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Abstract: The sensor node coverage plays a significant role in the design of Wireless Sensor Networks (WSN).
In addition to coverage, shape and area s also mmportant in wireless sensor network to limit the power
consumption which is taken as the current research work for effective sensor network structure. Neighbor
Position Verification (NPV) strategy with the help of fully distributed cooperative scheme enabled each node
to acquire the neighbor locations but did not acquire data aggregation accuracy during node deployment.
Decentralized estimation process using Decentralized Power Tteration (DPT) algorithm permitted every
representative to track the algebraic sensor network connectivity but was not effective in deploying the sensor
nodes with higher throughput ratio. In order to overcome such limitations, Two Dimensional Gaussian
distribution based Dynamic Node Deployment (2D-GDDND) model is developed n this paper to deploy the
sensor node in an efficient manner. The 2D-GDDND model initially identifies the directional position of sensor
node based on the angle measurement (i.e.,) length and width of the sensor node position using the proposed
2-D Statistical Triangulation algorithm. The 2-D statistical triangulation algorithm focuses on entire sensor
network area coverage to reduce the power consumption for the whole node deployment structure.
Then, 2D-GDDND model 1s used Gaussian distribution model to efficiently deploy the dynamic sensor node
in sensor network with the objective of improving the data aggregation accuracy and throughput level.
In 2D-GDDND model, Gaussian distribution estimates angular difference between the sensor nodes and mobile
robot. Then, 2D-GDDND model phase shift the sensor nodes according to their computed angular difference.
Therefore, sensor nodes can easily gather and aggregates the data with another node in sensor network. For
that reason the data aggregation accuracy and throughput level using 2D-GDDND model 1s improved i a
significant manner. Experimental evaluation of 2D-GDDND model is done with the performance metrics such
as power consumption, data aggregation accuracy, throughput level, dynamic node deployment time.
Experimental analysis shows that the 2D-GDDND model is able to improve the data aggregation accuracy and
also improves the throughput level of sensor nodes as compared to the state-of-the-art worlks.

Key words:Dynamic node deployment, statistical triangulation, wireless sensor network structure, two
dimensional gaussian distribution, shift

INTRODUCTION

Dynamic node deployment has become an asset in
WSN where the mcreasing range of protocols and
applications require knowledge of the directional position
of the participating sensor nodes. The information
regarding routing in dynamic networks, data aggregation
in sensor networks, movement coordination among
sensor nodes, position-specific services for handheld

mode of devices in WSN are all examples of dynamic node
deployment mode that build on the availability of
directional position information of the sensor nodes in the
network coverage area. Therefore, the directional position
information of sensor nodes 18 an important 1ssue in WSN
and it becomes particularly challenging when power
consumption has to be addressed. In these scenarios, we
need solutions that let sensor nodes correctly establish
their directional position of the sensor nodes to reduce
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the power consumption and with the directional position
to deploy the sensor nodes with higher data aggregation
accuracy. NPV Strategy in (Fiore ef al., 2013) addressed
the problem by presenting fully-distributed cooperative
solution that 1s lighly robust whenever mdependent and
adversary nodes in a colluding structure are involved.
The NPV Strategy enabled each node to acquire the
locations but the work was not extended to acquire the
data aggregation accuracy during node deployment. The
decentralization estimation process using DPI algorithm
(Yang et al., 2010) has permitted tracking of algebraic
sensor network connectivity. But the algorithm was not
effective in deploying the sensor nodes with higher
throughput ratio. Additionally, another new frameworlk
(Shang et al, 2014) was designed based on energy
efficiency model that included fusion of collaborative
signal and mformation for tracking acoustic. To reduce
the spatial and time redundancy occurring, Gaussian
particle filtering method was presented. But the major
disadvantage of the model was noise variances which was
assumed to prior designing that can’t be in case of real
scenario.

In order to enhance the efficiency of spectrum for the
future generation wireless system, a model called as the
Dynamic Spectrum Access (DSA) (Yen ef al, 2009, Xu
and Wang, 2009) has been considered. The sensor nodes
deployment DSA technique m a sensing ground can
assist public to check the cumulative information.
Researchers also try to discover more resourceful ways of
utilizing inadequate sensor node power to give longer
WSN life span. Therefore, result a technique to decrease
node information broadecast power utilization has become
a very significant problem.

