering, Amrita School of Engineering,
Amrita Vishwa Vidyapeetham University, Coimbatore, India

Abstract: To come up with an effective load balancing algorithm n cloud environment which provides sharing
the available resources systematically across the network. In this research, an optimized dynamic algorithm 1s
proposed where it makes use of the concept of Honeybee algorithm which is categorized under the dynamic
load balancing category. The proposed algorithm provides better makespan which is one of the main features
n load balancing. The proposed algorithm 1s simulated using two simulators namely cloudsim and workflow.
Somewhere, it compares both the dependent as well as independent nature of tasks. The main goal of load
balancing algorithms in clouds is to reduce the makespan. Here, the algorithm performs with a reduced
makespan for both type of tasks. Due to the heterogeneity behaviour of cloud, dynamic algorithms work better
when compared to the static methods. The proposed algorithm 1s dynamic in nature and provides reduced
makespan and 1t uses the resources efficiently. Our future research i1s based on proposing algorithm considering
the other QS factorsof load balancing for both in dependent and independent nature of tasks.

Key words: Load balancing, cloud, honey bee algorithm, makespan, processing time, work load, load

migration, capacity, threshold value

INTRODUCTION

Load balancing 1s regarded as a process of
redistributing the entire accessible workload to each and
every individual node so that the entire system is well
balanced. As the name suggests, it is to balance the load
properly and more efficiently within the nodes available.
The increase in the number of the users and their urge in
resources lead to cloud computing technology and finally
to the efficient load balancing Algorithms. Many load
balancing algorithms are put forward to make a better
system but due to the network bottlenecks and bandwidth
issues balancing of load results in so many complications
and is never an easy job. A balanced cloud environment
scenario 1s considered to be an NP-complete problem
(Braun et al., 2001). Generally, the task submitted to the
cloud scheduler is distributed to the various unassigned
nodes in the system. But to assign the tasks to the correct
node effectively in cloud environment is certainly a
daunting task. The difficulty arise due to the high
heterogeneity in cloud framework, operating system,
cloud providers and the resource consumers (Kokilavani
and Amalarethinam, 2011). The intention of any load
balancing algorithm should be to reduce the makespan
which results in effective resource utilization that leads to

the user’s utter most satisfaction. But to find such an
algorithm which is capable of satisfying all the goals is
tiresome. Traditional algorithms like Min-min and Max-min
(Kokilavam and Amalarethinam, 2011) doesn’t adapt to
the cloud environment and they fall under static load
balancing algorithms. The improved version of Max-min
(Kokilavam and Amalarethinam, 2011) was proposed
provides better makespan than the traditional one but due
to the heterogeneity mn cloud it results m reduced
resource utilization. Load balancing algorithms should be
well planned and efficient for the proper balancing of the
load among the available nodes in the network. A proper
Algorithm is needed for the efficient resource utilization,
malkespan. In this proposed algorithm, it reaches the goal
of reduced makespan. The algorithm scans the node
before allocating it with the load.

Literature review: I.oad balancing (Singh and Hemalatha,
2012) can be regarded as a process of allocating
unassigned resources to the available nodes present in
the system such that the nodes shares almost equal
amount of workload, judiciously. Balancing algorithms are
mainly classified in to two types (Moharana ef al., 2013)
as static and dynamic load balancing algorithms. In static,
the algorithm does not focus on the past behavior of the

Corresponding Author: Geethu Gopinath, Deptartment of Computer Science and Engineering, Amrita School of Engineering,
Amrita Vishwa Vidyapeetham University, Coimbatore, India
1425

Asian J. Inform. Technol, 15 (9): 1425-1430, 2016

node during the process of load distribution. On the
contrary, dynamic algorithm keeps in mind the past
behavior of the node during load distribution. During the
load distribution, they take m to account the present state
of the node (Malarvizhi and Uthariaraj, 2009). Static
algorithms are better than dynamic with respect to its
simplicity, since i static there 13 no need for the
continuous scanning of the nodes where 1t focus only the
current behavior. Static algorithms work better if the task
is homogenous in nature which means that the load
variation 1s negligible. Dynamic algorithms provide better
results when compared with static algorithms in cloud
scenario. Due to the heterogeneity in cloud dynamic
algorithms are better than static.

