Asian Journal of Information Technology 15 (20): 3905-3911, 2016

ISSN: 1682-3915
© Medwell Journals, 2016

A Bot Driven Framework for Testing Web A pplications

K. Bhanu Sai Prasanth and G. Krishna Mohan
Department of CSE, KI. University, Vaddeswaram, Guntur, India

Abstract: Dynamic web applications (web-apps) driven by various frameworks and ATAX depend on HTTP s
asynchronous state-full communications between client and server. Handling dynamic modifications of the
client side DOM tree with respect to user interactions is at the core of dynamic web-apps. This feature on a very

basic level not just makes them unique but also efficient and flexible by avoiding page reloads to fetch data from
server but compared to conventional web apps, additionally it is more inclined to bugs and crashes thus makes

it very harder to test the quality of these web-apps. We propose a technique for testing dynamic web-apps
naturally, using a light weight bot program driven by Selenium framework to deduce a state-flow nomogram
for all user interface states. We distinguish between normal Create, Read, Update and Delete (CRUD) faults
versus an AJAX based faults that can usually occur m user eventful states by generating a fixed DOM-tree
oracles to handle the bugs. Our methodology upon actualization can serve as an application-specific state test
suite generator and validate-or and highlight the level of automation of our testing approach achieves using

test bots on dynamic web-apps with mmimum human intervention.

Key words: Selenium, ajax, automated testing, dynamic web applications, user event testing, bots

INTRODUCTION

A bug database is a sub storage entity of software
repositories for storing bug information and resolution
status obtammed by users and testers alike and 1s a critical
component in developing quality applications. Since
software development firms spend >45% of expense in
rectifying bugs (Presan, 2010), we can conclude that they
are inescapable and mevitable and settling them is as
expersive as developing them. Expansive software
programming ventures maintain bug archives to bolster
data gathering for further version revisions and to help
developers resolve them (Breu et al,, 2010), (Fitzgerald,
2006).

There is a developing pattern to move applications
towards the web. Some firms ncorporate googl’s mail,
drive features for organmization specific mailing domains
and office utility tools like spreadsheets, word editors and
to-do list calendar applications. The explanations behind
this transition to the web are multi-fold and we list some

of them:

¢ The web is not static with the advent of cloud
computing the web 1s dynamic and can be accessed
as our own local physical machine

+ No installation and rigorous maintenance procedures
for end-clients

» Automated updating and utilization of the latest
software versions to all entitled clients, hence
dimimshing support costs

¢+ Widespread access to the application as well as to
the client mformation from any browser any location
on any machine with Internet access

Throughout the wonderful benefits of these dynamic
web applications 15 the use of “Asynchronous
TAVASCRIPT and XML”, in short ATAX. With ATAX,
the client side entity such as a browser can offer dynamic
page, data navigations through an event driven retrieval
of HTML contents and supports enhanced collaboration
by means of powerful user interface segments. While the
utilization of dynamic web-apps absolutely mnfluences
ease of use and propels rich user interactions (Mesbah
and Deursen, 2008) it includes some sigmficant pitfalls
since these applications are famously error prone because

of:

» Their state-full, event based asynchronous mode of
communication using dangling and spaghetti
JAVASCRIPT

¢+ The run time manipulation of client side(browser)
Document-Object Model (DOM)

¢ The utilization of delta-correspondence between
request seeker and response provider (Mesbah and
Deursen, 2008)

Corresponding Author: K. Bhanu Sai Prasanth, Department of CSE, KI. University, Vaddeswaram, Guntur, India
3905

Asian J. Inform. Technol., 15 (20): 3905-3911, 2016

Keeping in mind the end goal to enhance the
reliability of dynamic web-apps, static code analysis or
testing procedures can be mitialized although both
approaches have certain draw backs. Lamentably, static
code analysis methods cannot support a significant
number of the dynamic conditions present in dynamic
web applications. Besides, prior web testing tools depend
solely on the established request seeker and response
provider model, not considering client(browser) side
configurations for getting data faster without page
reloads regardless these tools seek a significant measure
of manual endeavor’s from a tester. Innovation of
advanced testing tools such as Selenium, provides a
capture event-and-replay model of testing taken after
Macros for advenced web applications. While such
testing tools are fit for generating and executing test
oracles for dynamic web applications.

