Asian Journal of Information Technology 15 (18): 3598-3604, 2016

ISSN: 1682-3915
© Medwell Journals, 2016

Implementation of Hybrid Vedic Multiplier Nikhilam Sutra and Karatsuba
Algorithm for N-bit Multiplier Using Successive Approximation
of N-1 Bit Multiplier

'M. Nisha Angeline and *S. Valarmathy
"Department of ECE, Velalar College of Engineering and Technology, Erode, Tamil Nadu, India
* Department of ECE, Bannari Amman Institute of Technology,
Sathvamangalam, Tamil Nadu, India

Abstract: Vedic mathematics 1s the technique to solve complex arithmetic computations. Using this technique,
complex problems can be solved easily. Normally, Urdhva Tiryakbhyam Sutra is generally known as Vedic
Multiplier. Nikhilam Sutra 1s a special case in Vedic Mathematics. But there 1s no proper implementation
hardware for Nikhilam Sutra for bmary multiplication. The aim of this study 1s to design hardware for Niklulam
Sutra using Karatsuba algorithm using successive approximation of N-1 bit multiplier. Multipliers are the basic
components used in many digital systems, digital signal processing operations and multimedia applications.
Digital multipliers are the major source of power dissipation. Multiplications are often implemented with
shift-and-add operations. In this study, we propose a method that combines the principles of Nikhilam sutra
and Karatsuba sutra for the multiplication of binary numbers. The calculation of remainder is based on Nikhilam
sutra using complement method and the weight reduction is carried out in the remainder by removing the MSB.
The numerical transformation of the numbers 18 done by Karatsuba algorithm. For the remamder multiplication,
only N-1 bit multiplier 1s required. Therefore, the algorithm requires only (N-1) x (N-1) bit multiplier for the
calculation remainder. By combining both algorithms, the number of multiplier is reduced and also the number
of bit for multiplier is also reduced. By applying this modification in the algorithm, strength of the multiplier is
reduced. The research 13 implemented in Xilinx vertex device. The power, area and delay are measured using

Cadence tool with 180 and 90nm technology. From the results’, the product of delay and area is reduced.

Key words: Nikhilam sutra, multiplication, numerical strength reduction, karatsuba algorithm, FPGA

INTRODUCTION

For any portable and super-fast electromc gadgets,
the optimization of power and speed are the important
concern. In the modern Digital world, the high speed
processors require fastest device for the computation.
Multiplication find many applications like digital signal
processing, Image processing or arithmetic units in
microprocessors. The performance of the system depends
on the performance of the multiplier because the multiplier
consumes more area and more power. It slows down the
system performance. By reducing the delay in the
multiplication, the speed of the system will be improved.
Researchers focuss the design of the multiplier towards
area, speed and power.

The multiplier algonthm researches on the principle of
shift and add method. The computation is done either by
serially or by parallelly. The parallel computation does not

require feedback connections because it uses only
combinational circuits for its computation. Depending
upon the connectivity n parallel structures, there are two
types namely, array multiplication and tree multiplication.
The basic array multiplier is designed based on the add
and shift algorithm. The main advantage of the array
multipier is that it has regular linear structure. Therefore,
this multiplier can be implemented using VL5T technology.
But the problem arises when the number of bits increase.
The carry propogation in ceah stage is considerable
here.. Braun multiplier 1s another example for array
multiplication. The modification is done in the portion of
carry propagation. Here, the carry 1s passed to next stage
by using carry save adder instead of passing the carry in
the same stage using Ripple Carry adder. There is no
change in the number of components used for their
computarion. Both are linear structures only. They differ
only by the way of propagating the delay to the next

Corresponding Author: M. Nisha Angeline, Department of ECE, Velalar College of Engineering and Technology, Erode,

Tamil Nadu, India

3598

Asian J. Inform. Technol., 15 (18): 3598-3604, 2016

stage and patial product generation. Further the delar can
be reduced by incorporating bypassing technicue in row
or m column or both inrow and column. This techmique 1s
discussed in study written by (Anitha et al., 2012) to
mcrease the speed.

