Asian Journal of Information Technology 15 (20): 4063-4070, 2016

ISSN: 1682-3915
© Medwell Journals, 2016

Estimation of Software Quality based on Software Metrics Using
Modified Cuckoo Search Optimization Algorithm

Y. Suganthi and *3. Duraisamy
'Department of MCA, Nehru Institute of Information Technology and Management,
Coimbatore, India
“Department of Computer Applications, Sri Krishna College of Engineering and Technology,
Coimbatore, India

Abstract: Software metrics is considered as the major criterion as it directly depends on the software quality.
The intensity with which developed software remains efficient with its purpose, determines its quality. In recent
vears, the software development with the major consideration being its quality has become an important
research area. The increased use of software system in various technologies has led to vast development in
the field of delivering efficient software with higher quality and reliability. In order to develop better quality
software, we have considered software metrics like popularity, reliability and computational cost. Initially the
test cases are generated and then the software metrics are calculated as features. Those features are optimized
using Modified Cuckoo Search algorithm (MCS). The optimization 1s done 1 order to obtain completely relevant
software metrics that suits our development process. Finally, the optimized result will be evaluated by software
quality measure. The proposed method uses the reliability for the quality measure. The reliability can help us
i verifying the quality of the particular software that has been developed.

Key words: Software metrics, software quality, reliability, cost, popularity, modified cuckoo search

INTRODUCTION

Modemn software systems become more and more
large-scale, complex and uneasily controlled, resulting in
high development cost, low productivity, unmanageable
software quality and lugh risk move to new technology.
Consequently, there is a growing demand of searching for
a new, efficient and cost-effective software development
paradigm (Cai et al., 2000). At the same time, estimating
the quality of a software product during its development
or pre-operation phases 1s a challenging problem,
especially when there is very limited or no information
regarding its existing quality is available (Chaudron et al.,
2001). In software quality estimation problems, a software
quality classification or software fault prediction model 1s
typically trained or built using software measurements
and fault data from a previous system release or similar
software project developed by the given orgamzation.
These models are supervised learning in the sense that
the training process is guided by the software quality
measurement (i.e., the dependent variable or the fault-
proneness label). The trained model 1s then used to
predict the quality of the software modules in a software

project under consideration. In this study, we are
particularly interested m learming software quality
estimation models using unsupervised learmng methods
in the absence of software quality measurements.

The component-based approach is the most recent
approach and will probably mature over the years of the
millenmium. Component-Based Software Engineering
(CBSE) has emerged as a technology for rapid assembly
of flexible software systems. It combines the elements of
software architecture, modular software design, software
verification, configuration and development (Chaitanya
and Ramesh, 2011; Sirobi and Parashar, 2013). CBSE
denotes the disciplined practice of building software from
pre-existing smaller products, generally called software
components, in particular when this is done using
standard or de-facto standard component models
(Sagredo et al., 2010). The popularity of such models has
increased greatly in the last decade, particularly in the
development of desktop and server-side software, where
the main expected benefits of CBSE are increased
productivity and timeliness of software development
projects (Luders er al, 2005; Mikaehan er af., 2005;
Ratnaweera ef al., 2004). The dependence on reliability

Corresponding Author: V. Suganthi, Department of MCA, Nehru Institute of Information Technology and Management,

Coimbatore, India

4063

Asian J. Inform. Technol., 15 (20): 4063-4070, 2016

and quality of mission-critical and high-assurance
software systems are very essential. Unfortunately, high
software reliability often involves prohibitive
consumption of time and monetary resources for software
development. Reliability improvement techniques may
include more rigorous design and code reviews, more
exhaustive testing and focused re-engineering of lgh-risk
segments of a software system (Khan ef al., 2014). Due to
the fact that quality improvement processes are so time
and resource consuming, cost-effective strategies are
warranted and hence have been the target for the software
reliability improvement commumnity (Khoshgoftaar and
Seliya, 2003; Mikaelian et al., 2003).