The proposed algorithm 1s mainly inspired from
the traditional honey bee foraging algorthm (Vries and
Biesmeijer, 1 998). Virtual machine scheduling management
using artificial bee colony in cloud computing scenario
was proposed in study (Kruekaew and Kimpan, 2014) .The
study deals with the scheduling of the virtual machines in
the dynamic behavior of cloud environment using the
artificial bee colony optimization algorithm. Karaboga in
study (Vries and Biesmerjer, 1998; Karaboga and Basturk,
2007; Karaboga and Basturk, 2008) put forward an
optimization algorithm which is inspired from the foraging
activity of honeybee. In 2006, a search algorithm based on
the bees foraging strategy was suggested by Pham et al.
(2011). The mentioned study focus on a new optimization
algorithm that collectively includes a neighbor search
along with random search which helps in finding an
optimal value. The honey bee algorithm has been using in
many fields such as Karaboga and Cetinkaya (2011) used
this idea for adaptive filtering in digital processing area.
Kang et af (2009) got mspired from the foraging behavior
and used this idea in inverse analysis. For motion
estimation using a block matching algorithm was
recommended by Cuevas et ol (2013). A improved
algorithm was proposed based on the honey bee forging
strategy which results in better results than the traditional
one. Reduced makespan is obtained in the honey bee
ingpired algorithm (I.D and Krishna, 2013). The proposed
algorithm is mainly taking the idea from the HBB-LB which
1s presented m this study.

MATERIALS AND METHODS

Honey bee foraging algorithm: Honey bee foraging
algorithm 1s one of the traditional dynamic load
balancing techniques that exists in the cloud computing
environment. Honey bee algorithm is one among the
decentralized load balancing techmques that mainly focus
to achieve load balancing among the heterogeneous

nodes in the cloud computing platform that results in
maximizing the overall throughput of the system. Dynamic
algorithms mainly focus on the current behavior, here the
load over the desired node 1s calculated and categorized
it as overloaded, under loaded and balanced. The node is
categorized based on the workload it holds. The task can
be migrated to the under loaded node depending upen its
priority. Each task that 13 in the waiting queue 1s
processed based upon the priorities. The lightly loaded
node is found out based on the previously removed tasks
on that particular node. Honey bee algorithm 1s actually a
nature inspired algorithm that follows the honey bee food
finding strategy. In honey bee food finding method the
bees will travel a long distance to find the better flower
patches just like in cloud enviromment searching for an
under loaded node. After finding the best flower patch the
honey bee comes back to their nest and performs a
‘waggle dance’ which provides information to other bees.
In contrary in cloud scenario the number of under loaded
nodes 1s published through a random search. The quality
and quantity of the food depends upon the duration of
the dance performed by the bees. For the best flower
patches more worker bees will get allotted. In thus fashion
for the node which 1s more lightly loaded will get assigned
with more tasks compared with others. The process will
get repeated till either the bee hives get filled or the
worker bees are fully busy. Honey bee food finding
strategy 1s selected to balance the overall workload in the
cloud computing scenario.

Honey bee inspired load balancing technique: In honey
bee mspired load balancing technique, it takes the idea
from the food finding behavior of honey bees. The
algorithm takes m to consideration about the priorities of
jobs that are to be allocated to the under loaded virtual
machine. While taking care of the priorities 1t will results
in providing services to the user who needs their worlk to
be done at almost high speed. Setting the priorities to the
tasks leads to higher user satisfaction and reducing the
waiting tune of the tasks. The algorithm improves the
overall throughput of processing. The algorithm performs
better for non-preemptive independent tasks.

Improved HBB-LB: The mmproved HBB-LB is mainly
ingpired from the honey bee behavior inspired load
balancing of tasks in cloud computing environments by
LD and Krishna {2013). The proposed algorithm provides
better makespan than the above one.

In the cloud computing scenario user request will
come in random fashion at different time intervals and
from different locations. The request are forwarded to the
corresponding servers depending upon so many factors

1426

Asian J. Inform. Technol, 15 (9): 1425-1430, 2016

like load on the node, closeness to the client, priority of
the request, etc. The scheduling policies in cloud will
results in different amount of workloads m each and every
node present in the system. A balanced enviromment 1s
disturbed and an efficient load balancing algorithm is
required for reduced makespan and resource usage. Due
to the dynamic behavior the dynamic load balancing
algorithms performs much better than the static one in the
cloud scenario. The proposed algorithm shows a dynamic
behavior and comparing with other existing algorithms it
performs better. The main aim of the proposed algorithm
15 to reduce the makespan. Makespan can be explained as
the total task completion time.