Wallace (1964) proposed another classification of
multiplier structure called “tree based structure™ to reduce
the delay. The stage delay 1s reduced n the order of O(log
n). it consumes less power when compared with basic
array multiplier. A tree of carry save adders are used to
reduce the carry propagation delay. Log-depth network is
used here for tree network reduction. It is the fastest
multier among all but it has wregular structure. And it
requires more number of logic gates. Tn the last stage,
adder 1s used to add the carry saved during partial
product generation. Normally, Ripple carry adder is used.
Analysis 18 done using various types of adders in the
final satge. If Carry Look-Ahead adder is used, the delay
will be used further. The modification can also be done
during carry save addition. Different compressors like 4.2,
5:2 and 7:2 compressors for the partial product tree
reduction (Abhilash et al, 2015). Dada multiplier 1s
another tree based multiplier structure. Here also there are
three stages similar to Wallace multiplier. But the partial
products are not reduced in every stage.

Vedic multipliers are also developed along with the
conventional multipliers. Vedic multipliers are designed
based the sutras (formulae) and sub-sutras (sub formulae)
(Goyal and Shamim, 2015). From these sutras three
sutras are used for multiplication. They are Urdhava
Tiryabhyam (vertically and cross wise), Nikhilam sutra
and Anupreyana (Gupta et al., 2012). These sutras are
widely used for decimal multiplication with shorter time.
The algorithm for binary multiplication 1s developed using
the same logic. The implementation using FPGA was
done in. Goyal and Shamim (2015) designed the Vedic
multiplier using carry select adder and square root carry
select adder. Normally the strength of the multiplication is
reduced by Vedic Multiplier beacause it replaces the
multiplications by additions. Therefore while comparing
with conventional multipliers, Vedic multipliers need less
area and it produces the oputput faster (Somani et al.,
2012).

In this study, the multiplication 1s done through the
calculation of remainder. The remainder is computed
based on Nikhilam Sutra. In this work, the sutra 1s slightly
modified to achieve high speed. The computation is
different from the existing method. The remamder is
determined by finding 2’s complement for the number.
There is a restriction in the existing method for the usage

of input range. But here there is no limit for input. Here,
the length of remainder is reduced by 1 bit. The multiplier
1s required to multiply the remaimnders derived from the
input numbers. The reduction in the component reduces
the delay and hence speed 13 optimized.

MATERIALS AND METHODS

Review of vedic multiplier: Nikhilam sutra is a sutra
suitable for multiplication. The sutra is explained for the
This special
multiplication. The sutra 1s efficient when the number is
nearer to 9 or 10. The remainder 18 calculated from the

decimal number. sutra 18 case 1n

nearest base number. The positive remainder is derived
when the number exceeds the nearest base value. When
the number 15 less than the base value, the remainder will
be negative (Singh and Sasamal, 2015) presented a
comparative analysis study of binary vedic multiplier
using recovery logic by the usuage of CMOS, PFAL and
ECRL. PFAL technique consumes less power as compared
to ECRL and CMOS designs. PFATL based Vedic multiplier
consumes less power even at higher frequencies. But
ECRL based Vedic multiplier is good at low frequency
as frequency increases its power saving efficiency
decreases (Goswami and Pandey, 2014) designed energy
efficient Vedic multiplier on FPGA using thermal aware
design. They implemented Vedic multiplier on 90nm
FPGA, 65nm FPGA and 40nm FPGA respectively by
reducing the temperature from 40-20°C (Xiaoping ef af.,
2014) proposed a multiplier using Redundant number
system. Ansh and Sharma (2015) proposed a multiplier by
algorithm (Vedic
mathematics) at Least Significant Bit side and Karatsuba
algorithm at Most Significant side.

including Urdhva-Tiryagbhyam

Priciples of Nikhilam Sutra: The sutra explains the
multiplication principles through decimal numbers.
Thaplival and Srinivas (2004) explains the algorithm
through different examples. The remamnders are mitially
calculated from the given numbers. From the type of
remainders derived from the previous step, the Most
Significant portion is computed. Jin Hyukkim and
(2004) have
m their work. The steps to

Significant portion is given

Thapliyal and Srimvas shown all
examples

Most

possible
calculate the
below:

» The two multiplicands (M and N) are added and
the base value i1s subtracted from the above sum
L= M+N-B

3599

Asian J. Inform. Technol., 15 (18): 3598-3604, 2016

¢ The two remainders m and n are added together with
the base value L. = m+n+B

* The remainders are crossly added with the
multiplicands, i.e., L. =M+n or L =N+m

The problem arises in the sutra when the input 1s not
taken from the specified range. The correction logic is
required when the remainder are with different type. The
main advantage 1s that it reduces the strength of the
multiplication.