The objective of this study 1s to bolster robotized
testing of dynamic web-apps using selemum driven state
aware bot scripts. To that end we propose a methodology
in which we naturally infer a model of the client interface
(UI) conditions of an application. We get this model by
“glithering™ the application using a bot and imtiating
automated inputs into UT data elements, actionable events
such as clicks, scroll Ul-components such as buttons etc
thus upholding and validating client side functionality.
With a specific end goal to perceive faults in these
executions we propose utilization of bots that have
defined properties of either the client side DOM-tree or
the inferred state machine parameters that ought to hold
good for any real time play out. These bots can be non
specific or generic and will vary according to the

Ul and DOM of each HTML page subjected to
testing.
Literature review: Present day web interfaces
consolidates client (browser) side scripting (TavaScript)
and clien’s run time DOM modifications which are
progressively isolated from server-side application
domain (Stepien et al., 2008). Despite the fact that the field
of rich web Ul testing is fundamentally uncharted, a
wealth of mformation might be obtained from two
relatively close fields of software testing such as:
conventional web testing using static code analytics and
GUT testing.

Conventional web testing: Builds veriweb, a prototype for
automated exploration of sites with hierarchical links
using a web crawler and identifier for variations from the
normal behavior of a link (dead or alive) often termed
navigational failures. Veriweb utilizes mined smart

templates to derive data values for input form based
pages which has mspired our work to some extent. In
spite of the fact that Veriweb’s web
implementation has some backing for client side event
handling, the study gives inadequate points of interest to

crawler

figure out if it can be adapted to cutting edge modem
dynamic web applications. VeriWeb offers no backing for
producing test suites.

Testing tools like SecuBat (Kals et al., 2006), WAVES
(Huang et al., 2005) have been proposed for surveying a
web application’s security aspects. The general
methodology again utilizes a web crawler equipped for
1dentifying potential information section leaks which can
be exploited by malicious parties. Permicious exploiting
tools like SQL imection and X3S vulnerabilities are then
infused into these section leaks identified earlier to
deduces counter measures based on server output which
15 system scrutinized to fix section leaks of the web
application.

Initiating static analytics of
execution to comprehend the application functionality is

code server-side

another software validation methodology. Arta
proposed a procedure using a tool called apollo for
discovering shortcomings in PHP web applications that
depends on consolidated concrete and typical execution.
Apollo can recognize run-time faults and distorted HTML
content lacking syntax. Halfond and Orso (2007) present
their static code analytics of servlets, IS’s to fetch
requests parameters and their values from client-server
operations. They utilize (Halfond er ., 2009) typical
execution of server-side code to distinguish conceivable
interfaces of web applications. Such systems have
confinements in uncovering bugs that are because of the
complex browser side runtime functionality of dynamic
web apps. Figure 1 illustrates the procedures of this
approach.

Although (Ricca and Tonella, 2001) were the first
one’s to suggest model-based testing approach for web
apps using Umfied Modelling Language (UML) design
centric tool called ReWeb for making a model of the web
application which is utilized along-side complete scope
criteria specification to render test-cases. Alfaro (2001)
inspired from these approaches utilizing his testing tool
called MCWEB applied model check analytics to validate
quality of web apps. Their research, be that as it may was
suitable mostly to standard CRUD based web apps with
out ATAX dynamisms (Fig. 2).

Andrews et al. (2004) exhibited another methodology
which depends on a finite-state automaton which in
combmation with fimetional requirements by the tester
vaidates an application. All such model-construct testing

3906

Asian J. Inform. Technol., 15 (20): 3905-3911, 2016

Code change
request approved

Modify design as necessary.
Update source code to reflec
new/changed features.

