Asian Journal of Information Technology 15 (20): 4048-4053, 2016

ISSN: 1682-3915
© Medwell Journals, 2016

Test Suite Reduction (TSR) Recommendation in Function Calls
Using Sliding Window

'C P. Indumathi and K. Selvamani
'Department of CSE, Anna University, Trichy, India
*Department of CSE, Anna University, Chennai, India

Abstract: The software modularity makes immense importance in the process of software development life cycle
as all the software’s are developed by COTS (Commercial Off The Shelf) components which are mainly
concerned with size and complexity. This introduces challenges to existing test suite reduction techniques and
makes it unsuitable for readymade software and for large complex software’s. In this study we
propose(recommend) a method using sliding window in function calls to achieve better test suite reduction,
without accessing the source code and also to reduce the cost of integration testing by taking size, cost and

time as motivating factors. Our proposed method provides good result with earliest reduction techmiques in

literature.

Kev words: Function call, integration testing. sliding window. software testing, test case reduction

INTRODUCTION

In this modem era, millions of software’s were
released every month. Among them, most of the softwares
are highly modular in nature as well as integration testing
plays a major strength in the process of software
development. Also, a successive evolution of software
releases with large number of modifications mcreases the
cost for regression testing (He et al, 2005). Hence,
test-suite reduction technique (Delamaro et al., 2001,
McMaster and Memon, 2005; Rothermel et al., 2002) is
essential to decrease the overall cost of this regression
mtegration testing. Various traditional approaches such
as mutation testing, code coverage criteria (Harrold et al.,
1993; Haley and Zweben, 1984) depend upon the source
code of interacting module to reduce the size of original
test-suite. Tts source code depending strategy males them
unsuitable for software whose source code size is fairly
large and for COTS (Commercial Off-The-Shelf)
components which 1s normally supplied without source
code. Hence, this research study aims in proposing a
method to reduce the test suite size without accessing
source code based on the sequence of function calls
between the modules.

Existing approaches. Conventional approaches to test
suite reduction was established on the various coverage
criteria and program elements which is divided into two
broad groups namely:

* Interface mutation analysis
* Structural metrics

Interface mutation analysis: Interface mutation
(Piwowarslki et al., 1993; Kichigin, 2007) method relies on
the three categories to estimate the completeness of
integration testing namely:

s Operators that simulate integration errors are used as
mutation operators

* To test more than two modules, the mteraction
between several modules has been tested pair-wise

s Mutation operators are practically applied to such
“interface” parts of the source code as calls to
wnterface functions thewr parameters or global
variables

Interface mutation operates with source code which
makes 1t unsuitable for applications. For e.g., considering
for any application it must focus on the parameters such
as:

» Interface and links between applications
» Interface to related systems or applications
» Features, functions and facilities

Integration testing type considers on testing the
interfaces (alone). It 1s one of the subset of the integration
testing phase whereas Integration testing phase focuses
on revealing defects combining
components mcluding usage, incomplete understanding
of product domain, user errors and so on. Hence, the
integration testing focuses on both interface and usage
flow.

when various

Corresponding Author: C.P. Indumathi, Department of CSE, Anna University, Trichy, India
4048

Asian J. Inform. Technol., 15 (20): 4048-4053, 2016

Structural metrics: Structural metrics are based on
testing the behavior of structural elements of the software
which are responsible for mteraction of elements being
integrated. Structural metrics are calculated in two
stages.

Static stage: At this stage, the source code of modules to
be mtegrated 1s analyzed to reveal dependencies between
them.

Dynamic stage: At this stage, the interaction between
modules during the software execution on a test suite is
analyzed to check whether the dependences between the
modules revealed at the static stage are actually fulfilled.

Based on the result of checking, the coverage of
interaction between the modules by test suite is
estimated. For this, two different groups of metrics are
used. One such metric uses program control flow model
(Zhu et al., 1997, Delamaro et al., 2001) whereas other
metric uses program data flow model (Delamaro ef al,
2001, Hofmeyr et al., 1998; Harrold et al., 1993).

The conventional approaches for integration testing
clearly relies on the source code thus making a difficult to
use these methods for testing large scale Intensive
software and COTS (Commercial Off-The-Shelf) which is
a ready-made software components.

Module interaction and integration error: Integration
testing plays vital role in software development life cycle.
Many components are integrated and tested together
which 13 a daunting task m enterprise applications.
Moreover, these diverse teams build different modules
and components at the time of module development.
There 1s a possibility of chances by the clients/customers
to change in requirements between these new
requirements may not be umt tested. Integration testing
becomes necessary to analyzes and reveal the differences
between the parameters and the required parameters
during interaction between components of software.
Such differences are termed as integration errors
(Rountev et al, 2005, Lmnenkugel and Miillerburg,
1990). In this research work, the interactions between
software modules are performed through the interface of
functions. Integration errors are raised when an mcorrect
value (s) is transferred between interacting modules.
Integration errors of four types and are performed as
follows.