The evolution method used in the present study is
Particle Swarm Optimizer (PSO). However, PSO has
evolved mn Data Mimng (DM) in which it can reduce
complexity and speed up the data mining process
(Shukran et al., 2011; Mikaelian et al., 2003). Although,
PSO shares many similanties with evolutionary
computation techmques, the standard PSO does not use
evolution operators such as crossover and mutation. PSO
emulates the swarm behaviour of insects, animals herding,
birds flocking and fish schooling where these swarms
search for food n a collaborative manner. Each member in
the swarm adapts its search patterns by learning from its
OWn experience experiences
(Kadukamanathan et af., 2006). These phenomena are
studied and mathematical models are constructed. In PSO,
a member in the swarm, called a particle, represents a
potential solution which is a point in the search space.
The global optimum is regarded as the location of food.
Each particle has a fitness value and a velocity to adjust
its flying direction according to the best experiences of
the swarm to search for the global optimum in
the D-dimensional solution space (JToseph et al., 2011;
Liang ef al., 2016).

and other members’

Literature review: Abdellatief et al (2013) have
proposed a systematic mapping study of several metrics
measure the quality of CBSS and its components. The
research had found 17 proposals that could be applied to
evaluate CBSSs while 14 proposals could be applied to
eva3SSSluate individual compenents 1 1solation. Various
elements of the software components that were measured
had been reviewed and discussed. In the present research
the quality assessment of the primary studies had
detected many hmitations and had suggested guidelines
for possibilities for improving and increasing the
acceptance of metrics.

Yacoub et al (2004) have proposed a reliability
model and a reliability analysis techmique for
component-based software. The technique had been

named as Scenario-Based Reliability Analysis (SBRA). In
this research,
compenent nteractions to construct a probabilistic model
named Component-Dependency Graph (CDG). Based on
CD@G, a reliability analysis algorithm was developed to
analyze the reliability of the system as a function of the
reliabilities of its architectural constituents. An extension
of the proposed model and algorithm was also developed
for distributed software systems.

Huang et al. (2006) have proposed a novel approach
to recovering software architecture from component
based systems at runtime and changing the runtime
systems via manipulating the recovered software
architecture. The recovered software architecture can
accurately and thoroughly describe the actual states and
behaviours of the runtime system. The study had also
presented that, the recovered software architecture can be
represented as multiple views so as to help different users
to control the complexity from different concerns. Based
on the reflective ability of the component framework, the
recovered software architecture was up-to-date at any
time and changes made on it will immediately lead to the
corresponding changes m the runtime system. The
proposed method presented m this study was
demonstrated on PKUAS, a reflective J2EE (Java 2
Platform Enterprise Edition) application server and the
performance was also evaluated.

Rathfelder et al. (2014) have proposed an
approach enabling the modeling and performance
prediction of event-based systems at the architecture
level. In this research, the proposed approach integrates
platform-specific performance fluences of the
underlying middleware while enabling the use of different
existing analytical and simulation-based prediction
techniques. The study had contributed: the development
of a meta-model for event-based communication at the
architecture level, a platform aware model-to-model
transformation and a detailed evaluation of the
applicability of the proposed approach based on two
representative real-world case studies. The results had
shown the effectiveness, practicability and accuracy of
the proposed model and prediction approach.

Zschaler (2010) has presented a
specification of tuneliness properties of a
component-based system as an example of a formal
approach to specifying non-functional properties in
this study. The specificaion was modular and
allows reasoning about the properties of the
composed system.

Pham and Defago (2013) have proposed a novel
extension built upon the core model of a recent
component-based reliability prediction approach to offer

researcher had used a scenario of

formal

4064

Asian J. Inform. Technol., 15 (20): 4063-4070, 2016

an explicit and flexible definition of reliability-relevant
behavioral aspects, (1.e., emor detection and error
handling) of FTMs and an efficient evaluation of their
reliability impact in the dependence of the whole
system architecture and usage profile. The proposed
approach was validated in two case studies by modeling
the reliability, conducting reliability predictions and
sensitivity analyses and demonstrating its ability to
support design decisions.