Let, task = {T,, T,, T,..., T,} be the set of “n’ tasks in
a system of nodes = {N,, N;, N,..., N,} of ‘j” number of
nodes. And T, be the finishing time for any task
where x =1, 2, ..., n. Then, the makespan can be
defined as:

Makespan =max_value

Where:
x=1,23 ..n
k=1,2,3..,]

The proposed algorithm, improved HBB-LB is a
dynamic behavior that 1s an extension of the work done in
study (LD and Krishna, 2013) by making change in the
capacity equation and load. Capacity is given a great
importance where the processing time for each individual
node as well as the migration time depends upon the
capacity of that particular node. Processing time for any
task “T'.” can be denoted as ‘Proc,,” where, k=1, 2,3, ..,
j. The overall processing time for all the tasks in a single
node can be provided by the Eq. 1:

ProcJ = ZProclk (1)

1=1

Where, k=1, 2, 3,...., j. The algorithm also focuses in
providing priorities to the tasks that are removed from the
overloaded node. The tasks wlich are removed are
considered as worker bees (LD and Krishna, 2013).

The priorities as well as the workload of each task will
get updated during the submission of these tasks to the
under loaded node. A full scanmng of the entire nodes in
the system will be done before submission of the tasks to
any particular nodes. Setting the priorities will help in
allocating tasks to the correct node. The node having the
less number of high priority tasks will get assigned with
any of the removed task. This will help in balancing the
system as well as providing high user satisfaction.
Capacity of each node 1s calculated using the formula.
Here, virtual machine 1s treated as node and the CPU 1s

denoting as processor. Capacity = MIPS+memory space
allocated to a nodet+CPUT allocated to a node, i.e., capacity
of node j” is denoted as ‘Capacity,” then:
Capacity, =Proc,, .+ CPU . +Space .
Where, “Proc,,,,,” denotes the total millien instruction
per second for all the available number of ‘CPU’s” m the
node ‘j’. The CPU,_ ., denotes the number of available
‘CPU’s” in the node ‘j°. The Space,.; denotes the
memory allocated to that particular node. The overall

capacity in Eq. 2:
Capacityzz Capacity (2)

1=1

Where, Capacity,, denotes the individual node
capacity. The load equation proposed n study (LD and
Krishna, 2013) is as shown below:

Load =
s(vm,, t)

vy Lt

Where, load on a node is calculated by the total
number of tasks that a node can hold at time ‘t” divided by
the service rate of a node at time ‘t”. Load can be defined
as the total workload that are assigned to a virtual
machine in a cloud scenario. The revised load equation is
given by Eq. 4

Load,,,, = N{tasks,,)+ CPU +MeM g (4)

(wm, utilized;y,

Total load of all virtual machine in a system is given by
Eq. 5

Load(mal) = Zloadvm(lj 5
i=1

The processing time of a node 1s calculated as Eq. &:

load
Wi,
Process,, ~=———%"— (&)
s capa(ntyvm(n

The total processing time is calculated as Eq. 7:

load
capacity

7

Process time =

Based on the equations provided above mformation
about the load and capacity of all the nodes in a system
can be obtained. The collected mformation 1s capable of
finding out the standard deviation that will give an idea

1427

Asian J. Inform. Technol, 15 (9): 1425-1430, 2016

about the amount of deviation in workload for all the
available nodes in the system. The deviation value
categorizes the node m to overloaded, under loaded or
balanced one.

Migration of the tasks to the under loaded node 1s
based upon the priorities of each tasks. All the nodes will
be arranged in increasing order which helps in migrating
the tasks to the under loaded node which will be
positioned in the first place. The standard deviation is
calculated using Eq. 8:

_ s _ 2 (8)
G= ;E(Processﬁmemm Process,)

1=1

Load migration decision: The load information as well as
the standard deviation helps the system to find out
whether the whole scenario 1s balanced or not. For finding
out if the system 1s balanced it has set two conditions: 1s
to check whether the system is balanced or not; is to
check the whole system is overloaded. If the whole
system is overloaded then there is no meaning in
checking the standard deviation since migration cannot
be performed.

Steps in balancing the load

Threshold setting:

A threshold value () 18 set up which 1s constant and the
value 1s given as 0.2.The calculated standard deviation
value (o) 1s checked with the threshold value in
Algorithm A. If the value 13 <0.2, then the system 1s said
to be balanced otherwise the system will be in unbalanced
state and the system will be in either of the two condition:
the task has to be migrated to the under loaded nodes in
the system to malke the whole cloud scenario a balanced
one; the whole system will be in overloaded state:

Threshold algorithm:

If o=)
Then the system is balanced
Else if
Migrate load to under loaded vim
Else
Exit

Virtual machine classification: The virtual machines are
classified in to three categories based on the amount of
load that it holds. The amount of load is obtained from the
capacity equation. The virtual machines which are
classified as overloaded, the tasks will be removed from
them and will be migrated to any of the under loaded
virtual machines. The balanced virtual machines are not
taken in to the migration process.