For e.g., consider the program P1 and test tt for P1.
Suppose, if the program include the modules X and Y.
Such that X contains calls to Y then,

Input
In (Y): Represents the set of values that is passed from

i
1

module X to module Y. There are tuples of input
values in a call to a function is determined by which the
input parameters used in the function call and the global

variables used in Y

Output

Out(Y): Represents the set of values that is passed from
module Y to module X. The 1 tuples of mput values in a
call to a function B is determined by the output
parameters used in the function call and the global
variables used in Y and the values returned by Y.

There are four types of errors namely Type 1 FError,
Type 2 Error, Type 3 Error, Type 4 Error. These errors will
cause erroneous outputs based on their input values to
the process From the above, three types of Integration
Errors were noticed that location of the state is not
specified which responsible causes incomrect outputs.
Hence, considering existing incorrect values. In Type 4
error, when IN(Y) has the expected values, a fault in Y
produces an erroneous output before returning from Y. In
this case, there is no error propagation through the
comection X-Y. This type of expected error is not
detected during unit testing.

Hence, Type 4 error can be ignored since it has no
effect on mtegration testing therefore, the other three
types of error are taken into consideration. These three
types of mtegration errors can further form hybrid
combinations. The possible hybrid types of integration
errors are described as follows.

Type3_Typel Error: When a module say X sends correct
values of IN(Y) to module Y and Y incorrectly computes
OUT(Y) which is part of IN (7)) which will cause erroneous
output n module 7.

Type3_Type2 Error: When module X sends correct
values of IN(Y) to module Y which incorrectly computes
that QUT(Y) is part of IN(Z) and module 7 returns
incorrect output.

Type2_Typel Error: When module X sends incorrect
values of IN(Y) to module Y which leads to incorrect
values of that OUT(Y) is part of IN(Z) and this will cause
erroneous output at 7.

Type2_Type2 Error: It 1s sumilar to Type2 Typel error
with the exception that the module 7 will return incorrect

values.

4049

Asian J. Inform. Technol., 15 (20): 4048-4053, 2016

MATERIALS AND METHODS

Implementation details: This method 15 1mplemented
based which is based on the construction models
of meoedule a test
suite. This
code to be instrumented and hence, there 1s no

need to the of the

software.

mteraction dependencies on
method does not impose the source

access the source code

Model for module interaction: This model of module
mteraction behavior i1s constructed using sequences
of calls of the module interface functions performed
during the execution of programs. The function names
and parameters passed to those functions plays a
significant role in extracting the interaction

behaviors.

Interaction between two testing modules: The following
function calls are essential for constructing sequences of
calls of interacting modules. We assume that two modules
(X and Y) mnteract through the functional mterface of
module B. By interface function, we mean the functions
that are included mto the program interface is a software
module.

During the trace of interfacing modules X and Y on
test tt, the sequence of the mnterface functions of Y called
by X when executed on the input data to the test case tt.
We assume that the functions m the trace are arranged in
the order of their calls and for each function, the actual
parameters passed in the function call are indicated.
When the sequence of interface functions of length K, we
call any continmuous sequence of length K found mn the
interaction trace.

By the set of sequences of interface functions
(Hofmeyr et al., 1998) of length K corresponding to the
interaction between modules X and Y on the test tt, we
mean that the set of all feasible sequences of length K
found in the trace of interaction between modules X and
Y on the test tt.

To obtain the set of sequences of interface
functions of a fixed length, the moving window
technique of the size of K 1s used (the window size
corresponds to the selected length of sequences as
shown in Fig. 1).

According to this approach, the sequences are
selected in the following way: the first sequence of the
trace 1s selected to be the first K interface functions i a
row starting from the first function in the trace; the
second sequence is selected to be the interface functions

in a row starting from the second function and
so on until the entire trace is passed. Model of the
A and B on test t 1s
defined

mnteraction between modules
taken to be the
above.

set of sequences

Test suite reduction method: The test suite reduction
method allows set of sequences of calls to interface
module obtained from the constructed model and
given as mput to the algorithm proposed. Let us
consider TS 1s the mitial test suite, TS 18 the
reduced test suite such that TS’ 1s a subset of
TS(TS” _TS), tt is the next test from mtial test
suite (tt_ TS):

Mts — interaction behavior of model on test tt
MTS — interaction behavior of set of models on tests of TS

