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Abstract: At present, Camouflaging worm attack constitute a large part of internet peer servers. Due to the
mcreasing traffic in internet services, it has become inevitable to take mto account its effects on network
management. Generally, studies on resisting Camouflaging Worm attack have involved analysis with power
spectral density distribution via spectrum-based scheme. However, with several facilities provided by spectrum-
based scheme, its network traffic volume in internet severs is increasing day by day increasing the malicious
traffic rate. In this research proposal plan 1s to develop efficient identification of C-Worm propagation and
restriction of uncontrolled malicious traffic in the internet by applying Enhanced Hidden Markov Chain-based
C-Worm Detection (EHMC-CWD) technique. The C-Worm replicates the abnormal traffic on its own and
propagates throughout the network and cause damages to the internet services. Enhanced Hidden Markov
Chain (EHMC) identifies the camouflaging abnormal traffic replicated across the intemet. Next, EHMC adapted
a dynamic Bayesian network to evaluate camouflaging worm propagation by means of optimal non linear
filtering. Therefore the replicated traffic generated by C-Worm reveals the information about the sequence of
traffic in which it 1s propagated. The performance of EHMC-CWD 1is evaluated by extensive simulations.
Simulation results show that our proposal can considerably reduce the execution time for C-Worm detection
and memory space and also improves high detection rate to a certain degree.
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INTRODUCTION

Providing security to the internet peer services has
become an important issue due to the exponential increase
in traffic and the mushroom growth rate of certain worms.
The recent worm detection schemes are not able to scan
and detect exponentially rising abnormal traffic patterns
and become more vulnerable in providing security to
internet peer servers.

Transmitting Adaptive Camouflage Traftic (TACT)
(Lu et al, 2015) mimmized message delay for timely smart
grid communication under any potential jamming by
applying Markov renewal process. To facilitate and detect
C-Worm, Power Spectral Density (PSD) (Yu et al., 2011)
distribution was applied mn order to effectively detect
the C-Worm propagation. However, the use of spectral
model introduced potential congestion vulnerabilities
due to the recurring multiplicative nature of C-Worm. A
new model approach was developed (Xu et al., 2014) to
estimate the P2P traffic matrices based on a close
analysis of the traffic characteristic in P2P systems with

improved accuracy. However, the computation of traffic
matrix not straightforward and it is high measurement
cost.

Abrantes et al. (2011), explicit congestion control
algorithms were designed to improve the throughput.
There have been extensive works on designing methods
against resource depletion attacks which provide
measures for sensing and pervasive computing. Measures
were taken to mitigate vampire attacks (Vasserman and
Hopper, 2013) by mtroducing coordinate and beacon state
protocols on clean slate sensor network routing.
However, recently, anti-collision protocols were
introduced for single Reader Frequency based
Tdentification (RFID). Porta et al. (2011), tree-based and
aloha-based protocols were designed to umprove the
system time efficiency for detecting the attack
Cross layer jamming detection and mitigation was
presented to mitigate the jamming effect on
network.

Computer worms are one of the most serious threats
to the Internet, causing huge amount of losses ranging n

Corresponding Author: E. Saranya, Department of CSE , Pannai College of Engineering and Technology, Sivagangai,

Tamil Nadu, India

3616



Asian J. Inform. Technol., 15 (18): 3616-3623, 2016

between billions to trillions of dollars. Vulnerability driven
signatures (Wang et al., 2010) based on length-based
signature generator was designed to reduce the
polymorphic worm m mternet. A road network based mix
zone framework (Palamsamy and Liu, 2015) was designed
that offered high level of anonymity reducing the
transition attacks in an extensive manner. Another way to
minimize the attack is to protect the location privacy. In
(Mehta et al.,, 2012), source location privacy and sink
location privacy was designed with the objective of
umproving the communication cost and latency.

