Asian Journal of Information Technology 15 (22): 4482-4488, 2016

ISSN: 1682-3915
© Medwell Journals, 2016

A New Improved Election Algorithm for Achieving High
Availability in Distributed Systems

N. Gopikarani, G. Sudha Sadasivam and G. Kavitha
Department of Computer Science and Engineering, PSG College of Technology,
Coimmbatore, Tamil Nadu, India

Abstract: In distributed environment, the leader election process 1s to main system consistency and to make
the system a reliable one. Leader election process 1s to select a single node as leader among other members.
High availability is a system design approach. It ensures that a pre arranged level of operational performance
will be met during a contractual measurement period. High availability is essential for mission critical
applications. The term highly available refers that the systems can continue providing services even when
master node (1.e., coordnator) fails. Goal of the proposed work 1s to use a suitable distributed election algorithm
to improve high availability features. Stable leader election is implemented to increase robustness and
efficiency. Election commission concept is used to minimize message passing. This algorithm is used to identify
a temporary master when there 1s any failure i existing master node and reduces message passing. At the
back-end the implementation will be mvoked inside a cluster to achieve scalability m addition to high
availability features.

Key words: Coordinator, leader election process, message passing, stable leader election, election commission

INTRODUCTION

It 1s paradoxical that the larger a system 1s, the more
critical 18 its availability and the more difficult it 1s to make
it highly-available. It 13 possible to build small
ultra-available modules but building large systems
mvolving thousands of modules and millions of lines of
code 1s still an art. These large systems are a core
technology of modern society, yet their availabality 1s still
poorly understood. Tn a distributed computing system, a
process is used to coordinate many tasks. Tt is not an
1ssue which process 1s doing the task but there must be a
coordinator that will work at any time. So electing a
coordinator or a leader 1s very fundamental issue in
distributed computing.

Need of election in distributed system: Several distributed
algorithms require that there be a coordinator node in the
entire system that performs some type of coordmation
activity needed for the smooth running of other nodes in
the system (Park ef af., 1999). As the nodes 1 the system
need to interact with the coordinator node, they all must
unammously who the coordmator 1s. Also if the
coordinator node fails due to some reason (e.g., link
failure) then a new coordinator node must be
elected to take the job of the failed coordmator
(Garcia, 1982).

Leader election process: Distributed systems are used to
increase the computational speed of problem solving.
These systems use a number of computers which
cooperate with each other to execute some task. Control
of distributed algorithms requires one process to act as a
controller (leader) (Garcia, 1982). Leader is responsible to
maintain the stability all time overall the networl. Tf the
leader fails for any reason, new leader should be elected
directly to recover from instability (Tanenbaum, 2007).
Electing leader 1s a vital issue not only m distributed
computing but alse in communication network,
centralized mutual exclusion algorithm, centralized
control IPC, etc.
synchronization between different processes by Attiyae
and Welch (Chandra and Toueg, 1996).

Leader election process 1s a program distributed over
all nodes, it starts when one or more processors discover

A leader 1s required to make

leader has failure, it terminates when remaining processors
know who the new leader is. Leader Election Algorithms
(LEAs) are widely used in centralized systems to solve
single pomnt failure problem (Aguilera et af, 2001). For
example, in client server, LEAs are used when the server
fails and the system needs to transfer the leadership to
staton. The LEAs are also

another used 1n

Corresponding Author: N. Gopikarani, Department of Computer Science and Engineering, PSG College of Technology,

Coimbatore, Tamil Nadu, India

4482

Asian J. Inform. Technol., 15 (22): 4482-4488, 2016

- -
= .

"y

T

Mt
Task

\ _ . t/—_ .

Wait for T
Results

L

T
", Ir:______l"-l-:-::le 2___})

Fig. 1: Typical leader coordination

token ring. When the node that has the token fails, the
system should select a new node to have the token (Basu,
2011).

A leader election algorithm 1s stable if 1t ensures that
once a leader is elected, it remains the leader for as long as
it does not crash and its links have been behaving well,
wrrespective of the behavior of other processes as shown
in Fig. 1.

Election commission: Election commission 1s an electoral
admimstrative body established to deal with leader
election mechanism in a distributed computing system. Tt
is constructed by a group of special processes in
distributed system. Tt is authorized to handle the whole
election process (Sinha, 2008). Tt defines the rules and
regulations for attending in an election process in a
distributed computing system. It has one Chief Election
Commissioner (CEC) and four election commissioners. Tf
any of the commissioners failed, Election commission will
recover that commissioner immediately and other
processes do not have concern of that.