MATERAILS AND METHODS

Proposed method: Software metrics are suggested to
calculate the software quality and presentation features
quantitatively, encountered during the planning and
implementation of software development. For the purpose
of contrast, cost estimation, fault prediction and
forecasting these can provide as measures of software
products. Several researches have been performed on
software metrics and their functions. To improve software
with higher quality concern is the most important goal of
our suggested method. We have considered improving
software with the help of some of the software metrics like
reliability and cost in order to progress improved quality
software. The reliability and cost can assist us in
validating the quality of the specific software that has
been proposed. The software parameters are selected with
the help of optimization process. The optimization is
prepared m order to attain totally related software
parameter that outfits owr suggested development
process. We have exploited Modified Cuckoo Search
algonthm (MCS) m suggested method for optimization
of software parameters. In Fig. 1 the overall process
of the executed method is exposed. The block diagram
of the suggested method is demonstrated in beneath

Tew Ui S
—— i
. e | I-
¥ —
= |
— -
==
.'.\
S fware: Quaaliny Measac I
[
Refiabiliny —,

Fig. 1: Block diagram of proposed method

Open source software: For alteration or improvement by
anybody open source software 1s software whose source
code is accessible. The maintainability of the software
along with reliability, constancy, difficulty and reusability
has been a main problem when software 1s progressed and
this participate the most important role in the functioning
and a long lifetime of the progressed software.

Test case generation of proposed method: For the
purpose of producing of test cases, open source software
15 specified to the test case generation m this section.
Test cases are employed to test all feasible combinations
in the application and as well it offers the user to simply
replicate the steps that were assumed to expose a defect
that is identified during test. Test cases can be charted
directly and obtained from use cases. Test cases can as
well be obtained from system requirements. Moreover,
when the test cases are produced early, Software
Engineers can frequently discover ambiguities and
inconsistencies in the requirements specification and
design documents. This will absclutely get down the cost
of building the software systems as faults are eradicated
early during the life cycle. Test case generation is a
method where the test cases are produced not based on
an algorithm but based on the ones statement of the
application. Classes will be checked and different test
inputs will be offered to make sure for the faults in the
application. The generation of test cases is based on the
popularity and cost. The result 13 fed to adapted cuckoo
search algorithm for the assessment of software quality.

Popularity: To find the popularity of the open source
software, initially we check all the function in a class.
Then evaluate the popularity based on the function in
each class (F):

_ called by other fun + (call by this fun - 1) (1)
call by this fun

F

Popularity =sumof function (F)in each class (2)

Consider an example of open source software; it is
clearly explaining the popularity of the open source
software. It 1s explamed in Table 1. Here A and B are the
two class, Al, A2, Bl and B2 are the function 1n a class.
At first evaluate the F in each function in a class. Then
find the popularity of each class:

F(Al) =2+ (3-1)/3= 2.6
F(A2) =1+ (2-1)/2 =15
F(B1)=2+ (1-1/1=2
F(B2) =2+ (2-1)/2 = 2.5

4065

Asian J. Inform. Technol., 15 (20): 4063-4070, 2016

Table 1: Example of popularity

Class A Class B
Al B1

{ {

Bl, A2, B2 B2

} }

A2 B2

{ {

B2, Al Al, Bl
} }

Popularity of class A=2.6+1.5=4.1
Popularity of class B=2+2.5=4.5

Based on these procedures the popularity of open
source software 1s calculated.

Cost:
conformance or nonconformance of software product
quality. The excellence of any software can rely mainly on

A calculation cost 1s particularly with the

the cost of the software. The cost estimation 13 made
based on the implementation time necessary for the
software to run. Rise in the time to check the software
increases the difficulty of software. Tt is all the time
viewed that allotted time for checking of software can go
beyond its necessary schedule time. Automated testing
tools are employed to hurry up the testing process. It
does not merely hurry up the testing process however it
raises the competence of the testing by certain extend.
The software cost 13 estimated based on the time
execution of software as well as the error value:

t
Clost = €, +C, (4D (HC,, [fr(t i), (t)} +C, Ix(t)dt
0

3
Where:
Cn = Costof adopting a new automated testing tools
r = Directly proportional to cost
C, = Cost of correcting the error during the testing
C, = Cost of correcting an error during process
C, = Cost of testing per umt testing expenditure

F,(t) = Failure rate

Modified cuckoo search algorithm: Cuckoo search
algorithm is a metaheuristic algorithm which was
motivated by the breeding behavior of the cuckoos and
relieves to execute. There are a number of nests in cuckoo
search. Hach egg indicates a solution and an egg of
cuckoo indicates a novel solution. The novel and better
solution is substituting the most terrible solution in the
nest. The process of clustering 1s specified below:

Step 1

Initialization phase: The population (m, where I =1.2,... 1)
of host nest 13 commenced randomly.

Step 2

Generating new cuckoo phase: By means of levy flights
a cuckoo 1s chosen at arbitrary and it produces novel
solutions. Next the produced cuckoo 1s assessed by
means of the objective function for finding out the quality
of the solutions.