Secure walking GPS model (M1 ef al., 2012) using
location information was deployed in WSN to prevent
certain attacks related to the demal of service. But the
attacks detected with increasing number of nodes
increased proportionately with time. To detect the attack
in the early stage (Lee and Kwon, 2014) had designed a
general deployment model that constructed a secure WSN
using group placement phase and key management phase.
Though security was improved but it was suitable for
specific applications. A two-tier system was designed
(Hailong et al., 2012) using two dimensional Gaussian
distribution model to increase the lifetime of the network
1n a cost effective manmner.

Meshed Emergent Firefly Synchronization (MEMFTS)
(Wang and Bohacek, 2011) consisting of data packets and
applied clocks, once the synchronization for nodes in the
neighboring position was obtained. But synchronization

for entire network coverage area remained an open issue.
To address this issue, relay node placement problem with
constrained versions were presented (Wang ef al., 2012)
in which the relay nodes were placed at specific locations.
However, the problem of weaker connectivity for relay
node placement was unaddressed.

Based on the a forementioned methods and
techniques, this study proposed a new techmque for
addressing the problem related to dynamic node
deployment using two dimensional Gaussian distribution
model. The main objective of 2D-GDDND model is to
improve the data aggregation accuracy and to increase
the throughput level in sensor network. As data
aggregation accuracy and throughput level are highly
desirable for dynamic node deployment in sensor network
the work 2D-GDDND model redesigned sensor network to
consider both the measures. The novel model for applying
power-saving techniques has also been developed so that
node deployment efficiency can be exposed and better
obtaned.

Literature review: Most of the research works has been
developed for dynamic node deployment in Wireless
sensor network. For example, a novel framework was
presented by Szczodrak et al. (2013) to dynamically
rearrange the WSN and adjust its power consumption,
transmission reliability and data throughput to the
different requirements of the applications. Dynamic Sink
Mobility equipped DBR (DSM) routing protocol was
introduced by Khan et al. (2015) for Underwater Wireless
Sensor Networks (UWSNs) to reduce the total energy
usage by moving sink towards most dense region. A
genetic algorithm was developed by Bammelhem et al.
(2013) to discover an optimal solution to the coverage
holes problem caused by random deployment of
stationary sensor nodes in wireless sensor network.

Biogeography-based optimization was applied in
(Ozturk et al., 2012) to the dynamic deployment of static
and mobile sensor networks to attain better performance
by means of increasing the coverage area of the network.
In (Indhumathi and Venkatesan, 2015), the deployment of
dynamic nodes was improved for obtaining the higher
coverage deployment by using Genetic Algorithm. Energy
Balanced-Dynamic Deployment (EB-DD) Optunization
approach was introduced by Roselin and Latha (2013) to
positions the self deployable mobile sensors towards CP
according to its energy density. Topology control of
DAWN was designed in (Guo ef al., 2010) to facilitate
MNs’ communication by means of deploying a minimum
number of RNs dynamically.

4609



Asian J. Inform. Technol., 15 (22): 4608-4616, 2016

An artificial bee colony algorithm was developed by
Celal and Beyza for dynamic deployment of mobile sensor
networks to achieve better performance by means of
increasing the coverage area of the network. A node
deployment strategy was presented m (Halder and
Ghosal, 2014) to energy balancing by means of
customized gaussian distribution with discretizing the
standard deviation. Proactive topology control algorithm
called as PMD (Proactive Maintaining Algorithm) was
mtroduced by Liu ef al. (2013) for dynamic topology
control and addressing the problem related to the network
partitioning. The shortcomings of current solutions
regarding the dynamic topology handling issues through
QoS based transmissions and to enhance the performance
of the network as a whole or for the individual nodes were
examined by Tiwari and Kaur, 2015).

CDTRB based topology control mechamism was
presented in (Tiwari and Kour, 2013) for satisfying the
Quos requirement and dynamic topology control in Ad
Hoc network. A movement pattern learmng strategy
system was developed by Duttaa et al. (2012) to track the
node's movement by using adaptive fuzzy logic. Dynamic
Sink Mobility equipped DBR (DSM) routing protocol was
designed by Khan et al. (2015) for Underwater Wireless
Sensor Networks (UWSNs) to increases the stability
period, network lifetime and throughput of the TTWSN.