An election cmmission has a unique group ID. Other
processes in the system communicate with eection
cmmission using this group ID. As a result, if any of the
commissioners 18 down, there will be not any problem in
election. Tt has a reliable Failure Detector (FD) (Sinha,
2008). Tt election commission does not get any reply from
a process within the specified time, then FD of election
commission will report that requested process is down.
As like as FD, Election commission has another
component Named Helper (HP), the function of HP is to
find out the process with the highest process number
using sending alive message. Tt knows process number of
all processes of the system.

Chief election commissioner i1s the principal of
Election Commission. The process with the highest
priority in election commission will be the cluef election
administrates other election
and handles FD and HP. Election
commissioner 1s a member of election commission. Itis a

commissioner. It

comimissioners

special kind of process. Any election commission in a
distributed system will have a few numbers of election
commissioners (say four). All of them consult with the
chief election commissioner to elect a coordinator in a
distributed system as shown in Fig. 2.

Bully algorithm: Leader election 1s a procedure that 1s
embedded in every node of the distributed system
(Park et al, 1999). Any node which detects the failure of
the leader node can initiate a leadership election. The
election concludes its operation when a leader is elected
and all the nodes are aware of the new leader and agree on
that as in Fig. 3a-e.

Drawbacks: Every tine a node (former leader or ordinary
node) recovers from a crash failure, it initiates an
elecion which consumes significant system resources
(Dolev et al., 1991).

Although, this liveness, it
sometimes fails to meet the safety condition. This can
happen when a former leader node is replaced by a node

algorithm ensures

with the same 1d nmumber while the election procedure 1s in
progress. The newly elected node and the former leader
node (which was down for a while) will both announce
themselves as leaders simultaneously (Dolev et al., 1991).

4483

Asian J. Inform. Technol., 15 (22): 4482-4488, 2016

Election
Commissioner

FD

Election
Commissioner

Chief
Election <

Election
Commissioner

g

Election

Fig.2: Architecture of election commission

(d)

Fig. 3: Election procedure in bully algorithm

This algorithm elects a new leader node with the help
of a number of redundant elections. In the worst case, it
can require a large number of messages to elect a leader
node (Rahman and Nahar, 2010). The worst case occurs
when a node with the lowest id initiates an election: the
role for initiating election is handed over to a node with
next higher id and this continues till the node with the
highest 1d takes over the role. As a result, at least n-2
redundant elections take place in the entire system where
n 18 the number of nodes. This algorithm does not provide
an efficient solution for the simultaneous detection of
leader node failure by more than one node. More than one
election may take place at the same time which imposes a
heavy load on the network (Garcia, 1982).

METERIALS AND METHODS
System design

Modified leader election algorithm: The proposed leader
election algorithm wuses the concepts of election

© @

commuission and stable leader election. The reasons for
adopting these concepts in a distributed system are:

» Toreduce redundant elections
¢+ Tominimize message passing
+ Toimprove the complexity

Our proposed algorithm has the followmg steps;
when process P notices that the coordinator is down, it
sends an ELECTTION message to election commission. FD
of election commission verifies ELECTION message sent
by P. If the sending notice of P is not correct, then
election commission will send a COORDINATOR message
to P with process number of the current coordinator. If the
sending notice of P 1s correct and if the lnghest process
number 1s P, then election commission will send a
COORDINATOR message to all processes with process
number of P as a new coordmnator. If the highest process

4484

Asian J. Inform. Technol., 15 (22): 4482-4488, 2016

Initialize Nodes with priority value

General set

Campaigner set

Election commission

/

3

| Election coordinator |

AN

Helper Node |

Failure Detector

initial Setup for Improved Election Algorithm

P-> Priority

HP-= Highest Priority

Fig. 4: Initial setup

number 18 not P, Election commuission will simply find out
the alive process with the highest process number using
HP(HP checks the priority based sorted list of the
candidate set) and sends a coordinator message to all
processes with the process number of top-most process
after the crashed coordinator as a new coordinator as in
Fig. 4.

If any process excluding last crashed coordinator 1s
up, it will send a query message to the election
commission. Election commission will simply send a
coordinator message to newly entranced process having
process number of the current coordinator. The recovered
coordinator will have to wait till the current low priority
coordinator finishes the on-going election process. If
more than one process sends election message to election
commission at the same time, then election commission
will consider the process with higher process number
which ensure less message passing to find out the
highest process number using HP. The overall election
process is shown in Fig. 5.