Step 3
Fitness evaluation phase: Assess the fitness function
based on the equation and after that choose the best

one:
p . =15 4
PT
fitness = maximum popularity = Py, (5)
Where:

P, = Selected population
P; = Total population

Step 4

Updation Phase: Revise first the solution by levy flights
in which cosine transform is employed The excellence of
the novel solution is assessed and a nest is chosen
among randomly. Tf the excellence of novel solution in the
chosen nest is better than the old selutions, it will be
substituted by the novel solution (Cuckoeo). Or else, the
earlier solution 1s set aside as the best solution. The levy
flights used for ordinary cuckoo search algorithm 1s:

mi* = mi(t+1) = mi(t) +at@® Levy(n) (6)

By altering the above equation, levy flight ecquation
by employing the gauss distribution is shown in below:

G, = Gg exp(LK) (7)
Where:
0, 1 = Constants
K = Current generation
Step 5

Reject worst nest phase: The worst nests are thrown
away m this part, based on their possibility values and
novel ones are built. Later, based on their fitness function
the best solutions are graded. Next the best solutions are
recognized and spotted as optimal solutions.

Step 6; Stopping criterion phase: Until the maximum
iteration accomplishes this process 1s replicated.

4066

Asian J. Inform. Technol., 15 (20): 4063-4070, 2016

Fig. 2: Flowchart for modified cuckoo search

The optimized result will be examined for the measure of
software quality. The specified process is obviously
demonstrated in flowchart. It’s shown in beneath (Fig. 2)

Software quality measure: Software quality measure is to
estimate quality of the software. Here we used to calculate
the software quality by reliability.

Reliability: In a particular environment, software
reliability is described as the possibility of failure-free
software operation for a given period of time. The
excellence of software testing i1s openly associated to
reliability growth. During the software designing the
mistakes are mainly generated and these mistakes confirm
to be the mam reason for finding out the reliability of
software. The amount of mistake i that software must be
calculated approximately correctly and should be
eliminated. The reliability can be calculated by estimating
the testing effort of the specific software. The failure rate
regarding the time of mmplementation can be computed

and this presents as the reliability of that specific software
at the implementation time. The software reliability is
estimated based on the failure rate that is obtained from
the software. The reliability of the software can be
calculated during the expression specified below:

reliability — oo rate (1) (8)
execution time

RESULTS AND DISCUSSION

As per our proposed method, we have used a
Balloon tooltip open source software version 2.1. For the
above software, we have estimated the fNtness values
using the optimization technique for test case
optimization. The implementation is done in the working
platform of TAVA. The computational cost and the
reliability measure is also being measured and its average
value 1s compared with that of the existing method. In this
reseach at first we generate certain test case values and
for these test cases the optimization process is carried
which generate optimized output. The optimization helps
in choosing the required test cases for generating our
system. The fitness values for the proposed MCS
algorithm as well as the existing PSO are then tabulated in
correspondence to the different iterations. The fitness
value for MCS 1s calculated using the below expression,
Assess the fitness function based on the equation and
after that choose the best one:

Y

max
Pt

fitness = maximum popularity = P,

Where:
P, = Selected population
P = Total population

The fitness value for PSO is calculated using the
below expression, Assess the fitness function based on
the equation and after that choose the best one.

fitness = Bs
PS

After fitness value generation, the reliability and the
cost of are calculated for different iterations. Finally, the
obtained reliability is compared with that of other existing
method and the comparative graph is plotted. The
reliability of the software can be measure dusing the
expression given below:

4067

Asian J. Inform. Technol., 15 (20): 4063-4070, 2016

Table 2: Fitness value for different iterations
Fitness value using PSO

No of Tterations Fitness value using MCS

5 0.87 231
10 0.95 2.37
15 1.22 2.62
20 1.44 2.64
25 1.69 3.24

Table 3: Reliability and Computational Cost (CC) estimate in relation to
execution time

No. of iterations Reliability cC

5 0.07634 20275.39

10 0.08078 21157.64

15 0.09553 24670.38

20 0.07786 2117011

25 0.07079 19753.80
() =f(t)/ e (10)

Where:

f(t) = Failure rate at time (t)

e, = execution time
The cost is calculated based on the below expression:

Cy= Co +C I+ D+
t
C,| £(tj)-i0mn ves Ix(t)dt
0
Where:
C;, = Cost of adopting a new automated testing tools
mnto testing phase
K = Directly proportional to cost as k increases cost
also increases
C, = Total cost of the software
C, = Cost of correcting the error during the testing,
C, = Cost of correcting an error during operation
C; = Cost of testing per unit testing expenditure

Table 2 shows the fitness values for our proposed
Modified Cuckoo Search (MCS) and that of existing
PSO method. The value shows that owr proposed method
has delivered better fitness value. The graphical
representation of the fitness value for proposed and
existing approach are shown in below Fig. 3. From the
above graph it can be inferred that our proposed modified
cuckoo search delivers better fitness values in terms of
different iteration values when compared with that of PSO
algorithm.

Table 3 shows the reliability and the cost value
obtammed from our proposed method for various iterations.
The estimated reliability and the CC values are bemng
tabulated and the graph is plotted. The graphical
representation of reliability and cost for various iterations
are shown in Fig. 3 and 4, respectively, Table 4 given
below shows the reliability comparison of our proposed

Table 4: Comparison of reliability value of our proposed method with
existing method

Method Reliability
Proposed method 0.08026
Existing method (Joseph et ., 2011) 0.0015
3.5 7 m Fitness value of using PSO 3.24
@ Fitness value of using MCS
3.07 262 264
2.5 4 231 237
s
2 50
s 20 1.69
154 i 1.44
1.0 - 0.87 0.95
0.5
0.0 H T T T T
5 10 15 20 25

No ofiterations

Fig. 3: Graphical representation of fitness values for MCS
and PSO

0.124
0.104
0.08+] —

0.06+

Values

0.04+

0.02+

0.00 T T T .
5 10 15 20 25
No of iterations

Fig. 4: Graphical representation of reliability versus
iteration

methods with the existing method. The existing method is
Model for Reliability Estimation of Software based
Systems by Integrating Hardware and Software
(Joseph et al. 2004). The major drawback that exists in the
previous work 13 the reliability value which is much lesser.
The reliability value is the major attribute that imitiate the
quality of particular software being designed. Hence 1t 15
considered as the major drawback in the system. Another
problem in the existing work 1s regarding the test cases.
The number of test cases 1s too high which makes the
software design more complicated. The test cases should
be chosen such that there will be those which can
effectively support the software design with higher
quality. Hence test case selection remains to be a major

4068

Asian J. Inform. Technol., 15 (20): 4063-4070, 2016

Mo of iterations

Fig. 5: Graphical representation of cost versus iteration

Prapoded method

Existing methad

Mool teratians:

Fig. 6: Graphical representation of rehability values for
existing and proposed methods

requirement in the software design process. Hence to
solve these drawbacks we have proposed the optimization
based software quality measurement technique that
effectively increases the software quality by considering
the reliability factor. The values are then plotted n
graphical representation and 1s shown in Fig. 5 and 6.
From the values it is clear that our proposed method
delivers better reliability which further conclude that the
software 1s of better quality.

CONCLUSION

In this study we have propose a method for
Estimation of Software Quality based on Software

Metrics. We have considered several software metrics like
popularity, reliability and cost. The proposed method
uses the popularity and cost for generating the test cases.
Similarly the reliability of the software metrics used to
evaluate the quality of the software. The method uses the
Modified Cuckoo Search algorithm (MSC) for the
optimization of software metrics. Then the optunized result
will be evaluating the quality measure using the software
metrics. The result shows that our proposed method
achieves better quality of the software.

REFERENCES

Abdellatief, M., ABM. Sultan, A A. Abdul Ghami and
M.A. Jabar, 2013. A mapping study to mvestigate
component-based software system metrics. J. Syst.
Software, 86: 587-603.

Cai, X., MR. Lyu, KF. Wong and R. Ko, 2000.
Component-based software engineering:
Technologies, development frameworks and quality
assurance schemes. Proceedings of the Seventh
Asia-Pacific Conference on Software Engineering
APSEC 2000, December 8-8, 2000, IEEE, Sha Tm,
China, ISBN: 0-7695-0915-0, pp: 372-379.

Chaitanya, P.G. and K. V. Ramesh, 2011. Feasibility study
on component based software architecture for large
scale software systems. Int. J. Comput. Sci. Inf
Technol., 2: 968-972.