Load migration: The tasks which are removed from the
overloaded virtual machines will get migrated depending
upon the priorities. The tasks will be put in its waiting
queue dependmng upon the priorities. The load 1s
calculated for each under loaded virtual machine. The
node has which has less number of tasks assigned to it
will get loaded with the high priority task that are waiting
in the queue. The high priority task will always tries to
find out the virtual machine that has got less number of
tasks. The process continues till the system becomes
balanced.

RESULTS AND DISCUSSION

Simulation overview: In this module, the simulation of the
proposed algorithm 1s compared with the existing honey
bee behavior mspired algorithm. To evaluate the
performance of the algorithms one of the measures 1s its
makespan. The makespan can be defned as the time
difference between the last task and the first task.

For the simulation purpose we have used two
simulators namely cloudsim and workflowsim (Chen and
Deelman, 2012). Cloudsim is a simulating toolkit that is
used for simulating the cloud environment where the
tasks are independent in nature. workflowsim is again a
simulator which 1s an extension of the cloudsim providing
a workflow management (Hoffa et af., 2008). The
workflowsim 1s used for the tasks that are dependent in
nature. In both the simulators cloudlets is the term used
for tasks and nodes of the system as the virtual machines.

The simulation starts by keepmg the node count to
be five and the cloudlet count varying from 25, 50,100 and
1000. All the four cases are sunulated for both dependent
as well as independent tasks. All the five resources are
located in a single datacenter.

Simulation result with cloudsim: From Table 1, we can
note that the makespan of the improved HBB-LB 1s better
when compared with that of the existing algorithm. The
assignment of tasks to the machines 1s not the same every
time it gets changing depending upon the current status
of the load in the vin and the balanced condition of
the system.

For the three cases the performance of the two
algorithms is shown in Fig. 1. The “x” axis denotes the
number of tasks and the makespan 1s denoted m ‘y’ axis.

Table 1: Makespan table for cloudsim

No. of tasks HBB-LB Improved HBB-LB
25 350 325
50 522 500
100 745 720

1428

Asian J. Inform. Technol, 15 (9): 1425-1430, 2016

HBB-LB
700 .

600 M _Improved HBB-LB

500
400
300
200
100
0
25 50

Tasks

Maskespan

100

Fig. 1: Makespan bar graph for cloudsim

800
@ HBB-LB
B Improved HBB-LB
600 -
%_ 500 +
40!
=
300 +
200 -
1m 4 " -
25 50 100

Tasks

Fig. 2: Makespan bar for workflowsim

Table 2: Makespan for workflowsim

No. of tagks HBB-LB Tmproved HBR-LB
25 330 300
50 500 460
100 700 640

From the simulation result obtained for the independent
nature of task set it explains that the proposed one has a
reduced makespan compared with the existing one.

Simulation result with workflowsim: From Table 2, we
can note that the makespan of the improved HBB-LB is
better when compared with that of the existing algorithm.
The nature of the task is that it 1s dependent on each
other. The task 15 capable of migrating from one node to
other during execution time.

The “x’ axis denoting the three cases that is 25, 50
and 100 tasks and the “y’ axis denote the makespan value
(Fig. 2). The task set for the three cases i1s taken as
Montage 25, Montage 50 and the Montage 100 xml files.
The node count is kept constant to be five. The graph
shows that the improved HBB-LB works better
than the existing one for the dependent nature of
task too.

CONCLUSION

In thus research, we put forward an algorithm that was
inspired from the existing work named, Honey bee
behavior load balancing techmque m the cloud scenario.
The Algorithm takes the concept of the foraging food
finding method of the Due to the
heterogeneity behavior of cloud dynamic algorithms work
better when compared to the static methods. The

honeybees.

proposed algorithm 18 dynamic in nature and provides
reduced makespan and it uses the resources efficiently.
The cloud system should be a stable one even in the
changing scenario. The improved HBB-LB shows that it
worles better with reduced makespan for both dependent
as well as independent tasks. The algorithm also focuses
on the priorities of the task that has to be allocated to the
virtual machines. The priority concept helps m reducing
the response time of the virtual machine as well as it
enhances the overall throughput also. Our future work 15
based on proposing algorithm considering the other QoS
factors of load balancing for both in dependent and
independent nature of tasks.

REFERENCES

Braun, T.D., H.I. Siegel, N. Beck, L.I. Boloni and
M. Maheswaran ef af., 2001. A comparison of eleven
static heuristics for mapping a class of independent
tasks onto heterogeneous distributed computing
systems. J. Parallel Distrib. Comput., 61: 810-837.