Procedure: Let’s assume, the system consists of five
processes with process number 1-5.

Case 1-current coordinator crashes: Current coordmator
is the process 5. But it has just crashed and is first noticed

by process 2. So 1t sends an election message to the EC.
The EC sends verify message to the current coordinator
about the election message sent by process 2. After
verification, Helper node (HP) of EC sends alive message
to process 4 (the next highest process number from the
MAP table) to check if it 15 alive or not. And HP gets a
reply message from 4. The EC then selects 4 as new
coordinator and sends coordinator message to all
processes.

Case 2-Normal process recovery: Assume, process 1 has
just recovered after being crashed. It sends a query
message to EC. EC checks that process number of newly
entranced 1s lower than the current coordinator. Se, EC
sends coordinator message to only process 1 having the
process number of current coordinator of the system.

Case 3-Multiple election messages: At any time, if more
than one processes notices that the coordinator is down,
they will send election message to EC. After verification,
EC will consider election request of the process having
higher process number. For example, process 4 and 5
detect that coordinator 6 18 down, So 4 and 5 send
election message to EC. After verification, EC only
considers the election message of process 5. It ensures
less message passing to find out the lighest process

4485

Asian J. Inform. Technol., 15 (22): 4482-4488, 2016

Broadcast new

coordinator ID Yes

Invoke EC
Invoke FD

Send False

No

Works with existing
coordinator

False

Quit Election
Process

Invoke HelperNode

No

Find next Highest Priority
Process

A If coordinator fails or old coordinator recovers from failure

B> check the result from Failure Detector({FD)

Fig. 5: Overall election process

mumber. Say if EC considers election message of process
4, then according to our algorithm, EC will have to send
alive message to process 5 to find higher process number.
But if EC consider selection message of process 5, it
doesn’t need to send alive message because, process 5 is
already the higher process number and EC can select 5 as
new coordinator. This was EC can ensure less message

passing.

Case 4-Crashed coordinator recovery: When the crashed
coordinator recovers, the EC verifies the process ID. If the
process recovered has a higher prionty than the current
coordinator, then EC implements the stable leader
concept. The recovered process is requested to wait for
the current coordinator to complete its election cycle.
Hence, unlike mn the bully algorthm, the number of
messages needed to terminate an existing election is
avoided here.

RESULTS AND DISCUSSION
Experimental setup: Experiments are done on a cluster of

about 5 systems with pentium 4 processor: Intel® Core™2
Duo, 254 Ghz sprocessor, 1GB RAM, 160GB hard

EC>Election Commission

é“\“ a

New coordinator

Fig. 6: Coordmator failure and re-election

disk interconnected with ethernet LAN capable of
transmitting at a maximum speed of 4 Mbps. Results are
analyzed based on time complexity.

Implementation of existing bully algorithm
Coordinator failure and re-election: Figure. 6, there are
five processes labeled as process 1, process 2, process 5.
Process 5 1s considered as the highest prionity process
among the given set of processes. The coordinator crash
noticed by Process 1 and it initiates the
election. Process 4 1s elected as the new coordmator
from the group.

i

4486

Asian J. Inform. Technol., 15 (22): 4482-4488, 2016

co-ordinator
co-ordinator
< ®/ :

Resign

Fig. 7: Crashed coordinator recovery
ele

D= D
‘N o
D

Fig. 8: Normal process recovery

Invoke ELE

S
S 9

Fig. 9: Coordnator failure and re-election

QO

Invoke EIE

Coord 4

O
D

Fig. 10: Crashed coordmatorr recovery

Crashed coordinator recovery: Figure 7, process 5
recovers from the crash. Process 5 bullies the current
coordinator and asks Process4 to resign

Normal process recovery: Figure 8, process 2 recovers
from crash and sends election message to all lgher
priority processes. Process 4 sends back a reply message.

Coord 4

@ Inform EC //
Fig. 11: Normal process recovery

Table 1: Performance analysis of bully algorithm

Case number No. of messages

1 13
2 4
3 5

Implementation of the proposed algorithm
Coordinator failure and re-election: Figure 9 there are
five processes with random priorities. The coordinator 15
mmtially process 3. Process 1 checks the status of the
coordinator. As process 3 is no longer alive, election
comumission initiates the election. The new coordinator is
process 4. EC nforms all the processes that process 4 1s
the new coordinator.