Karatsuba algorithm: Tt is useful to multipliy the
numbers with higher bit length. Tt works on the principle
of divide-and-conquer method in which the numbers 1s
divided into two parts. The two parts may be equal or not.
For binary numbers generally, it is split into Most
significant half and Least Significant half. The
multiplication 18 performed after the number splitting.
Karatsuba algorithm replaces the multiplication by
addition operations. Thus it reduces the number of
multiplication required. Addition operation requires less
area while compared with multiplication and hence the

speed will be improved:
n

X=22X,+X,
> (L
Y =22V, +Y,

where, X, Y, and X, Y, are Most significant half and Least
Significant half of X and Y and n 1s the number of bits
(Arish and Sharma, 2015). The product is calculated as:

n n

P=XY = (22X, +X, 22V, +Y,)

n
I 2
= 2%, Y 22 (3, YA Y, LY, @

From Eq. 2, four multiplications and 2 shift operations are
needed For N bit multiplication, the algorithm requires
four number of N/2 multipliers.

Relating Nikhilam Sutra with Karatsuba Algorithm: The
problem arises in the exiting method when the given
numbers are with different base value. In the proposed
paper, the remainder 15 calculated from the nearest base
value 2 (i.e., 4,8,16,....) for binary multiplication based on
Nikhilam sutra. The multiplication of two remainders is
calculated from N-1 bit multiplier. Here the strength of the
multiplication 1s reduced by reducing the maximum weight
(2" of the number. So that the Karatsuba algorithm is

modified such that the remainder has N-1 bit. The concept
is explained through an example. Hence the computational
complexity of the multiplier can be reduced. Let X and Y
are the munbers. They are divided as per Karatsuba
algorithm and they are given in Eq. 3:

K =2Nlax
v =2Nley 3)

The weight of the MSB (X, and Y,) has to be
reduced to 2. The weight reduction is achieved by
deriving remaimnder using Niklulam Sutra. Unlike Karatsuba
algorithm, the number is divided into two parts, namely
the meximum weight of the number and the remamder (7).
If the mumber is >2"", the remainder will be positive. If the
number is <2"', the remainder will be negative. Three
algorithms are developed based on the remainder type.
They are, Mode I- Both are positive remainders, Mode
I[I-Both are negative
Remainders with different type. The number is split

remainders and Mode III-

based on 2. The negative remainders are derived by
taking 2°s complement. For example, considering the
numbers:

x=2N1_ (2N'1 7X) (4

The second term in Eq. 4 is known as negative

remainder. The negative remainder is derived by
complementing the number if the number is <2™'. If the
number is >2"", the remainder will be pesitive and it will be
derived by taking the number form X ,;,-X;. The product

can be derived by
P =Xy = 2N lex 2N iy
=N IgNL Ny soMly oy
= NNy Ny XY,
= 2Ny e XY,)

From Eq. 5 multiplier is required to derive the product
XrYr with N-1 bits. The two terms are based on shift
operation by N-1 bit. The proposed architecture and its
methodology are explained in the next section.

3600

Asian J. Inform. Technol., 15 (18): 3598-3604, 2016

Proposed hybrid Vedic multiplier: Tn this study, the
proposed multiplier algorithm is derived based on the type
of the remainders and their architectures are given. The
results are proven theoretically in this study. Three modes
are discussed in detail below:

¢ Mode I- Both numbers are greater than 2" (Positive
Remainders)

* Mede II- Both numbers are less than 2" (Negative
Remainders)

¢ Mode IMI- Only one number is greater than 2!
(Remainders with different type)

Algorithm for mode 1:

Input 1 A, B (N bits)

Output 1P (2N bits)

Step 1: Given A and B are greater than 2!, The positive remainders are
derived by taking the number from Aya,Awz,.......... ApAg and By,By
dyeereninnn BBy (considering cland ¢2)

Step2: Multiply the remainders cl and c2 ie. ml=cl*c2 using N-1 bit
multiplier.

Step3: Shift the input A left side by N-1 times. (m2=A<<N-1).