To better portrait the features of C-Worm
propagation mn mternet in this study, we study the normal
behavior of the traffic and through it abnormalities are
measured by constructing an Enhanced Hidden Markov
Chain Based C-Worm Detection (EHMC-CWD) techmque.
Based on this technique, we analyze and restrict
uncontrolled malicious traffic in internet through Bayesian
Network-based C-Worm  Detection  algorithm. The
remainder of the study is organized as follows: In
Literature review, we introduce the background and
review the related work. In Materials and Methods we
mtroduce the Enhanced Hidden Markov Chain Based
C-Worm  Detection (HMC-CWD) techmique. The
performance our Markov
Chain-based C-Worm detection technique are provided in
Results and Discussion. We conclude this study in
Conclusion.

evaluation results of

Literature review: Our research relies on previous
approaches for extending the most prominent Hidden
Markov Model HMM and reduces the propagation of
C-Worm in internet. Le and Markopoulou (2012), novel
homomorphic MAC scheme called SpaceMac was used to
minimize the computation overhead against pollution
attack. Anti Blackhole Mechanism (ABM) (Su, 2011) on
the other hand, presents an algorithm independent of the
transmission model that rapidly block malicious node
without false positive was provided. Another reputation-
based protocol (D1 and Duca, 2012) was designed to
reduce the black hole attack in the presence of delay
tolerant network using acknowledgement, node list and
aging mechanism.

Recently, a number of worm detection mechanisms
have been developed for different types of networks.
However, most of them are designed aiming at either
umnproving the detection rate or latency. Shen peer-to-peer
traffic matrices were analyzed and based on the analyzed
traffic, network meanagement was made inan efficient
manner. On the other hand, to reduce the number of
mnfected nodes, optimal distribution using content-based
signature (L1 ef al., 2014, 2010) was mvestigated in mobile

networks with heterogeneous devices. Optimal jamming
attack and measures to mitigate using instantaneous
payoffs was presented by L1 et al. (2010). Intrusion
detection 1s one of the most interesting areas in network
due to the increase n the network traffic data. Balan ef al.
(2015), fuzzy based mtrusion detection model was
designed to provide a secure communication between
nods. Spatial and temporal dynamics of worms were
captured by Feng et al (2015) to analyze worm
propagation in network based on their equilibrium and
stability. Worm attack is one of the severe threats to
several networks. Most of the existing methods either
require customized hardware or demand increased
network overheads to extract the symptoms propagated
by the worms which m result limits their applicability.
Lu et al (2015a, b), a passive worm detection and
localization method was presented aiming at reducing the
false alarms and detection latencies. To reduce the attack
rate, password and distracter objects were used to
improve the security issues (Ho et al, 2014). A
picture-based password authentication method is uses a
concept of concealing password information about the
password images as much as possible. The password
images selected by the users password identification
phase used to verify the “target” image in the challenge
set. But, the user mput does not expose the password
Ppictures to a shoulder-surfing adversary.

To alleviate the aforementioned problems, this work
aims to propose a technique that is able to reduce the
uncontrolled malicious traffic in the internet The
proposed technique 1s also able to identify the
camouflaging abnormal traffic replicated across the
internet. The following section explains the proposed
technique in detail.

MATERIALS AND METHODS

Problem formulation: The primary goal of internet is to
provide secured services to the mternet users. Therefore,
reducing the denial of internet peer server services is of
critical mmportance and of which Camouflaging Worm
(C-worm) that replicates and distribute the malware across
the network by its own has to be identified. The C-worm
attack did not require user intervention for spreading the
false traffic, however spread on its own, and traffic
flooding attacks increased exponentially. As a result, we
focus on how to mimmize the execution time for C-worm
detection and the detection of C-worm at an early stage.

Enhanced hidden Markov chain: The C-worm refers to a
malicious software program that propagates itself on the
Internet and infects other hosts. The C-worm replicates
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Fig. 1: Hidden Markov topology to measure malicious traffic

Fig. 2: Network structure with C-Worm attack

the abnormal traffic on its own and the propagation of the
C-Worm is based on exploiting vulnerabilities of hosts on
the Internet. The proposed work uses Enhanced Hidden
Markov Chain (EHMC) to identify abnormal traffic
replicated across the internet and restricion of
uncontrolled malicious traffic in the internet. Here, hidden
indicates the state of traffic which passed through the
internet servers.

Based on this EHMC model an algorithm that measure
the camouflaging abnormal traffic replicated across the
internet by evaluating the distance between process
monitored by abnormal traffic and normal traffic 1s
presented.

Figure 1 shows the Hidden Markov model topology
where AN€ p.p....py, and By€ 0,0,..0, .represent the
possible states and observations at time, t, respectively,
with ‘N and M’ being the number of possible states and
the observations in Internet.