The implemented test suite reduction method
uses the interaction model described above. Let
TS be 1mtial test suite, TS be the reduced test
suite(TS’<-T8), tt be next test from initial test suite(ttETS),
Mts 1s the interaction behavior of model on test tt and
MTs’ is the interaction behavior of set of models on tests
of TS,

s At first, the subsequent test cases to be tested are
selected from the test suite to be reduced and 1t 1s
executed by program

» The mteraction behavior between modules X and Y in
the model Mits , test tt 15 built

+ Ifthe model is empty gotostepno 1

» If the model 1s not empty, check whether the model
Mts belongs to set of models MTs’

» If Mts does not belong to the set of models MTs’,
then Mts is added to the set MTs” and the test tt is
added to the reduced test suite TS’

¢ Otherwise if MtS belongs to set of models MTS’,
then do nothing and neglect tt

+ If TS has
otherwise the

not been passed, go to step 1
reduced test suite TS 1s
assumed to be constructed and ends the

process

It should be noted that, although our study considers
only the real nmumber parameters of functions, the
proposed approach can be adapted to case of arbitrary
parameters of functions for which the similarity relation
can be defined .

4050

Asian J. Inform. Technol., 15 (20): 4048-4053, 2016

—#—correct sequence —ll—incorrect sequence

120
100
a0
60
40
20

1l 234567 8 951011121314151617

Fig.1: Stack example with sliding window (size = 3)
RESULTS AND DISCUSSION

Experimental results: Tn this study, we use the test suite
reduction method from the mmplementation details to
explore in smmple stack application and considered for
interaction between sequence of calls. The methods and
respective signatures used in the stack application is
depicted in Table 1.

Interaction sequence m which stack based
application module calls stack module has been extracted
and possible combinations of permutations are obtained
by fixing a range of shding window size to find an
optimum sliding window size. Then test suite 1s reduced
based on the obtained correct and incorrect sequence of
calls for the optimum sliding window size. Let Module A
calls Module B using imterface of Module B. The
umplemented method necessitates interface of module to
perform test suite reduction for regression integration
testing.

To implement the test suite reduction method, the
method names and its signatures that are mn the interface
module are first extracted .The extracted methods and its
signatures are shown in the later section.

The next step 1s to compare the method names and
respective signatures of calling module with the extracted
method names and signatures. When matches occur, it
indicates that calling module interacts with interfaced
module through interface. All such matches are extracted
to find the sequences of calls of calling module with
mterfaced module. Such an extracted sequence 1s shown
in Table 2. Once sequences were extracted and all
possible permutations of the obtained sequences are
computed to identify correct and incorrect sequence of

Table 1: Method name and signatures of stack module

Method name Method signatures
Void scapacity Int size

Void push Int element

Tnt pop No signatures
Tnt peek No signatures
Boolean is ermpty No signatures

Table 2: Classification of Redundant and Non-Redundant Penmutations

Sliding All possible Redundant Non-redundant.
window size penmmutations permutations permutations
2 480 460 20
3 360 300 60
4 240 120 120
b 120 - 120

calls. This helps in identifying integration errors. The
permutated sequences are shown below. For further
process m identifying correct and incorrect sequence of
calls easily, all redundant permutated
eliminated and

sequences are
only non-redundant sequences are
retained. Those non-redundant sequences are illustrated
in Table 3. From the obtained non-redundant sequences,
the correct and incorrect sequences of calls are classified
and they are used in constructing reduced test suite set.

The above experiment 1s carried out by fixing the
sliding window size as 2,3,4 and 5 for the sequence of
length 5 to find the optimum sliding window size. The
Table 2 which is shown above depicts the total number of
permutations possible for sliding window of size 2,3,4 and
5. It also classifies the total number of redundant and
non-redundant permutations possible for each sliding
window size.

Table 3 illustrates
incorrect sequence of calls for each size of the sliding

number of correct and

4051

Asian J. Inform. Technol., 15 (20): 4048-4053, 2016

Scapacity isEmpty push|peek pop isEmpty

ScapacitylisEmpty push peeld pop isEmpty

Scapacity isEmpty] push peek poplisEmpty

Scapacity isEmpty pushl peek pop 1sEmpty

Fig. 2: Levels of sliding window size

Table 3: Classifications of correct and incorrect sequence of calls
Sequences of calls

Sliding Non-redundant Correct Incomrect
window size permutations sequence sequence
2 20 9 11
3 60 30 30
4 120 30 90
5 120 12 108

Table 4: Siemens test suite
Program name Lines of Code

No. of versions No. of functions

Print tokens 726 7 18
Print. tokens2 570 10 19
Schedule 412 9 18
Schedule2 374 10 16
Tcas 173 23 9
Tot_info 565 41 7

Table 5: Functions for “tcas ¢ program
Sequences of calls

Function name Correct sequence Incorrect sequence

Alim (1) 2 16
Inhibit Bias climb (2) 1 17
Tnitialize (3) 2 16
Own_ above _Threat (4) 3 15
Own_below Threat (5) 0 18
Non_crossing_bias_ limb (6) 1 17
Non_crossing Bias descend (7) 1 17
Main (8) 3 15
Alt sep test (9) 3 15

window. Figure 2 shows the comrect sequence and
incorrect sequence for various window sliding size
between 2-18.