Stepd4: Shift the remainder of B, ¢2 by N-1 times (m3=c2<<N-1)

StepS: Add all the components to derive the product P = ml+m2+m3
The architecture for Mode-T is shown in Fig.1. Here

both remainders are positive. The product of the numbers
1s calculated as follows

P=AB=2""*Ate *c, 427 T4,
= (A<<N-1)+(c1*e2)+(c2<<N-1) (6)

Algorithm for mode 2:
Input 1 A, B (N bits)
Output 1P (2N bits)

Step 1: Given A and B are less than 2™, Complement A and B to derive
remainders. (Consider c1 and ¢2)

Step2: Multiply the remainders c1 and ¢2 ml =c1%c2.
Step3: Shift the input A left side by N-1 times. (m2=A<<N-1).
Stepd: Shift the rerainder of B, r2 by N-1 times (m3 = ¢2<<N-1)

StepS: Add all the components to derive the product P=ml+m2-m3

The architecture for Mode-IT architecture for negative
remainders is shown in Fig. 2. Here, both remainders are
negative. The product of the numbers is calculated as
follows:

P =AB = 2Nk g *c, 2N He,

J |
N
A c1
TAKE LSB
N-1

N

B c2
TAKE LSB L
N-1

Fig. 1: Proposed multiplier for Mode I

S1

N-1
N /I ==N- I
A Complement C1
LSB
N-1
N
B Complement c2
LSB [
N1

Fig. 2: Proposed multiplier for Mode IT

= (A<<N-1)+{cl*e2)-(c2<<N-1) (M
Algorithm for mode 3:
Input 1 A, B (N bits)
Output : P (2N bits)

Step 1: Given A or B may be less than 2%!, A is considered to be less than
B. IfB=>4, interchange A and B.

Step 2: If Ay, = 1, take from AyzlApnz...... A LA or complement A to
derive remainder. (Consider c1). If By, =1, take from By, Bys,...... BBy
or complement B to derive remainder.(c2)
Step3: Multiply the remainders ¢l and ¢2 , ml =c1%c2.
Stepd: Shift the input A left side by N-1 times (m2 = A<<N-1).
Step5: Shift the remainder of B, r2 by N-1 times (m3 = ¢2<<N-1)
Step6: Add all the components to derive the product P =ml-m2+m3

The architecture for Model 3 is shown in Fig. 3. Here

one remainder is positive and the other is negative. The
product of the numbers 1s calculated as follows:

P=AB= 2Nl*ag *c, 12N 1,
=(A<<N-1)-{c1%c2)+(c2<<N-1) ()

The input multiplexer 1s used to select the
complement value ifthe mumber is <2 If A, =0 the

3601

Asian J. Inform. Technol., 15 (18): 3598-3604, 2016

A ax !

B
0] =<N-1 |

2's Comp of A M
0] ™
A 1 | /
am ~ |t
Ay MUL —ﬁD
e

Ax

N1
s Comp ot B ; N1 M
N
B 1
Cli] N o
a + | mux +

Bx. .
X N1 3
c1 — s =
M +

T

Fig. 3: Proposed multiplier for Mode 3

B - M1

c2 —| 4
Bxa MUX

‘ 7=
c | 2N :‘, E 20
e — L= \j ¥

22—
G

Fig. 4: Proposed combined multiplier

complement value will be selected or the LSB values of A
will be selected. The other multiplexers are used to
interchange the mnputs A and B and accordingly the
remainders of A and B i.e., ¢l and ¢2. The multiplier unit
is used to multiply the remainders AB,. M1 is derived by
shifting the value of A by N-1 bits. (i.e ., 2"'A)). M4 is the
term that represents the multiplication of 2"'B,. The
adder/subtractor is designed to select the operation based
on the type of remainders.

The combined structure is shown in Fig.4. Using the
combined structure, the number in any mode can be
calculated. This structure is similar to the structure shown
i Fig. 3. Here the control signal to select adder/subtractor
15 generated by sinple logic gate. When any one of the
remainders is negative, the product ¢1¢2 will be negative.
Therefore, m2 will be negative. A simple Ex-or gate 1s used
to produce a control signal for adder/subtractor unit. The
problem of existing method 1s solved by this proposed
combined multiplier. While comparing with exiting
Karatsuba algorithm, the proposed multiplier recuires only
one multiplier with N-2 bits mstead of four multipliers