Chen, W. and E. Deelman, 2012
A toolkit for simulating

Workflowsim:

scientific worktlows
in distributed environments. Proceedings of
the 2012 IEEE 8th Intemational Conference on
E-Science (e-Science), October 8-12, 2012, TEEE,
Chicago, Illinois, USA., ISBN: 978-1-4673-4467-8,
pp: 1-8.

Cuevas, E., D. Zaldivar, M.P. Cisneros, H. Sossa
and V. Osuna, 2013. Block matching algorithm for
motion estimation based on Artificial Bee Colony
(ABC). Appl. Soft Comput., 13: 3047-3059.

Hoffa, C., G. Mehta, T. Freeman, E. Deelman, K. Keahey,
B. Berriman and I. Good, 2008. On the use of cloud
computing for scientific workflows. Proceedings of
the IEEE Fourth International Conference on
eScience, December 7-12, 2008, Indianapolis, IN.,
USA., pp: 640-645.

Kang, F., I. Li and Q. Xu, 2009. Structural inverse analysis
by hybrid simplex artificial bee colony algorithms.
Comput. Struct., 87: 861-870.

1429

Asian J. Inform. Technol, 15 (9): 1425-1430, 2016

Karaboga, D. and B. Basturk, 2007. Artificial Bee Colony
(ABC) Optimization Algorithm for Solving
Constramed Optimization Problems. In: Foundations
of Fuzzy Logic and Soft Computing. Patricia, M., O.
Castillo, L.T. Aguilar, J. Kacprzyk and W. Pedrycz
(Eds.). Springer Berlin Heidelberg, Berlin, Germany,
ISBN: 978-3-540-72917-4, pp: 789-798.

Karaboga, D. and B. Basturk, 2008. On the performance of
Artificial Bee Colony (ABC) algorithm. Appl. Soft
Comput., 8: 687-697.

Karaboga, N. and M.B. Cetinkaya, 2011. A novel and
efficient algorithm for adaptive filtering: artificial bee
colony algorithm. Turk. . Electr. Eng. Comput. Sei.,
19:175-190.

Kckilavan, T. and DI.G. Amalaretlhinam, 2011. Lead
balanced min-min algorithm for static meta-task
scheduling in grid computing. Int. . Comput. Appli.,
20: 42-48.

Kruekaew, B. and W. Kimpan, 2014. Virtual machine
scheduling management on cloud computing using
artificial bee colony. Proceedings of the International
MultiConference of Engineers and Computer
Scientists 2014 Vol. I, IMECS 2014, March 12-14,
2014, MECS Publisher, Hong Kong, ISBN:
978-988-19252-5-1, pp: 12-14.

LD, D.B. and P.V. Krishna, 2013. Honey bee behavior
ingpired load balancing of tasks in cloud computing
enviromments. Appl. Soft Comput., 13: 2292-2303.

Malarvizin, N. and V.R. Uthariaraj, 2009. Hierarchical load
balancing scheme for computational intensive jobs in
Grid computing environment. Proceedings of the
First International Conference on Advanced
Computing, December 13-15, 2009, IEEE, Chennai,
India, ISBN: 978-1-4244-4786-2, pp: 97-104.

Moharana, 8.5, R.D. Ramesh and D. Powar, 2013.
Analysis of load balancers in cloud computing. Int.
J. Comput. Sci. Eng., 2: 101-108.

Pham, D.T., A. Ghanbarzadeh, E. Koc, S. Otr1 and S. Rahim
et al., 2011. The bees algorithm-a novel tool for
complex optinisation. Proceedings of the 2nd I*
PROMS Virtual Intemmational Conference on
Intelligent Production Machines and Systems, Tuly
3-14, 2006, Elsevier, Oxford, England, UK., ISBN:
978-0-08-045157-2, pp: 442-454.

Singh, A. and M. Hemalatha, 2012. An approach on
semi-distributed load balancing algorithm for cloud
computing system. Intl. J. Comput. Appl., Vol. 56,

Vries, HD. and I.C. Biesmeijer, 1998. Modelling collective
foraging by means of individual behaviour rules in
honey-bees. Behav. Heol. Sociobiol., 44: 109-124.

1430

	25307-AJIT 15 (9) 1425-1430_Page_1
	25307-AJIT 15 (9) 1425-1430_Page_2
	25307-AJIT 15 (9) 1425-1430_Page_3
	25307-AJIT 15 (9) 1425-1430_Page_4
	25307-AJIT 15 (9) 1425-1430_Page_5
	25307-AJIT 15 (9) 1425-1430_Page_6