From the Fig. 1 shown above, now the task is to
analyze whether a camouflaging abnormal traffic is
replicated across the intemet and to measure the
occurrences of network traffic (i.e. normal behaviour or
anomaly behaviour) in the internet. In a networlk system
monitored by a demal of service, the EHMC model
monitors 1ts runtime states described by a stochastic

process through mvisible fimite Markov Cham, and the
other through an observable Markov Chain with respect
to the previous chain. Figure 2 shows a network structure
with C-Worm attack.

As shown m Fig. 2, five observations
01,04,045,0,,05 and nine possible states ‘p.p .p  are
figured out. An abnormal traffic 13 shown i dotted
line that replicates the normal traffic, with propagation of
C-Worm attack in the internet. With the objective of
reducing the C-Work attack, an EHMC model is
constructed 1 mternet, whose state space includes two
states, namely normal state NS =0 and anomaly state
*AS = 1°. The observed chain is the sample of system
behaviour or measure of malicious traffic m intemet,
where the system’s state may belong to the normal state
NS or anomaly state AS.

Let us construct an Enhanced Hidden Markov Chain
model by considering a sequence of observations
O = 0,,0,,..0, 0n internet service IS where O IS, Then, the
EHMC is described as given below.

v =(HS,.,P,N,D,STP, p.0) (1)

From (1) HS .refer to the size of hidden states and the
size here denotes S = 2, where 0 denotes the normal state
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and 1 denotes the ab normal state respectively. ‘P’ refers
to the possible states, where P = p,p,,..pw N’ refers to
the number of possible states, ‘D’ refers to the
distribution of possible states, where D = {cbserver .,
oebamione = CUTTENE (=1} " STP,” refers to the state transition
probability, where *[STP; ] is denoted as below

STD,, @
STR,

STP,
TR = {STP?Z

From (2), STPij = p{current ,,, =i, next .,.=j} andp =
.0 refers to the initial state probability given by
study? = {a, ¢} = P{initial state} ‘normal’ and
‘abnormal’state and ‘O’ being the observed possible state
respectively. Tt is difficult to construct a model to identify
the C-Worm propagating the abnormal traffic and
restriction of uncontrolled malicious traffic in the internet
as 1t 1s not directly visible and worm propagation differ
significantly from one another.

The EHMC-CWD technique therefore constructs a
model where abnormal behaviour 1s detected by its source
variance on the intemet with its state of dependency on
the dynamic Bayesian network. This is studied by
designing a model in such a way that more the distance of
scan traffic volume, the more the probability that scan
traffic volume data are generated by anomaly processes.
Now let us define the state transition probability as given
below.

STP—F 0} (3)
10

From (3)the state transition probability STP
EHMC-CWD states that in a normal system behaviour,
whatever the current state, the process or the system
behaviour transfers to normal state next time by
probability ‘17,

Let the distribution of possible states in EHMC-CWD
for normal system behaviour in the internet be denoted by
‘D = 0" whuch states that the behaviour propagation under
normal state condition are known, but the distribution of
behaviour propagation under abnormal state condition is
uncertam. Based on this Enhanced Hidden Markov Chain,
the normal traffic 1s measured. The next step 1s to measure
the possibility of malicious traffic in the internet. This is
performed by designing a C-Worm detection algorithm
provided in the following study.

C-Worm detection algorithm: Once the normal traffic is
defined (as explained using EHMC), the next step is to
design an algorithm to detect the C-Worm. The C-Worm

detection algorithm starts with the ISC real-world trace
provided by SANs ISC (Abrantes ef al, 2011). Two steps
are mvolved mn the design of C-Worm detection algorithm.
Imitially, the probabilities of visible state sequence under
the normal condition ‘&’ of the EHMC are obtained and are
mathematically formulated as given below.

prob[gj—z_ﬁt 0 @

B.(i) = prob(0,,0,,..., 0,) (5)

From (4) and (5), ‘0,,0,,..0 represent the observed
possible states until time interval ‘t” and ‘1= 0|1” where ‘1
= 0 denotes nermal state”, and ‘1 = 1 denotes abnormal
state’, respectively. The second step determines whether
an uncontrolled malicious traffic in the internet is detected
or not based on the probabilities of visible state
sequence.