with N/2 bits. In, subtractor 1s used to derive
the remainders. In this research, the complement is

used.
RESULTS AND DISCUSSION

For comparison, both conventional methods and the
proposed multiplier are considered for different bit values.
And it is functionally verified using MENTOR GRAPHICS
tool. The VHDL codes are implemented in Xilinx Spartan
3e and Virtex FPGA. The power analysis is also done
using Mentor Graphics tool. The simulation result is
shown in Fig. 5. The array multiplier 1s widely used due to
its linear structure. It has 1dentical cells generating partial
products simultaneously and accumulating same time.
Pipelining can be done easily at each level. Here delay 1s
loganthmically proportional to the bit size of
multiplicands. But it requires large amount of gates. For
mimmum number of bits, this method will be efficient.
Here, for comparison four conventional methods
considered. While comparing with Karatsuba algorithm,
in the proposed method, the multiplier required is
minimum. And the number of bits is also reduced. Only
N-1 bit multiplier is required. In the proposed algorithm
various N-1 bit multipliers were used in the
implementation of proposed method.

While comparing delay with other methods, Vedic
multiplier has minimum delay. The speed 15 unproved.
While comparing the power with other conventional
methods, Wallace and Braun multipliers consume less
power. Therefore, for low power application, this
combination will produce better result. The deviation is
high for higher order bits for other methods. The array
multiplier and shift-and-add multipliers are widely used in
most of the applications. From Eq. 5, the Karatsaba
algorithm requires 4 multiplications but the proposed
algorithm requires only one multiplication and also it
requires only N-1 bit. In used different multipliers in the
proposed work. Here, the proposed Vedic multiplier 1s
used n the mamn Vedic multiplier.

While comparing area among all multipliers, Vedic
multiplier requires mimmum area. The table shows the
comparson result among conventional multipliers. The
standard bit sizes are considered. From the results’, it can
be concluded that the proposed method can be used for
high speed applications. The overall performance of the
multiplier depends on the N-1 bit multiplier used. Wallace
also worls in high speed but the power is more compared
with Vedic multiplier. The results obtaining from the
successive approximation of proposed multiplier 1s shown
in Table 1-4.

3602

Asian J. Inform. Technol., 15 (18): 3598-3604, 2016

Fig. 5: Simulation result for multiplier with bit size 32

Table 1 Delay comparison with various methods using Xilinx Spartan 3e

Delay innS
Methods ABIT 8BIT 16BIT 32BIT
Array multiplier 15.269 31.111 62.437 123.387
Shift and add multiplier 15.677 33.840 63.089 124.112
Braun multiplier 13.088 23331 62.437 127.776
Wallace tree multiplier 12.756 22.863 44.258 87.776
Vedic multiplier (urdhva) 11.752 21.564 41.684 82.289
Proposed multiplier 7.925 15.634 31.216 72.592
Table 2: Power comparison with various methods

Power in mW
Methods ABIT 8BIT 16BIT 32BIT
Array multiplier 298 312 368 440
Shift and add multiplier 310 368 501 636
Braun multiplier 113 149 406 706
Wallace tree multiplier 113 154 375 706
Vedic multiplier 123 142 230 489
Proposed multiplier 120 137 235 169

Table 3: Delay comparison of proposed multiplier using spartan and vertex

devices

Delay in n$
Methods ABIT 8BIT 16BIT 32BIT
Xilinx spartan 7.925 15.634 31.216 72.592
Kilinx vertex 6.543 13.578 28.957 68.485
Table 4: Area comparison with various methods

Area (LUTs)
Methods ABIT 8BIT 16BIT 32BIT
Array multiplier 30 125 511 2033
Shift and add multiplier 26 123 508 2044
Braun multiplier 33 77 294 1194
Wallace tree multiplier 27 122 512 2077
Vedic multiplier 20 79 501 1932
Proposed multiplier 11 61 439 1858

CONCLUSION

In this study, the hybrid binary Vedic multiplier based
on Nikhilam Sutra and Karatsuba algorithm was
presented. The modification of binary multiplier was done
in the calculation of remainder. The remainder caleulation
is done by Nikhilam sutra. By using Karatsuba, the

multiplier required 1s reduced. And the number of bits for
the multiplier 1s reduced to N-1 bit. Therefore, the
interconnection delay and computation time are reduced.
The speed and the area are optimized using this modified
Vedic multiplier. The performance of the modified
multiplier depends only on the multiplier and the other
operations are shift operations only. The results are
implemented in Xilinx Spartan 3e and Virtex 6 kit. sFor high
speed applications with wide range of bits, this method is
suitable.