Chaudron, M.R.V., EM. Eskenazi, A.V. Fioukov and
D.K. Hammer, 2001. A framework for formal
component-based software architecting. Proceedings
of the Workshop on OOPSLA Specification and
Verification of Component-Based Systems, October
14-14, 2001, Towa State University, Ames, lowa, pp:
73-80.

Huang, G., H. Mei and F.Q. Yang, 2006, Runtime recovery
and manipulation of software architecture of
component-based systems. Autom. Software Eng.,
13: 257-281.

JToseph, S., P.V. Showri and V.P. Tagathy Raj, 2011. A
model for reliability estimation of software based
systems by integrating hardware and software. Int. J.
Comput. Appl., 1: 26-29.

Kadikamanathan, V., K. Selvarajah and P.J. Fleming, 2006.
Stability analysis of the particle dynamics 1 particle
swarm optimizer. IEEE. Trans. Evol. Comput., 10:
245-255,

Khan, A., K. Khan, M. Amir and M.N.A. Khan, 2014. A
component-based frameworlk for software reusability.
Int. J. Software Eng. Its Appl,, & 13-24.

Khoshgoftaar, T.M. and N. Seliya, 2003. Analogy-based
practical classification rules for software quality
estimation. Empirical Software Eng., 8: 325-350.

4069

Asian J. Inform. Technol., 15 (20): 4063-4070, 2016

Liang, I.T., AK. Qin, P.N. Suganthan and S. Baskar, 2006.
Comprehensive learning particle swarm optimizer for
global optimization of multimodal functions. IEEE
Tans. Evol. Comput., 10: 281-295.

Luders, F., I. Cmkovic and P. Runeson, 2005. Adopting a
Component-Based Software Architecture for an
Industrial Control System-A Case Study. In:
Component-Based Software Development for
Embedded Systems. Colin, A., C. Bunse, H.G.Gross
and C. Peper (Eds.). Springer, Berlin, Germany, ISBN:
978-3-540-30644-3, pp: 232-248.

Mikaelian, T., B.C. Williams and M. Sachenbacher, 2005.
Model-based momtoring and diagnosis of systems
with software-extended behavior. Proceedings of the
20th National Conference on Artificial Intelligence,
July 9-13, 2005, AAAT, Pittsburgh, Permsylvania, pp:
327-333.

Pham, T.T. and X. Defago, 2013. Reliability prediction for

software with

architectural-level fault tolerance mechanisms.
of the 2013 Eighth International

Conference on Availability, Reliability and Security

(ARES), September 2-6, 2013, TEEE, Nomi, Japan,

ISBN: 978-0-7695-5008-4, pp: 11-20.

component-based systems

Proceedings

Rathfelder, C., B. Klatt, K. Sachs and S. Kounev, 2014.
Modeling event-based communication in
component-based software architectures for
performance predictions. Software Syst. Model., 13:
1291-1317.

Ratnaweera, A., 5. K. Halgamuge and H.C. Watson, 2004.
Self-organizing hierarchical particle swarm optimizer
with time-varying acceleration coefficients. TEEE
Trans. Evolutionary Comput., 8: 240-255.

Sagredo, V., C. Becerra and G. Valdes, 2010. Empirical
validation of component-based software systems
generation and evaluation approaches. CLEL
Electron. ., 13: 1-13.

Shukran, MA M., Y.Y. Chung, W.C. Yeh, N. Walud and
AMA. Zaidi, 2011. Artificial bee colony based data
muining algorithms for ation tasks. Mod. Appl. Sci., 5:
217-231.

Sirobi, N. and A. Parashar, 2013. Component based
system and testing techniques. Int. J. Adv. Res.
Comput. Commun. Eng., 2: 2378-2383.

Yacoub, S., B. Cukic and HH Ammar, 2004. A
scenario-based reliability analysis approach for
component-based software. IEEE Trans. Reliability,
53: 465-480.

Zschaler, S., 2010. Formal specification of non-functional
properties of component-based software systems.
Software Syst. Model., 9: 161-201

4070

	4063-4070_Page_1
	4063-4070_Page_2
	4063-4070_Page_3
	4063-4070_Page_4
	4063-4070_Page_5
	4063-4070_Page_6
	4063-4070_Page_7
	4063-4070_Page_8