Review change

Review static
analysis outputs

Has the
number of statically’ Yes

detectable faults
cha

implementation
with technical leads

r Follow coding-

L standard deviation

process

Fig. 1: Typical flow of operations used in static code analytics during application validations

path

b

.-"'""'_'_-_-_-_
more paths needed
‘-._,___‘___-_‘_-___

S

result

generation

verification

analysis

high-level model

reliability parameters

Fig. 2: Typical flow of operations used in mode-checking analytics during application validations

procedures center with respect to established multi-level
CRUD based web applications. They generally utilize a
crawler to gather a navigational model of the web.
Tragically, conventional web crawlers are not ready to
slither dynamic web-apps (Mesbah et al., 2008).

Logging client session information on the server 1s
additionally utilized for obtaming testing automation
(Elbaum et al., 2005), (Spxenkle et al, 2005). This
methodology requires adequate cooperation of genuine
real world web clients with the framework to create the
fundamental logging information. Session-based testing

methods are only centered around synchronous
solicitations to the server and do not have the complete
state data required for dynamic web-app testing. server
responses (Mesbah and Deursen, 2008) to an event are
difficult to break down all alone. The greater part of such
redesigns get to be sigmficant after they have been
handled by the client side browser based plugin and
infused into their DOM.

GUI (Desktop) applications testing: Memon
(Marchetto et al., 2008) suggested output based input

3907

Asian J. Inform. Technol., 15 (20): 3905-3911, 2016

Bot

Fig. 3: Robotized client simulation to test a dynamic web app

often called reverse engineering process to figure out a
model of already working gu1 app with a specific end goal
to create test cases. Dynamic applications can be seen as
an evolution of both desktop and web applications, since
the Ul 1s desktop app gu components like buttons,
textboxes etc and another one bemng event based
communication (Mesbah and Deursen, 2008). Be that as
it may, dynamic web apps have particular features, for
example, the asynchronous request seeker/response
provider communications and run-tme DOM
manipulations which make them unique in relation to
conventional GUI applications and along these lines
defimtely requires more evolved testing tools to handle
these umque aspects.

MATERIALS AND METHODS

System model: The server-side of dynamic web apps can
be tried with any traditional testing procedure. On the
client side, testing can be performed at various levels.
Unit testing frameworks such as js unit can be utilized to
test JAVASCRIPT on a practical level The most
frequently utilized dynamic web app testing tools all have
the same philosophy that is to catch/replay human
interactions with the application with all possible set of
values and ranges for example, WebKing and Sali which
permit DOM-based validations by capturing user actions
during a request/response phase. These tools requires a
generous measure of manual work load by a tester to
generate a test suite, since each action trail and the
correspending DOM mampulations must be composed by
the tester in the form of assertions.

Owr bot based tool takes an alternate methodology:
as opposed to being a javascript component rummung
mside a web browser we utilize a wrapping component
generated by a programmable script (Bot) in combination
with Selenium frameworl gives Selenium APT’s to control
the web browser to sunulate virtual client while interacting

Test

with the
methodology 1s an efficient method to implement a
robotized client simulation for wvalidating dynamic
web-apps that can replicate a genuine client actions on
the web mterface and mducing an event assertion model
dynamically with ease. The following Figure describes the
architecture (Fig. 3).

dynamic web application in test. Our

Proposed work

State-flow nomogram: The proposed slithering process
using a bot on a dynamic web app fetches key elements
of app pages JavaScript and html code and categorizes
action snippets mto two groups. One that cannot change
states within the clients’(browser) DOM tree and one that
can. We deduce a state-flow nomogram based on these
snippet behaviors m mfluencing DOM tree modifications
by capturing states of the user interface along with all
their transitions based on all possible user events and
values (Fig. 4).

Algorithm 1:

Crawling process with per/post crawling hooks
procedure start. (url, set tags)

browest—init embedded browest(url)
robot~init robot()

sm—init state machine()

pre crawling plugins(browest)

crawl{null)

post crawling plugins(sm)

end procedure

procedure CRAWL (state ps)

cs—sim. Get current state()

aupdate~diffips, cs)

f-anatyse forms (supdate)

Set C-get candidate clickables (supdate, tages, f)
for ceC do

generate even(cs, ¢)

emd for

end procedure

An algorithm to deduce the nomogram is described and
invocation flow is depicted as.