Efficient autonomous deployment scheme called as
Obstacle Avoidance Virtual Force Algorithm (OAVFA)
was introduced by Rout and Roy (2016) for
self-deployment of randomly scattered homogeneous and
heterogeneous mobile sensor nodes over a squared
sensing field to improve the network coverage and
achieves the network connectivity m the presence of
obstacles. The sensor node deployment task has been
Multi-Objective
optimization (MO) problem in (Senguptaa ef af., 2013).
Multi-Objective Evolutionary Algorithm (MOEA) was
designed in this approach with the objective of discover

invented as a constrained

a deployed sensor node arrangement to improve the area
of coverage, reduce the net energy consumption, enhance
the network lifetime and reduce the number of deployed
sensor nodes while maintaining connectivity among each
sensor node and the sk node for proper data
(TansImission.

MATERIALS AND METHODS

Two dimensional gaussian distribution based dynamic
node deployment model: In this study, an efficient two
dimensional Gaussian distribution based dynamic node

deployment model is presented to accurately deploy the
nodes in the sensor network structure. The model is
based on two folds. The first fold in this model 1dentifies
the directional position of nodes based on distance (i.e.,
length and width) which are deployed usmng the 2-D
Statistical Triangulation algorithm to easily identify the
directional position m sensor network. The second fold
includes a two dimensional Gaussian distribution based
dynamic node deployment model to easily deploy the
sensor nodes and to increase the rate of data aggregation
accuracy. The structural design of the gaussian
distribution based dynamic node deployment for two
dimensional sensor network structures are illustrated in
Fig. 1.

From the Figure, sensors of different types are
deployed in the network structure to accurately perform
the data aggregation process on the deployed nodes. The
nitial work carried out i 2D-GDDND model 1s to identify
the directional positioning of nodes. The directional
position for the two dimensional structure is measured
using the 2-D statistical triangulation algorithm that
focuses on computing the distance of the positioned
nodes.

With this angle of positioning in 2D-GDDND model
1s measured using the Statistical Triangulation algorithm.
The triangular shape angle of positioning is used to easily
identify the directional position of sensor nodes in
2D-GDDND model. The identified directional position is
used to deploy the sensor nodes in the proposed work
using the Gaussian Distribution Function. The positioned
sensor nade in 2D-GDDND model achieves the high data
aggregation accuracy rate during the data aggregation
process. As aresult, the 2D-GDDND model covers larger
connectivity area in the sensor network which m tum
improves the throughput level

2-Dr statistical triangulation process: In 2D-GDDND
model to dynamically deploy the sensor nodes m wireless
network, mitially the directional position of nodes are
identified wsing 2-D statistical triangulation. The
directional position varies based on the measurement of
the distance (1.e., length and width) between the sensor
nodes deployed using 2D-GDDND model. Thus, 2-D
statistical triangulation process uses the beacons present
in the network structure to easily identify the specific
position for deploymng the sensor node. Let (x, v)
represent the two dimensional space on the sensor
network structure with the directional distance be D,
between the sensor robot and beacon in the sensor
network. To determine the position of the sensor nodes
X,. Y, inthe senscr network, the robot angle is measured
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Fig. 2: Statisticalo triangulation representation for 2-dimensonal space (x;, y,)

and which is denoted asB. The 2-D statistical — Step2.2:(8:, 8 =(8-8p)
triangulation process includes the three steps as follows. Step 3: Let 91 be anele between beacon to
node point to measure the length (i.e.,)

) ) x-axis from two dimensional spaces
¢ TLabel the beacon consecutively in the sensor Step 4: Let 82 be angle between beacon to

network structure in the counter-clockwise direction node point to measure the width (i.e.,)
¢ The angle between the beacon and sensor node 1 y-axis from '?IWD I‘jlm‘?i“’“il spaces
(5. 5, must be <180° Stp : Computc angle of mobile oot =
B T W D2 2
* The angle between the beacon and sensor node 2 Step 6: © = tam'Sin Sy Sin 85-Dys SinyyDys Sin & Cosy-Dyz Cos S,
6(B, S,) must also be <180° SinS,
Step 7: If 8,180 degree &t<0 degree
/12-D statistical triangulation Step 7.1: Then 7 =7180 degree
Begin Step 8: If 8;>180degree &1>0 degree
Step 1: Place beacon based on Counter Step 8.1: Then v =1-180 degree
Clockwise Direction Step 9: Direction position of Xp = X,-D; Cos(0+1)
Step 2: Compute Direction position on Step10: Direction position of Y}, =y-D; Sin(8+1)
Triangular Form End

Step 2.1: B(S,, $3) = 360+(8;, 83)
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Fig. 3: Data aggregation proces using 2D-DDND model

2D statistical triangulation representation and Fig. 2,
shown above clearly the parameters used for the
directional positioming. The directional position of the x
and y axis in the sensor network are dencted by X, y,
respectively. In Fig. 2, B is a beacon and T indicates the
angle between the mobile robot and sensor node 2 and S,
3., 8, are the different sensor nodes in WSN.

