Asian Journal of Information Technology 15 (22): 4445-4449, 2016

ISSN: 1682-3915
© Medwell Journals, 2016

Automatic Prevention of Union Query Type SQL Injection Attack Using Private

Synonym and Error Message Controller

'N. Gunaseeli and *D. Jeya Mala
"Department of MCA, K.L N College of Engineering, Pottapalayam, Tamil Nadu, India
*Department of MCA, Thiagarajar College of Engineering, Madurai, Tamil Nadu, India

Abstract: Web applications are software applications which allow the end users to access the most valuable

services like credit card services, purchase orders, online booking services and so on. The developers of the
web applications pay more concentration on developing the features and functionality of the applications. They

spend only little amount of time to secure web applications. Unfortunately, the web applications are vulnerable
to various threats like SQLIA, cross site scripting, buffer overflow, etc. Despite, the web applications are
vulnerable to many kinds of threats and attacks, SQLIA (SQL mjection attack) 1s the most vulnerable to web
applications. It 13 a kind of attack where malicious users try to access the database layer of an application
through crafted input query strings. Tgnoring the existence of these kinds of attacks leads to various kinds of
SQLIA. One among them 1s union queries SQL mjection attack. Through this attack, an attacker gets the result
set of original query along with the result set of injected query. This study analyzes the weaknesses of union

query SQL injection attack and proposes a novel approach to prevent the umon query at run time.

Key words: Database security, SQLIA, web application, security threats, run time monitoring

INTRODUCTION

Web applications are prevalent due to the increased
sharing of information through web browsers. Now a
days, it becomes an essential teclmology to busmess
people for delivering services to their clients. Despite,
web applications provide flexible services to end users, it
18 often attacked by hackers directly. There are various
kinds of attacks are faced by web applications. They are
SQLIA, buffer overflow, cross site scripting, denial of
service aftack, memory corruption, data breach etc.
Despite the web applications are vulnerable to many kinds
of threats and attacks, SQLIA (SQL Injection Attack) has
been described as one of the most vulnerable threats to
web applications (Halfond et af., 2008).

SQL injection attack: SQL injection 1s a code imjection
technique that exploits a security vulnerability occurring
in the database layer of an application (Halfond et al,
2008). The reason for SQLIA 1s improper validation of user
input. Tf user input is not properly validated, attackers
may be able to change the developer’s mtended SQL
command by inserting new SQL keywords or operators
through specially crafted input strings. The results of
these attacks are often disastrous and can range from

leaking of sensitive data like customer data to the
destruction of database contents (Halfond ez al., 2008).

Classification of SQLIA: There are many forms of SQLIA.
Depends upon the type of SQLIA attaclk, the attacker can
get different access like collecting data about the tables,
fields of database, destroying the database, converting
channels etc. SQLIA has been classified into five basic
classes with respect to the attacker’s target and the vulner
abilities i web applications (Sun ef al, 2007)
(Patel et al., 2011) A classification of SQLIA and the
attacker's achievements are illustrated in Table 1.

Union query: This is a type of SQLIA attack in which the
attacker gets additional data from crafted query. To get
the additional data, the attacker uses the key word
“union” in order to join the malicious query with original
query. The crafted query brings the results of the original
query along with the results of malicious query
(Halfond et al., 2008; Dharam and Shiva, 201 2; Kermalis
and T zouramanis, 2008; Buehrer et al., 2005). For example,
let’s consider the following query.

SELECT acct FROM account WHERE login = * UNION
SELECT debitcardNo FROM Cardlist WHERE
acctno=1001 — AND pin =

Corresponding Author: N. Gunaseeli, Department of MCA, K.I..N College of Engineering, Pottapalayam, Tamil Nadu, India
4445

Asian J. Inform. Technol., 15 (22): 4445-4449, 2016

Table 1: A classification of 8QLIA and the attacker’s achievements

Types of SOLIA Achievement of attakcer

Union and union all query
Piggy backed queries
with such injected query(s)
Alternate encodings
Malformed queries

The actual runtime query returns null data. However, the injected query generates data from the database
The database server executes the second injected query. Thus, a harmful operation may also be performed on the database

The attackers easily access the data from database by using alternate codlings like ASCTI, hexadecimal etc
Perform SQLIA, the attackers need some prior knowledge of database schema, which is often unknown.

Malformed queries allow for overcoming this problem by taking advantage of overly descriptive error messages

that are generated by the database
Bypass authentication
of the first user stored in the database

Two dashes, comment the remaining text. Expression 1=1 is always true. User will be logged in with privileges

Create
synonym for

Table of a
database
Login — -
form — SQL QUERY

Display simple error
message inside catch
block of servlet

Access
database

Fig. 1: Shows the flowchart of proposed system

The above query retumns the null set along with the
data from cardlist. Therefore, the database displays the
results of these two queries and returns to the application.