Crashed coordinator recovery: Figure 10, the crashed
coordinator process3 recovers and invokes the election.
Election commission requests the recovered coordmator
to wait till the current coordinator fails.

Normal process recovery: Figure 11 process 2 recovers
from failure and mvokes the election commissioner. The
EC notifies the recovered process of the current
coordinator.

Performance analysis: If there are n processes in the
system and p is the process number which detects failuref
coordinator, then. Tn original bully algorithm, there will be
need of message passing between processes. In the worst
case, 1f process with the lowest process number detects
coordinator as failed, then it requires message passing. In
the best case when pl is the highest process number, it
requires messages. Total number of messages passed
between the processes 1s more as shown in Table 1.

In the case of proposed algorithm there will be a need
of 1 election message to inform EC, a verify message to
ensure the failure of coordinator and say R1 is the alive
process with highest priority then alive and reply message
to find out the lughest alive process, so a total of O (n)
messages are needed between processes. If the process
with lowest process number detects coordinator as failed

4487

Asian J. Inform. Technol., 15 (22): 4482-4488, 2016

Table 2: Performance analysis of proposed algorithm
Case number

No of messages

1 8
2 2
3 2

there is no change in total message. Tn the worst case this
algorithm needs to check process pl+1 to find out highest
alive process. In this case message passing 1s required
between processes. However, in best case, this algorithm
may find the highest alive process with only one alive and
one reply message that is highest alive process in the
system 1s process with process number nl-1. In that case,
this algorithm needs only 1+2+24n1 messages. When pl
1s the highest process number, then 14+2+nl messages are
required. The total number of messages needed for all the
three cases 1s shown in Table 2.

CONCLUSION

Thus a modified leader election algorithm has been
proposed to improve the availability of the system. The
proposed algorithm has a better complexity O(n) when
compared to the existing bully algorithm, © (n2). The
performance of the proposed algorithm was measured in
terms of the number of messages sent across the network.
The proposed algorithm can be used to improve the
availability of data in a distributed environment. The term
highly-available refers that the system can continue
providing services even when coordinator fails.

ACKNOWLEDGEMENTS

The researchers convey their heartfelt thanks to
Dr. R. Rudramoorthy, Principal, PSG College of
Technology and Dr. R. Venkatesan, Professor and Head,
Department of computer Science and Engineering, PSG
College of Technology. This work 1s performed m the
grid/cloud computing lab at PSG College of Technology.

REFERENCES

Aguilera, MK., G.C. Delporte, H. Faucommier and
S. Toueg, 2001. Stable leader election. Proceedings of

on Distributed
Computing, October 3-5, 2001, Springer Berlin
Heidelberg, Berlin, Germmany, ISBN: 978-3-540-
42605-9,-pp: 108.

Basu, S., 2011. An efficient approach of election algorithm
in distributed systems. Indian I. Comput. Sci. Eng.
(TTCSE.), 2: 16-21.

Chandra, TD. and 8. Toueg, 1996, Unreliable failure
detectors for reliable distributed systems. . ACM., 43:
225-267,

Dolev, 5., A. Israeli and 3. Moran, 1991. Uniform Dynamic
Self-Stabilizing Leader Election. In: Distributed
Algorithms. Sam, T., G.S. Paul and K. Lefteris (Eds.).
Springer Berlhin Heidelberg, Berlin, Germany, ISBN:
978-3-540-55236-9, pp: 167-180.

Garcia,M.H., 1982. Electronics in a distributed computer
system. IEEE. Trans. Comput., 31: 48-55.

Park, SH. Y. Kim and J.S. Hwang, 1999. An efficient
algorithm for synchronous
distributed systems. Proceedings of the 10th
Conference on IEEE Region (TENCON 99), December
15-17,1999, TEEE, New Yark, USA., ISBN: 0-7803-5739-
6, pp: 1091-1094.

Rahman, MM. and A. Nahar, 2010. Modified bully
algorithm using election commission. Masaum J.
Comput. (MJC.), 1: 439-446.

Sinha, PK., 2008. Distributed Operating Systems
Concepts and Design. Prentice-Hall of India Private
Limited, Delhi, India,.

Tanenbaum, A.S., 2007. Distributed Operating System.
Pearson Education, Upper Saddle River, New Jersey,.

the International Symposium

leader-election 1n

4488

	4482-4488_Page_1
	4482-4488_Page_2
	4482-4488_Page_3
	4482-4488_Page_4
	4482-4488_Page_5
	4482-4488_Page_6
	4482-4488_Page_7