With the distances computation using the 2D
statistical Triangulation algorithm, the 2D-GDDND model
1s efficiently identifies the directional position of nodes
for providing higher data aggregation accuracy result in
wireless sensor network. Besides, the 2-D statistical
triangulation consumes the minimal power consumptions
due to the beacon usage in the sensor network coverage.

Gaussian distribution: After identifying the directional
position of nodes, the 2D-GDDND model in 2-dimensional
network space (34, Y,) use the Gaussian distribution to
accurately deploy the dynamic sensor nodes in WSN. The
implementation of Gaussian distribution with °S’ sensor
nodes in sensor network structure is mathematically
formularized as bel

1
e—
27[(8&),)2

2 G-RF

From Eq. 1, GD denotes the Gaussian distribution function
for the two dimensional space (x, y,). The angular
difference measured between the sensor node and the
mobile robot in the sensor network 1s denoted byf. The
Gaussian distribution in ZD-GDDND model computes
angular difference between the sensor node and mobile
robot to accurately deploy the nodes in the sensor
network which results i improved data aggregation
accuracy. The node positioned (1.e.,) deployed pomt in
the triangular field “T° helps to easily observe the
throughput level on the two dimensional space. The
Gaussian distribution function on the triangular field is
described as:

1

GDonT=———
27‘5(6}{_3,)2

e—(DT)" /20, ,.dxdy  (2)

From Eq. 2, Gaussian distribution on the triangular field
T(x, y) identifies the throughput level attained on the
dynamic node deployment with the distance D, between
the sensor nodes and the mobile robot n the wireless
network structure. With this the value of D, is combined
with the Triangular field coverage point to easily identify
the overall throughput level. The Gaussian distribution of
sensor node in the dimensional space (x, ¥) with the
statistical triangulation field is described as follows:

2 2

GD(L) =7, £(D,(x,y))2D cos*l(Dﬂ*)TT

yedy (3

From Eq. 3, gaussian distribution computes the length ‘1.
for the easy deployment of x-axis position node in the
sensor networlke with distance D, evaluated using the
distance of the mobile robot on the triangular sensor
network coverage field. The Cosme function helps to
identify the x-axis position on which the node to be
deployed using 2D-GDDND model which in turn improves
the data aggregation process in sensor network:

GD(W) = [T, f(D, (x,y))2Dsin'(

D? — T?
de.dy (4
or

Equation 4, Gaussian distribution computes the width “W~
for easy deployment of the y-axis position node in the
sensor network with distance evaluated wsing the
distance of the mobile robot on the triangular sensor
network coverage field. Sine function helps to identify the
y-axis position where the node to be deployed using
2D-GDDND model which results in improved data
aggregation process in sensor network. The data
aggregation process using 2D-GDDND model is
illustrated in Fig. 3.

The data aggregation process with the deployed
nodes using the 2D-GDDND model 1s shown m Fig. 3.
With this the identified directional position places the
nodes in a dynamic manner using the Gaussian
distribution model. The deployed nodes are correctly
positioned (i.e.,) in terms of length and width to improve
the success rate of the data aggregation process. The
Gaussian distribution with the 2-D statistical triangulation
algorithm reduces the power consumption on the whole
node deployment structure.

Gaussian distribution is used in 2D-GDDND model to
deploy the dynamic sensor nodes in WSN. With the help
of identified directional position of sensor node the
2D-GDDND model evaluates the angular difference
between the sensor node and mobile robot in sensor
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netwark. Then, 2D-GDDND model phase shift the sensor
node in sensor network according to thewr angle
difference. Hence, sensor nodes easily gather and
aggregates the data with another node m sensor
network data aggregation accuracy using 2D-GDDND
model is improved in turn increased the throughput level.