In order to perform the C-Worm detection, the
EHMC-CWD uses Higher Entropy Postulate (HEP) that
when a sequence of traffic on the internet is running in
normal state, the network traffic it generates contains less
wnformation than that it generates when runmng in
anomaly state. Therefore, the network traffic entropy of
malicious state 18 larger than that of normal state and so,
the network traffic information entropy 1s used as the
metric m identifying and detecting the C-Worm.
EHMC-CWD adapted a dynamic Bayesian network to
evaluate the camouflaging worm propagation by means of
optimal non linear filtering to obtain network traffic
information entropy. With EHMC-CWD, the self
replicated C-Worm propagating the abnormal traffic
which is not directly visible is detected with its state of
dependency through dynamic Bayesian network. Each
of C-Worm propagation has a probability
distribution over the possible traffic being replicated.
Therefore the replicated traffic generated by C-Worm
reveals the mformation about the sequence of traffic in
which 1t 18 propagated.

With the sequence of observations generated by an
EHMC-CWD that provides certain information about the
state sequence, the Bayesian network is applied through

state

which the decision regarding normal network traffic cost
is arrived at:

TC,(0)=TC, Prob(B, (i) 0) (6)

Where ‘O’ is the observed state,”TC;” represents the
network traffic cost of replicating the abnormal traffic from
an observation of state *O” to state “1’and ‘Prob (¢, (1) / O)
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symbolizes the posterior probability of a state. Followed
by this the posterior probability of a state using Bayesian
network is as given below:

Prob(P,(i)/0) = NProb(0/B,(i))
*Prob(Bt(i))

(7)

From (6) and (7) in this Bayesian network, the goal of
EHMC model is to generate estimates of ‘Prob (O /
(i)y'from a classified set of available observations. Higher
the wvariation higher the possibility of traffic being
replicated 1s found to be. Let “Avg(N)’ represents the

average network traffic entropy observed state
sequences, and is formulated as given below.
a Inprob(Bt(i)IO) (8)

avg(N) =X ——

Based on the value obtained from (8) the average
network traffic entropy is used as a measure to
distinguish between normal behaviour and anomaly
behaviour. The C-Worm Detection algorithm based on
Bayesian network mode. Particularly, the dynamic
Bayesian network model assumes that any given host is
m one of the following states: normal or abnormal. A
normal traffic network 1s one that cannot be infected by a
C-Worm, whereas the abnormal traffic network has the
potential of being infected by a C-Worm through
replicates. The objective now lies m efficient identification
of C-Worm propagation and restriction of uncontrolled
malicious traffic in the internetstudy.

With EHMC-CWD, the self replicated C-Worm
propagating the abnormal traffic which is not directly
visible, is detected by its source variance on the internet
based on the state transition probability with its state of
dependency on the dynamic Bayesian network. FEach
state of C-Worm propagation has a probability
distribution over the possible traffic being replicated.
Therefore, the probability of visibility state sequence,
followed by normal network traffic cost and posterior
probability 1s measured. Therefore the replicated traffic
generated by C-Worm reveals the information about the
sequence of traffic m which it i1s propagated through
average networlk traffic entropy.

Bayesian Network-based C-Worm detection algorithm:

Input: Observations 0 = 0, 04 ..., 0 ,possible states p =p ., 1P .20, P on
distribution of possible states. “D™ state transition probability [STp;] initial
state probability p = o, &, ..., o, observed possible state “0"

Output: Optimized time and memory for C-worm

Begin

For each observations “0 =0, 0, ..., 0.

Randomly choose “n” observation

Tnput training examples which consists of possible states “P™
For each state possible states “P”

Measure state transition probability using (3)

Measure probability of visible state sequence using (4)
Measure normal network traffic cost using (6)

Measure posterior probability of a state using (7)

Measure average network traffic entropy using (8)

End for

End for

End

RESULTS AND DISCUSSION

The Enhanced Hidden Markov Chain Based C-Worm
Detection (EHMC-CWD) techmque for efficient
identification of C-Worm propagation and restriction of
uncontrolled malicious traffic in the internet studies use
the real-world Internet traffic traces (Shield logs data set)
provided by SANs Internet Storm Center (ISC). In
specific, the proposed EHMC-CWD technique used the
ISC real-world trace (Shield logs data set) from 01.01.2005
to 01.15.2005. The purpose of using internet traffic traces
15 because of the gained popularity among the Internet
security community in recent years.