3908

Asian J. Inform. Technol., 15 (20): 3905-3911, 2016

T

[(oo~ se:l;r Pl

[.
N

C S —
N

T —
~

[Onrew StaceTTazin
N

[EstractCandiaates

e X

(S D N S D A S

S —
i i

I r—— il
Ei i

i T——

ot Finishe o

i i tecr

[resccramunerioam)

L

Fig. 4: Bot invocation and subsequent validation process

The proposed bot 13 capable of deriving a state machine
from the dynamic web app using the above nomogram.
which 1s contracted and inferred by the bot for a specific
page that 15 being tested. The nomogram inference
involves opening the dynamic web app in a selectively
and programmatically chosen web browser, the
mvestigating the DOM-tree and obtaimng possible Ul
elements to trigger action events upon those and
identifying subsequent Ul state changes by listening to
ATAX state transformations.

We implement these analytics and element
navigations methods iteratively for all pages and for all
states within the web application. One example being
providing a series of random values of various types to
mput fields in the form when no pre-defined data is
available. The bot is extended to serve various options for
controlling the slithering phase.

RESULTS AND DISCUSSION

We design the implementation on a standard machine
with the configurations intel(R) pentum(R) D CPU
2.8 Ghz, 2GB RAM. 32-bit windows 7 operating system.
There are variations across state space acquisitions of a
small scale and an enterprise dynamic web app. It might
be in normal ranges for small scale apps but is huge for
enterprise apps and can sometimes lead to state explosion
problem and subsequent browser crashes. To handle the
state explosion problem, we provision the bot with the
ability to set configurable options such as specifying the
following:

e State Cravw l ine
T Ruagminn

[VR s VO s W
i
S
H
YA
i
§

\
M

» Maximum link depth extraction level

» Similanty margins for different state comparisons

¢ Maximum number of states that can be inferred per
page/domain

» Slhithering process and it’s duration threshold

» Link filtrations for cross domain using pre-defined
regular expressions

Among the above specified options, the potential
compenent that can influence performance with respect to
scalability is the slithering process. The efficiency of
slithering an entire web app site relies on many external
1ssues such as:

» The rate at which the server responds

s The rate at which client(browser) side TAVASCRIPT
based on the servers response can update the
interface

¢ The size of the DOM tree

Application size: Our dynamic web app prototype
approximately contained 12 pages of html rendering server
side code containing at least 15,000 lines of ui, database,
ajax, TAVASCRIPT, application codes and possessing
around thousands of dynamic DOM states for ajax pages
themselves. Dynamic analysis results compared to static
code analysis of prior approaches are obviously
independent of the size of the code which wont be a
detrimental factor for our current approach. A better
performance mdicator 1s the number of dynamic states

3909

Asian J. Inform. Technol., 15 (20): 3905-3911, 2016

inferred during the nomogram construction which
depends on size of the DOM-tree along with amount of
memory available. nomogram mference states can be
estimated by the equation which 1s size of (memory) to 3
times the size of (DOM).

According to our demonstration on the above
mentioned enterprise dynamic web applicaton the
average size of the DOM is approximately 0.20 MB. On the
machine with resources mentioned above this would
produce approximately 5000 states, that 15 suitable for
most real world dynamic web applications without
crashing the web browser.

CONCLUSION

In this study we have proposed a technique for
of dynamic web
research comprises of

automated qualitative analysis
applications. Our present
expanding the a bot program considerably to support
automated testing using a modular progression based
robotized client to generate and mitiate a test suite. To

outline the contributions:

* Test models generation using DOM analysis

¢ State flow estimations using nomogram

* Test suite implementation using automated bot client
using web browser driven by selenium

An observational assessment of an enterprise application,
uncovering the bot’s abilities and it’s adaptability on the
level of automation achieved.

RECOMMENDATIONS

Our future work will
further contextual analyses and the improvement of

additionally testing modules for detecting development

incorporate directing

bugs and security hacks or loopholes m dynamic web
apps.

REFERENCES

Alfaro, L.D,, 2001. Model Checking the World Wide
Web?. In: International Conference on Computer
Aided Verification. Berry, G., H. Comon and A. Finkel
(Eds.). Springer Berlin Heidelberg, Berlin, Germany
1sBN: 978-3-540-44585-2, pp: 337-349.