Two dimensional-gd experimental work evaluation: The
proposed 2D-GDDND moedel 15 implemented using NS-2
sinulator. The sensor network 1s taken for the experiment
performs the dynamic node deployment work on the
aggregated data. The network range taken for the
experimental work is about 900x900 m. The Random
Waypoint model is developed to randomly group and
move the sensed node location point to correctly deploy
the sensor node. The RWM model shifts to an erratically
chosen location to perform effective transmission on
multiple sink nodes.

The 2D-GDDND model takes 25 milliseconds on each
simulation and averagely 80 sensor nodes are taken for
the experimental evaluation. The chosen nodes randomly
move with a selected velocity and speed. The mmimum
moving speed of the sensor nede is about 4.0 m sec™ of
each sensed node. The random movement of sensor
nodes uses the Dynamic Source Routing (DSR) Protocol
for performing the experimental evaluation. Simulation
experiment of 2D-GDDND model is compared against with
the existing NPV strategy and DPI process. The
experiment is conducted on the factors such as node
deployment efficiency, throughput level, data aggregation
accuracy rate, power consumption and dynamic node
deployment time. The node deployment efficiency
measures the number of nodes mnvolved in the model.
When the node deployment efficiency is higher, the
2D-GDDND model obtained better result. The node
deployment efficiency is measured in terms of percentage
(%0). The throughput level (T) using Gaussian distribution
in 2D-GDDND is defined as the distance between the
sensor nodes and mobile robot in the sensor network. The
throughput level is usually measured in kilo bits per
second (Kbit/s) in the simulation work. The aggregation
in 2D-GDDNS is the aggregated output of the x axis
position and the vy axis position in the sensor network.
When the data being aggregated i1s higher, the data
aggregation accuracy 1s also mcreased m 2D-GDDNS
model.

Power consumption (PC) in 2D-GDDNS measured in
terms of joules (J) which obtained by dividing the energy
consumed by all the sensor nodes in the network
(S/+5;+...13,) by the network coverage area. For
experimental purpose, we have comnsidered the network
coverage area as 900x900 m.

_ Energy(S,+8,+...+8)) (5)
900 *900m

pC

The Dynamic Node Deployment Time (DNDT) for
2D-GDDNS 15 obtamed by dividing the time taken for each
sensor node in the network to obtamn the directional
position based on the length and the width (X +v,) by the
network coverage area. The DNDT is measured in terms
of milliseconds (ms). When lower the DNDT the efficiency
of the 2D-GDDNS model is higher. The dynamic node
deployment time 1s mathematically formularized as below:

DNDT — Time(x, + y,) (6)
900 x 900m
RESULTS AND DISCUSSION

The performance of the 2D-GDDND model in WSN
has been compared with the existing NPV strategy and
DPT process. The power consumption for each node has
been tabulated in Table 1 with elaborate comparisons
made with two other methods. Figure 4, show that the
proposed 2D-GDDND model m WSN consumes lower
power as compared with existing NPV strategy and DPI
process. This 1s because of the application of 2-D
Statistical Triangulation algorithm that easily identifies the
specific position for deploying the sensor node in WSN
which results in reduced the power consumption by
3-23% when compared to NPV strategy. In addition to
that with the use of the beacon message in the sensor
network coverage using the 2D-GDDND model reduced
the power consumption by 4-19% than the DPT process.

The comparison of data aggregation accuracy is
presented in Table 2 with respect to the number of sensor
nodes in the range 5 and 35. With increase in the sensor
nodes the data aggregation accuracy 1s also mncreased. To
ascertain the performance of the data aggregation
accuracy, comparison is made with two other existing NPV
strategy and DPT process.

From the Fig. 5, the sensor Nodes (N) are varied
between 5 and 35. From the figure it can be observed that
the data aggregation accuracy 1s higher using the
proposed 2D-GDDND model than when compared to the
two other existing works. This is because with the
application of Gaussian distribution on 2D sensor network
spaces where the sensor nodes are accurately deployed
with higher data aggregation accuracy by 5-12% when
compared to NPV strategy. Furthermore by positioning
the sensor nodes using triangular shape angle the
directional position of the sensor nodes are easily
identified in 2D-GDDND model which in tumn
improve the data aggregation accuracy by 10-17%
than when compared to DPI process. The
throughput  level for 2D-GDDND  model 1s
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Table 1: Tabulation for power consumption