ACKNOWLEDGMENTS

The researchers wish to thank the helpful comments
and suggestions from my colleagues in Velalar College of
Engineering and Technology, Frode and the members in
Bannari Technology,

Amman Institute of

Sathyamangalam for their support to complete this worlk.
REFERENCES

Ablulash, R., I1K. Raju, G. Chary and S. Dubey, 2015.

Area-power efficient vedic multiplier using
compressors. Proceedings of the 2015 International
Conference on Electrical FElectronics Signals

Communication and Optimization (EESCO), January
24-25, 2015, TEEE, Visakhapatnam, India, TSBN:
978-1-4799-7676-8, pp: 1-5.
Anitha, R., A. Nelapati, W.L.
V. Bagyaveereswaran, 2012, Comparative study of

Jesima and

high performance Brauns multiplier using FPGA.
TOSR. J. Electron. Commun. Eng. (IOSRIECE.), 1:
33-37.

Arish, S. and R.K. Sharma, 2015. An efficient binary
multiplier design for high speed applications using
Karatsuba algorithm and Urdhva-Tiryagbhyam
algorithm. Proceedings of the 2015 Global Conference
on Commumnication Technologies (GCCT), Apnil 23-24,
2015,TEEE, Thuckalay, India, ISBN: 978-1-4799-8552-4,
pp: 192-196.

3603

Asian J. Inform. Technol., 15 (18): 3598-3604, 2016

Goswami, K. and B. Pandey, 2014. LVCMOS Based
thermal aware energy efficient vedic multiplier

of the 2014

Conference on Computational
Intelligence and Communication Networks (CICN),
November 14-16, 2014, IEEE, Bhopal, India,
[SBN: 978-1-4799-6928-9, pp: 921-924.

Goyal, H. and A.
advancement in the

design on FPGA. Proceedings
International

2015, An
multiplier

Shamim,
N=<N

architecture realization via the Ancient
Indian Vedic mathematic. Int. J. Comput. Appl,
127: 24-27.

Gupta, A., M. Utsav and K. Vinod, 2012. A novel
approach to design high speed arithmetic logic unit
based on ancient vedic multiplication teclhnique.
Int. T. Modern Eng. Res. (ITMER..), 2: 2695-2698. Kokila,
S, R. Ramadhurai, L. Sarah, 2012. VHDL
implementation of fast 32x32 multiplier based on
Vedic mathematics. Int. J. Eng. Technol. Comput.

Appl, 2: 46-50.

Singh, S. and T.N. Sasamal, 2015. Design of vedic
multiplier using adiabatic logic. Proceedings of the
2015 International Conference on Futuristic Trends on
Computational Analysis and Knowledge Management
(ABLAZE), February 25-27, 2015, IEEE, Noida, India,
ISBN: 978-1-4799-8432-9, pp: 438-441.

Somani, A., D. Tain, T. Sanjay, M. V. Kumlku and K. Swati,
2012. Compare vedic multiplier with conventional
hierarchical array of array multipliers. Int. J. Comput.
Technol. Electron. Eng. (IICTEE), 2: 52-55.

Thapliyal, H. and M.B. Srimivas, 2004. High speed efficient
N x N Bit parallel hierarchical overlay multiplier
architecture based on ancient Indian vedic
mathematics. Enformatika Trans., 2: 225-228.

Wallace, C.5., 1964. A suggestion for a fast multiplier.
IEEE Trans. Electr. Comput., EC-13: 14-17.

Xiaopimg, C., H. We, C. Xin and W. Shumin, 2014. A new
redundant binary partial product generator for fast
2n-Bit multiplier design. Proceedings of the 201 4 TEEE
17th International Conference on Computational
Science and Engineering (CSE), December 19-21, 2014,
IEEE, Chengdu, China, ISBN: 978-1-4799-7980-6, pp:
840-844.

3604

	3598-3604_Page_1
	3598-3604_Page_2
	3598-3604_Page_3
	3598-3604_Page_4
	3598-3604_Page_5
	3598-3604_Page_6
	3598-3604_Page_7