From the above result, it 13 evident that optinum
sliding window size suitable to reduce test suite size
efficiently for the stack application is 3 and test suite is
reduced based on the interaction sequence obtained with
optimum shding window size fixed m the obtained
sequences.

For implementing the proposed technique, seven
programs from Siemens test suite has been taken. They
are print tokens and print tokens2 are used as lexical
analyzer, replace is used for pattern matching and replace
a sting, schedule and schedule2 are for scheduling the
jobs, tot_info 1s for giving statistical information for the
given data and tcas 13 used n awcraft. The Siemens
researchers created test pools and faulty versions for
each programs. Table 4 shows the details needed for
evaluating the techmique from Siemens test suite. The
resultant sequence function calls for the program tcas.c
from Siemens test suite has been shown in Table 5.

CONCLUSION

This proposed method is implemented based on the
interaction between sequences of call obtained which
difficulty of source-code dependency
strategy for reducing the test suite size. This method 1s
efficiently utilized for all available ready-made software
whose source-code is fairly large. This proposed model
also overcomes the difficulties of recurrent looping
problems which complicates the call stack coverage plan
for test suite reduction This proposed method is more
efficient when compared to all previous existing
techniques and provides better results.

reduces the

REFERENCES

Delamaro, M.E., I.C. Maidonado and A.P. Mathur, 2001.
Interface mutation: An approach for integration
testing. IEEE. Trans. Software Eng., 27: 228-247.

Haley, A. and S. Zweben, 1984. Development and
application of a white box approach to integration
testing. I. Syst. Software, 4: 309-315.

4052

Asian J. Inform. Technol., 15 (20): 4048-4053, 2016

Harrold, M.J, R. Gupta and MI.. Soffa, 1993. A
methodology for controlling the size of a test suite.
ACM Trans. Software Eng. Methodol., 2: 270-285.

He, Z.F., BK. Sheng and C.Q. Ye, 2005. A genetic
algorithm for test-suite reduction. Proceesings of the
2005 TEEE International Conference on Systems, Man
and Cybermnetics, October 12-12, 2005, IEEE, New
York, USA., [SBN: 0-7803-9298-1, pp: 133-139.

Hofmeyr, S.A., 8. Forrest and A. Somayaji, 1998. Intrusion
detection using sequences of system calls. T
Comput. Secur., 6: 151-180.

Kichigin, D.Y ., 2007. A Method of Test Suite Reduction.
ISP RAS, Moscow, Russia,.

Linnenkugel, 7. and M. Mullerburg, 1990. Test data
selection criteria for (software) integration testing.
Proceedings of the 1st International Conference on
Systems Integration, April 23-26, 1990, IEEE, New
York, USA., ISBN: 0-8186-9027-5, pp: 709-717.

4053

McMaster, S. and AM. Memon, 2005. Call stack coverage
for test suite reduction. Proc. TEEE. Int. Conf.
Software Maintenance, 00: 539-548.

Piwowarski, P., M. Ohba and 1. Caruso, 1993. Coverage
measwrement experience during function test.
Proceedings of the 15th International Conference on
Software Engineering, May 17-21, 1993, TEEE, New
York, USA., ISBN: 0-8186-3700-5, pp: 287-301,

Rothermel, G., M.T. Harrold, I.V. Ronne and C. Hong, 2002.
Empirical studies of test suite reduction. Software
Test. Verification Reliab., 12: 219-249.

Rountev, A., 8. Kagan and I. Sawm, 2005. COVERAGE
CRITERIA for Testing of Object Interactions in
Sequence Diagrams. In: International Conference on
Fundamental Approaches to Software Engineering.
Cerioli, M. (Ed). Springer, Berlin, Germany, pp:
289-304,

Zhu, H.,P.A V. Hall and TH.R. May, 1997. Software umt
test coverage and adequacy. ACM. Computing
Survey, 29: 366-427.

	4048-4053_Page_1
	4048-4053_Page_2
	4048-4053_Page_3
	4048-4053_Page_4
	4048-4053_Page_5
	4048-4053_Page_6