3
Senser Nodes (S) vs. Data Apgregation Accuracy (%)

s v

L e

]

Table 3: Tabulation for throughput level

Sensor Power consumption (W) Throughput level (Kbits/sec)

nodes Sensor

(Node ID) NPV strategy  DPI process  2D-GDDND model Nodes (S) NPV strategy  DPI process  2D-GDDND model
S1 210 200 170 5 815 825 850

S2 232 227 190 10 835 875 900

83 239 233 225 15 865 890 925

54 250 245 235 20 880 900 945

S5 260 254 248 25 910 925 1000

S6 265 260 255 30 915 940 1125

87 278 270 259 35 928 960 1230

Table 2: Tabulation for data aggregation accuracy
Data aggregation accuracy (%6)

Sensor

Nodes (S) NPV strategy DPI process  2D-GDDND model
5 40 38 45

10 47 42 52

15 55 47 55

20 60 52 58

25 62 55 65

30 65 60 72

35 70 62 75

elaborated in Table 3. The throughput level attained by
the sensor nodes of range 5-35 has been illustrated
inFig. 6. From the Figure 6, it has been observed that the

throughput level achieved using the proposed 2D
GDDND model 1s higher when compared to two other
existing NPV strategy and DPI process. Besides we can
also observe that by increasing the number of sensor
nodes, the throughput is also increased using all the
methods. But comparatively, it is higher in 2D-GDDND
model because with the computation of distance (i.e.,
length and width) using the 2D statistical geometric
algorithm. Therefore, 2D-GDDND model 1s achieved
higher data aggregation accuracy which in tum mereases
the throughput level by 5-24 % than NPV strategy. Tt is
also has been found that for higher number node, the
proposed method provide very odd throughput level as
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Fig. 7: Sensor nodes versus dynamic nodes deployment time

Table 4: Tabulation for dynamic node deployment time
Dynamic node deplayment time (m sec)

Sensor nodes (8) NPV strategy ~ DPT process 2D-GDDND model

5 20 18 15
10 25 23 18
15 28 27 22
20 35 33 28
25 40 39 35
30 43 42 40
35 48 43 42

compared with existing methods. Tn addition with the
application of Gaussian distribution function and with the
measured angle, the triangular field ‘1" helps to easily
observe the throughput level on the two dimensional
space. As result, 2D-GDDND model is improved
throughput level by 7-20% than compared DPT process.
Table 4 and Fig. 7 illustrates the dynamic node
deployment time versus the sensor nodes S at different
mobility in a network range of 900x900 m. From the figure
we can note that the dynamic node deployment time 1s an
increasing function but there is a significant gain using
the proposed 2D-GDDND model. This is because, the
sensor networl identifies the directional position of nodes
based on distance using 2-D statistical triangulation
algorithm and reduced the dynamic node deployment time
by 14-38% when compared to NPV strategy. Further using
2D-GDDND  model, directional position  easily

aaaaaaaa o= (5] s

identified m tum reduced the dynamic node deployment
time by 5-27% when compared to DPI process.

CONCLUSION

In this study, two dimensional gaussian distribution
based Dynamic Node Deployment (2D-GDDND) model
has been developed for deploying the dynamic sensor
nodes in wireless sensor network. Unlike the conventional
methods, the proposed 2D-GDDND model exploits both
the data aggregation accuracy and higher throughput
ratio by deploying the nodes dynamically in the sensor
network. 2D-GDDND model mtially identifies the
directional position based on the angle measurement of
the sensor node position by using the 2-D statistical
triangulation algorithm. The 2-D statistical triangulation
algorithm has been proposed to reduce the power
consumption for the entire node deployment structure as
well as the Gaussian distribution model that accurately
deploy the sensor nodes with higher data aggregation
efficiency. In 2D-GDDND model, Gaussian distribution
determines angular difference between the sensor node
and mobile robot. Then, 2D-GDDND model phase shift the
sensor nodes according to their computed angular
difference. As a result, sensor nodes can easily gather
and aggregates the data with another node in sensor
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network. For the reason that the data aggregation
accuracy and throughput level using 2D-GDDND model
15 mmproved m an effective manner. Simulation results
demonstrate that the proposed 2D-GDDND model
outperforms the two existing ones and provides higher
data aggregation accuracy and throughput level. The
usage of Z2D-GDDND model reduces the power
consumption by 20% when compared to the State
of-the-art works.
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