In order to provide the creditability of data obtained
from Shield logs data set by SANs Internet Storm Center,
the traces were obtained from 20 day and measured the
normal and abnormal traffic rate and simulations were
conducted. Next, we conducted our simulation 7 times
based on data randomly combined with different dates.
The results, we showed in the study, are the mean values
of experimental results from different rounds.

The experimental evaluation is conducted to evaluate
the performance of proposed Enhanced Hidden Marlkov
Cham Based C-Worm Detection (EHMC-CWD) technique
with metrics such as size of normal data traffic and
C-Woarm replicated traffic, execution time for C-Worm
detection, detection rate and memory space. The metrics
were compared with the state-of-the-art methods
namely, Transmitting Adaptive Camouflage Traffic
(TACT) (Lu et al., 201 5a, b) and Power Spectral Density
(PSD) (Yu et al., 2011) for detection of C-Worm. The
validation results are presented in three tables. Execution
time for C-Worm detection is a measure to identify the
time taken to detect the occurrence of C-Worm n mternet.
Therefore, the Execution time for C-Worm detection is the
size of data traffic and the time taken to measure the
posterior probability of a state using Bayesian network
and 1s formulated as given below

Time = DataTraffic, * Time

_ (9
(Prob(B,{i)/Q))

From Eq. 9, the execution time “TTme’ measured is in
terms of milliseconds (m sec). Lower the execution time
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Table 1: Comparison of Execution time for C-worm detection
Execution time for C-Worm detection (m sec)

Size of data

traffic (Mbps) EHMC-CWD TACT PSD
150 158 174 188
300 175 191 205
450 192 208 214
600 205 221 227
750 224 240 256
900 248 264 280
1050 265 281 295

Table 2: Comparison of C-Wonm detection rate
C-Worm detection rate (%)

C-Worm replicated

traffic (Mbps) EHMC-CWD TACT PSD

35 93.41 90.14 87.32
50 94.25 91.52 88.32
68 96.18 93.23 90.22
75 93.12 90.12 87.14
82 95.84 92.22 89.52
95 97.32 94.14 91.32
105 98.14 95.52 92.14

for C-Worm detection, more effective the method 15 said
to be and higher the detection rate 1s said to be. Table 1
shows the results of the experimental validation of the
proposed C-Worm detection technique against two other
methods used in the literature Transmitting Adaptive
Camouflage Traffic (TACT) (Lu et al,, 2015a, b) and
Power Spectral Density (PSD) (Yu et al, 2011) for
detection of C-Worm.

Figure 3 describes the execution time for C-Worm
detection with size of data traffic in the range of (150, 450,
750, 1050) Mbps. The decision point of data traffic was
chosen m a random mamner and was determined
experimentally as that in which achieved a substantial
umprovement in ratings from the previous decision. The
results show the superior performance of the proposed
EHMC-CWD technique. The last values of the graph
plotted in the figure seem to confirm the working
hypothesis that the time for C-Worm detection mcreases
with the mcrease m the data traffic size. As illustrated
when compared to two other methods TACT (Lu et al,,
2015a, by and PSD (Yu et o, 2011), the EHMC-CWD
technique substantially reduced the time for C-Worm
detection using the extensive Enhanced Hidden Markov
Chain. This 13 because the EHMC model adapted a
dynamic Bayesian network that evaluated the
camouflaging worm propagation through optimal non
linear filtering, resulting in the improvement of execution
time for C-Worm detection. Furthermore based on the
distance between process monitored by abnormal traffic
and normal traffic rate measured by its source variance on
the intermet reduces the execution time for C-Worm
detection by 7 % compared to TACT and 13 % compared
to PSD.

Table 2 shows the performance of C-Worm detection
rate. Note that the gam by the new techmque 1s

300 | == EHMC-CWD T
m TACT 7

Execution time for C-worm
detection (m sec)

-
150 450 750 1050

Size of data traffic (Mbps)

Fig. 3: Measure of Execution time for C-Worm detection

mTACT
= EHMC-CWD
PsSD

100
20
S0
70
GO
50
40
30

C- worn detection rate (%)

20 —e e,

35 50 68 75 82
C- worn replicated traffic (Mbps)

95 105

Fig. 4: Measure of C-Worm detection rate

consistent and overcomes the other C-Worm state-of-art
detection methods in all states. The C-Worm detection
rate 1s defined as the number of mtrusion instances
detected by the system divided by the total number of
intrusion instances present in the test set.