Proposed approach: After reviewing the SQLIA and its
classification we proposed a new technique for
preventing Union query type attack. The backbone of the
proposed techmique 15 private synonym and error
controller. In this section, we discuss the strength of
private synonym and error controller (Fig. 1).

MATERIALS AND METHODS

Private synonym approach and error message
controller: A private synonym helps to create an

alternate name for user defined table. This strength helps

to lude the table identity. Therefore, it 1s harder for a
malicious user to target the underlying tables. One more
advantage of synonym is that it is an alternate name for a
table. Therefore it does not require any storage space
other than it definition.

We apply the private synonym technique because the
major drawback of union query is that it can be performed
after kmowing the table names of a database. Since, we
apply the synonym of the tables in the query of the web
applications, the malicious user can’t reach the database,
even though they know the name of the tables of a
database (Fig. 1).

The detailed error message of an application leads to
know the details of tables, data types of database etc.
Therefore, we control detailed error message through
catch block of servlet program. We implemented the

4446

Asian J. Inform. Technol., 15 (22): 4445-4449, 2016

approach in such a way that it should display only simple
and general messages so that the aftackers should not
know the tables, fields of a database.

Algorithm of Private synonym approach

Step 1: To create a private synomym for a table, we must activate the
CREATE ANY SYNONYM systern privilege.

Step 2: connect to the database.

Step 3: create a table using data definition Language.

Step 4: create an alias or synonym for the table created using data definition

language.

Step 5: Use the synonmym in the query utilized in the web application.

Step 6: If error occurs, display emror messages without revealing table names,
fields of the database

RESULTS AND DISCUSSION

Performance evaluation: To evaluate the proposed
system, a web based college management application was
developed. The application had been deployed on
glassfish server with oracle as database. The application
is executed in the Netbeans IDE. Then, the performance
of the proposed system 1s analyzed for union query based
SQL injection attack. The proposed system is tested with
the following steps creation of synonym for a table of a
database creation of web application usng ISP and
servlet testing the web application using malicious query
and legitimate query .

Creation of synonym for a table of a database: To activate
private synonym in a schema, we must provide create any
synonym system privilege to admimistrator or developer.
After the activation of create synonym, the developer
must connect to the database. In the next step the
developer has to create a new table. For Example, create
table debitcard (cardnumber varchar, cardholdername
varchar; After creating the table, the developer has to
change the name of the table using private synonym. For
example create synonym list for debit card. Therefore,
table name has been changed due to synonym.

Creation of web application using jsp and servlet: To
evaluate the proposed system, we developed a web based
college management system. In thus web application, we
created a client page which consists of login form. The
login form gets input from the user. When we click the
submit button, the mputs are transfer to servlet. The
servlet consists of database connectivity code. When we
write the query string, we used synonym instead of
tables. This protects the tables from malicious user.

Creation of client page using JSP:
<Codpage contentType="text/html" pageEncoding="UTF-8"%%>
<IDOCTYPE html>
<html>
<head>

<meta http-equiv="Content-Type" content="text/htrml; charset=UTF-8">
<title> PREVENTION OF UNION QUERY TYPE SQL INJECTION
ATTACK USING PRIVATE SYNONYM and Error controller </title>
</head=

<body=
<hl=PREVENTION OF UNION QUERY TYPE SQL INJECTION
ATTACK USING PRIVATE SYNONYM and error controller</h1>

<form action="NewServlet">
<input type="text" name="usemarne"’>

<input type="text" name="password"/>
<input type="submit" value="enter"/ >

<fform=
</body=
</html>

Creation of servlet page using JSP:
mport java.io. IOException;
import java.io. PrintWriter;
import javax.servlet. ServletException;
import javax. servlet. annotation. WebServlet;
import javax.servlet. http . HttpServlet;
import javax. servlethttp. HitpS ervletR equest;
import javax.servlet http. HitpS ervletR esp onse;
import java. sql. Connection;
import java.sql. DriverManager;
import java.sql. ResultSet;
import java.sql. Statement;
sk kauthor gunaseeli */
@WebServlet(name ="NewServlet”, urlPatterns = {"/NewServlet"})
public class NewServiet extends HttpServiet {
protected void processRequest(HitpServletRequest
HittpServletR esponse response)
throws ServletException, IOException {
response.setContent Type("text/html; charset=UTF-8");
PrintWriter out = resp onse.getWriter();try {
String u= request. getParameter("username");
String p= request. getParameter("password");
/step1 load the driver class
Class.forName(" oracle.jdbe.driver.OracleDriver™);
/step2 create the connection object
Connection con=DriverManager.getConnection(
"jdbe:oracle:thin:@localhost:1521 :card”,"system","oracle™);
ffstep3 create the staternent object
Statement stmt=con. createStatement();
Hstepd execute query
String s= SELECT * FROM login WHERE usemame="1u" AND
password="p’;
ResultSet rs=stmt. executeQuery (s);
If (rs!=NULL)
<jsp:forware page="authentic ate.jsp’=
ffstepS close the connection object
con. close();
Yeatch(Exceptione) { System.out.println(“page could not displayed™);} }
}