Andrews, A, J. Offutt and R. Alexander, 2004. Testing
web applications by modeling with FSMs. Software
Syst. Modeling, 4: 326-345.

Brew, S., R. Premraj, I. Sillito and T. Zimmermann, 2010.
February Information needs m bug reports:
Improving cooperation between developers and
users. Proceedings of the 2010 ACM Conference on
Computer Supported Cooperative Work, February
06-10, 2010, ACM, New York, USA 1sBN:
978-1-60558-795-0, pp: 301-310.

Elbaum, S., G. Rothermel, S. Karre and M. Fisher, 2005.
Leveraging user-session data to support web
application testing. IEEE. Trans. Software Eng., 31:
187-202.

Fitzgerald, B., 2006. The transformation of open source
software. MIS Q., 30: 587-598.

Halfond, W.G. and A. Orso, 2007. Improving test case
generation for web applications using automated
interface discovery. Proceedings of the the 6th Jomt
Meeting of the European Software Engmeering
Conference and the ACM SIGSOFT Symposium on
the Foundations of Software Engineering, September
3-7, 2007, ACM, New Yok, USA. isBN:
978-1-59593-811-4, pp: 145-154.

Halfond, W.G., S. Anand and A. Orso, 2009. Precise
interface identification to improve testing and
analysis of web applications. Proceedings of the 18th
International Symposium on Software Testing and
Analysis, July 19-23, 2009 ACM, New York, USA.
1sBN: 978-1-60558-338-9, pp: 285-296.

Huang, Y.W., CH. Tsai, T.P. Lin, S.K. Huang, D.T. Lee
and S.Y. Kuo, 2005. A testing framework for Web
application security assessment. Comput. Networks,
48: 739-761.

Kals, S., E. Kirda, C. Kruegel and N. Jovanovic, 2006.
Secubat: A web vulnerability scanner. Proceedings of
the 15th Intemational Conference on World Wide
Web, May 22-26, 2006, ACM, New York, USA. is
BN:1-59593-323-9, pp: 247-256.

Marchetto, A., P. Tonella and F. Ricea, 2008. State-based
testing of Ajax web applications. Proceedings of the
2008 1st Intemational Conference on Software
Testing, Verification and Validation, April 9-11, 2008,
[EEE, Lillehammer, Norway 1sBN: 978-0-7695-3127-4,
pp: 121-130.

Mesbah, A. and AV. Deursen, 2008. A component-and
push-based architectural style for ajax applications. T.
Syst. Software, 81: 2194-22009.

Meshah, A., E. Bozdag and A.V. Deursen, 2008. Crawling
Ajax by inferring user interface state changes.
Proceedings of the 8th International Conference on
Web Engineering ICWE'0S, July 14-18, 2008, TEEE,
Yorktown Heights, New Jersey 1sBN: 978-0-7695-
3261-5, pp: 122-134.

3910

Presan,

Asian J. Inform. Technol., 15 (20): 3905-3911, 2016

R.S., 2010, Soflware Engheering: A
Praclilioner's Approach. 7th Edn., McGraw-Hill,
New York, USA...

Ricca, F. and P. Tonella, 2001. Analysis and testing

of web applications. Proceedings of the 23rd
International Conference on Software
Engmeering, May 12-19, 2001 IEEE Computer
Society, Washington, USA. 138 BN:0-7695-1050-7, pp:
25-34.

Sprenkle, S., E. Gibson, 5. Sampath and I.. Pollock, 2005.

Automated replay and failure detection for web
applications. Proceedings of the 20th [EEE/ACM
International Conference on Automated Software
Engineering, Nov. 7-11, Long Beach, USA. pp:
253-262.

Stepien, B., L. Peyton and P. Xiong, 2008. Framework

39011

testing of web applicalions usmng 'TT'CN-3. Int. J.
Software Tools Technol. Transfer, 10: 371-381.

	3905-3911_Page_1
	3905-3911_Page_2
	3905-3911_Page_3
	3905-3911_Page_4
	3905-3911_Page_5
	3905-3911_Page_6
	3905-3911_Page_7