D, = Intrusion instance detected (10)

(traffic rate}*100 / Rep,

from (Eq. 10), the C-Worm detection rate D, 1s obtained
by the traffic intrusion instances detected to the C-Worm
replicated traffic rate Rep,.

The C-Worm detection rate with respect to different
C-Worm replicated traffic i internet using the
EHMC-CWD technique and two methods, TACT and PSD
are presented with visual comparison in Table 2. The
results for different traffic rates with 35Mbps and
105Mbps are illustrated in Fig. 4. The C-Worm detection
rate using our technique EHMC-CWD offer comparable
values than the state-of-the-art methods. Results are
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Table 3: Comparison of Memory space

Memory space (MB)

Size of data

traffic (Mbps) EHMC-CWD TACT PSD
150 610 678 723
300 845 705 755
450 1023 1083 1130
600 1058 1108 1158
750 1125 1185 1230
900 1148 1200 1250
1050 1176 1230 1280

presented for different sizes of C-Worm replicated traffic.
Higher, the size of traffic, lugher the detection rate 1s. This
18 because with higher traffic rate, the worm detection rate
propagated in the network 1s easily analyzed based on the
state space formulation. With the state space formulation,
a stochastic process through mvisible finite Markov
Chain and observable Markov Chain with respect to the
previous chain is obtained in an efficient manner. This in
turn helps to detect the C-Worm propagation m the
mternet. The process 1s repeated with C-Worm replicated
traffic size of 35Mbps to 105Mbps for conducting
experiments. As illustrated when compared to two other
methods TACT (Lu ef al., 2015a, b) and PSD (Yu et al.,
2011), the EHMC-CWD techmque had better changes
using the extensive dynamic Bayesian network. This is
because in order to obtain better C-Worm detection rate,
the Bayesian network applied mn EHMC-CWD technique’s
that symbolizes the posterior probability of state. This n
turn improves the detected rate by 3 % compared to
TACT and 6 % compared to PSD. Memory for detecting
C-Worm refers to the memory space required to detect the
C-Worm. The memory is measured on the basis of the size
of data traffic “Data Traftic,” and the memory required for
C-Worm detection Mem (D,,.) and 13 mathematically
formulated as given below.

M = DataTraffic, *Mem(D,_, ) (1)

where (Eq. 11) memory M for detecting C-Worm are
obtained in terms of megabyte (MB). Lower the memory,
more efficient the method is. Table 3 represents the
memory space required to detect the C-Worm in the
mtemnet using NS2 simulation and comparison s made
with two other methods, namely TACT (Lu et al., 2015)
and PSD (Yu et al, 2011).

The targeting results of memory space using
EHMC-CWD  techmque 18 compared with two
state-of-the-art methods (Lu et al., 2015), (Yu et al, 2011)
in Fig. 5 is presented for visual comparison based on the
size of data traffic. Our method differs from the TACT
(Lu etal,2015)and PSD (Yu et al., 2011) in that we have

1400 1} o EHMC-CWD ~ _
< 1200 || m TACT .
s
& 1000 PsD
5
S 800
g
S 600
£
2 400
[§)
200
0 3
150 450 750 1050

Size of data traffic (Mbps)

Fig. 5: Measure of memory space

incorporated C-Worm detection algorithm. By applying
C-Worm detection algorithm for identifying the detecting
the C-Worm attack in internet, the state transition
probability and visible state sequence for each state is
measured by applying a Higher Entropy Postulate (HEP).
In addition, the extent to which a visible state sequence
under the normal condition is included while measuring
the normal network traffic using the posterior probability
function. Therefore the memory space required to identify
the C-Worm in internet is reduced by 2 % compared to
TACT and 7 % compared to PSD respectively.

CONCLUSION

In this study, we provided a comprehensive study on
minimizing the execution time for C-Worm detection
across internet. By defining an Enhanced Hidden Markov
Chain model, we showed that the execution time for
C-worm detection is reduced by means of optimal non
linear filtering. We designed a C-Worm detection
algorithm by its source variance on the internet with its
state of dependency on the dynamic Bayesian network, to
improve the C-Worm detection rate in a significant
manner. We present simulation results to support our
theoretical results and show that C-Worm detection rate
can be effectively mmproved and therefore reduces the
damages caused to the internet services.
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