request,

Testing the web application: To test the web application
for malicious union query, we give the following inputs to
login form. The outcome of the application is displayed in
the following Table 2.

Since the malicious query contains original table name
of a database, the execution of query inside web
application leads to SQL error. Therefore, execution is
move from try block to catch block. To control the error
message, we do not encourage to display the detailed
error message. This detailed error message leads to know

4447

Asian J. Inform. Technol., 15 (22): 4445-4449, 2016

Table 2: Shows the response output when we give both legitimate and malicious inputs are given

Username Password Query string Expected output Actual output
Apple Orange Select * from login where Since it is a legitimate query, It goes to authenticated page
username="Apple’ and it should go to next authenticated
password="orange’ page
Apple Orange union select * from login where Rince the original name of table The page could not displayed
select * from username = “apple’ and “debitcard” is changed to “list”
debitcard password=orange’' union execution of the query leads to error.
select * from debitcard”; Therefore, the output should displayed

as “The page could not displayed”

| e M L A AR AL M LA R = - - |

c localhost =

PREVENTION OF UNION QUERY TYPE SQL INJECTION ATTACK
USING PRIVATE SYNONYM

crangn union sebect * from detacard i

[44 Mot cifen .~ | W Webtepeabond <Ni. | [cuery - Notepad 67 & ziom

Fig. 2: The malicious input from a user

L o — oo -
ol il e B i

ot - e T 8 71 & |

4B A Y

10 i 5 B o) iy g1 P

The page could not be displayed

Klelac’ Olel lelolesle il T

Fig. 3: The response when a malicious input is given

the details of tables, data types of database. CONCLUSION

Therefore, we prefer simple and general messages

like. “The page could not displayed” (Fig. 2 and This study presented a new technique for preventing
3). Union query type SQLIA attack based on the novel

4448

Asian J. Inform. Technol., 15 (22): 4445-4449, 2016

concept of private synonym and controlling error
messages. The proposed system contributes the
following: there 13 no need to store the query structure
before deployment. No need to change source code of the
web application. An evaluation of the technique shows
the effectiveness and efficiency. We also study the
limitations of our approach. We have tested only oracle
database and planned to test more number of databases
in future. We implemented the tool using java which is
platform independent. In future, we planned to implement
1t using dotNet framework.

REFERENCES

Buehrer, G., BW. Weide and P.A.G. Sivilotti, 2005. Using
parse tree validation to prevent SQL injection attacks.
Proceedings of the 5th International Workshop on

Software Engineering and Middleware, September
5-6, 2005, Lisbon, Portugal, pp: 106-113.

Dharam, R. and S.G. Shiva, 2012. Runtime monitors for
tautology based SQL injection attacks. Proceedings
of the 2012 International Conference on Cyber
Security, Cyber Warfare and Digital Forensic
(CyberSec), Iune 26-28, 2012, IEEE, Tennessee, USA,
ISBN: 978-1-4673-1425-1, pp: 253-258.

Halfond, W.G.J., A. Orso and P. Manolios, 2008. WASP:
Protecting web applications using positive tainting
and syntax-aware evaluation. TEEE Trans. Software
Eng., 34: 65-81.

Kemalis, K. and T. Tzouramanis, 2008. SQL-IDS: A
specification-based approach for SQL-iyection
detection. Proceedings of the 2008 ACM Symposium
on Applied Computing, March 16-20, 2008, Fortaleza,
Ceara, Brazil, pp: 2153-2158.

Patel, N., F. Mohammed and 5. Soni, 2011. SQL iyection
attacks: Techniques and protection mechanisms. Int.
J. Comput. Sci. Eng., 3: 199-203.

Sun, S.T., TH. Wet, S. Liuand S. Lau, 2007. Classification
of SQL Tnjection Attacks. University of British
Columbia, Vancouver, British Columbia,.

4449

	4445-4449_Page_1
	4445-4449_Page_2
	4445-4449_Page_3
	4445-4449_Page_4
	4445-4449_Page_5

