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Abstract: Cloud computing is a pristine methodology of computing in which dynamically scalable and often
virtualized s are given as service over intemet. Appropriation of cloud 15 a fascinating and yet unfamiliar
province in cloud computing to mnbrutes the miscellany of s for cloud purveyor becomes a challenging issue
in recent years. This problem is solve by using three novel fashion for cloud purveyor with appropriation:
Cloud-Dominant Strategy Incentive Compatible (C-DSIC), Cloud-Bayesian Incentive Compatible (C-BIC) and
Cloud Optimal (C-OPT). In C-OPT modules where the administration is done based on host winner value, the
major 1ssue of the work 1s that corroboration 1s done for all cloud end user. To solve security 1ssue problem in
the cloud appropriation method in this effort introduce a novel Expectation Maximization (EM) algorithm for
cloud optimal modules. The proposed EM methods are utilized for identifying maximum likelihood based on
undiscovered dormant cloud artifice variables for virtual cost and quality of service curtailments. To corroborate
the cloud end user data, cryptanalysis method is introduced in this proposed work. The proposed cryptanalysis
method follows the procedure of Elliptic curve cryptography for corroborating end users and cloud purveyors.
Key values between the cloud end user and cloud purveyors are exchanged. Each and every key is verified by
both cloud end user and cloud purveyor. If the key value anyone becomes wrong the appropriation is not
administrated to cloud end user, since these end users become uncorroberated end user, there are not allowed
to perform appropriation process. A cloud negotiator with such an appropriation module enables end users to
miscellany the miscellany of a cloud purveyor. Owur demonstration indicates that the appropriation cost drops
by calculation of the expectation maximization algorithm and more security than the existing C-OPT Methods
by using the elliptic curve cryptography with multiplication m number of cloud purveyors wrespective of the
fashions.

Key words: Cloud computing, fashion, cloud negotiator, appropriation, reverse demands, multi sign demands,
Elliptic curve cryptography (ECC), Expectation maximization (EM)

INTRODUCTION Artifice appropriation of cloud artifices 15 a

fascinating and yet unfamiliar province in cloud

Cloud computing is a multiplicative accepted computing. Cloud purveyors follow a fixed pricing

archetype of offering services over the internet (Mell and
Grance, 2009). Tt is also an active province of research,
and the popularity of this archetype is increasing rapidly.
Many companies like Amazon, IBM, Google, sales force.
com, Unisys and so on now offer cloud services. The
main advantage of cloud computing 1s the ability to
provision IT artifices on demand (thus avoiding the
problems of over-provisioning and under-provisiomng
which are commonly seen with organizations that have
widely variable requirements due to growth/shrinkage,
seasonal peaks and valleys, etc). The artifices offered may
include storage, CPU processing power, IT services and
so on. These artifices are often geographically distant
from end users.

strategy for pricing their artifices and do not provide
any incentive to their end users to adjust consumption
patterns according to availability or other factors. The
end user has to go through the specifications of each
cloud purveyor to select the appropriate one, to obtain
the service within budget and of the desired quality
becomes also major challenge; security of the cloud
computing during artifice appropriation process becomes
also challenging 1ssue.

Hence, economic models are more appropriate in
the context of cloud services. An mmportant feature of
economic models is the distribution of incentives to
bidders which are cloud purveyors in our domain
However, this means that cloud purveyors may not act
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truthfully and may seek to maximize their incentives using
improper behavior. Game-theoretic models cannot enforce
the structure in games. Fashion design enables the social
planner to design the game according to hus wish. So, the
social planner can implement strategies to motivate
participants to act truthfully. The important contributions
of this work are:

+  Appropriation fashions for implementing dynamic
pricing by proposing Expectation Maximization (EM)
algorithm

»  Novel appropriation module based on fashion design
for a cloud negotiator (Grivas ef al., 2010)

»  Proposed ECC based security fashion between end
user mnterface and corroboration manager

The appropriation module enables the cloud
negotiator to imbrute artifice appropriation. In the
appropriation module, the end user sends the
specifications to the cloud negotiator and requests
for artifice. The cloud negotiator sends the end user
specification to all cloud purveyors. The cloud purveyors
respond with cost and QoS parameters of their services.
Do not comsider implementation issues like caching,
refresh and so on of cost and QoS by the negotiator.
Expectation Maximization (EM) algorithm is an
iterative method for finding maximum likelihood artifice
appropriation results to estimates of cost and Quality of
Service (QOS) parameters in statistical models where the
model depends on unohserved cloud artifices.

The cloud negotiator assigns weights for different
QoS parameters using Analytic Hierarchy Process (AHP)
which are scaled before computing a weighted QoS
score. This step 1s called normalization. If normalization
1s not done, then it is not possible to compare different
QoS specaifications. The cloud negotiator umplements
one of Cloud-Dominant Strategy Incentive Compatible
(C-DSIC), Cloud-Bayesian Incentive Compatible (C-BIC)
or Cloud-Optimal (C-OPT) fashions. The wimmer is
determined based on the fashion implemented. The cloud
negotiator notifies both winner and end user. Finally, the
cloud negotiator pays money to the cloud purveyors
according to the payment function of the fashion. This 1s
called the appropriation cost.

Literature review: Compute artifices are the collection of
Physical Machines (PMs), each comprised of one or more
processors, memory, network interface and local /O
which together provide the computational capacity of a
cloud environment. Typically PMs have deployed on
them virtualization software that allows them host a
number of Virtual Machines (Vms) that are isolated

from each other and that may run different operating
systems, platforms and applications. In the literature,
most researchers model VMs and PMs as being
curtailment by their processing capacity and memory
availability. However, recent work (Mithani et al., 2010;
Govindan et al, 2011) highlights the impact of contention
between VMs caused for shared processor caches and
other micro architectural artifices, suggesting that artifice
management process may benefit from more detailed
models of compute artifices.

The first 18 network chorography, the design of
which significantly mmpacts performance and fault
tolerance. Current data center network choreographies are
based on hierarchical, tree-like choreographies similar to
those used i early telephony networks, although a
number of alternative choreographies including proposals
based on hyper cubes (Guo et al., 2009) and randomized
small-world choreographies (Shin ez al., 2011) have
emerged. In all cases a key goal is cubes and randomized
small-world choreographies have emerged. In all cases a
key goal is engineering a scalable chorography in which
increasing the number of ports in the network should
linearly increase the delivered bisection bandwidth. The
second key aspect 18 more diectly tied to artifice
management: it is how to provide predictable latency and
bandwidth in a data center network in the face of varying
traffic patterns. Traditionally, the solution has been
network over-provisioning but this 1s prohibitively
expensive in large scale data centers and is inherently
difficult due to lack of detailed traffic models. Given
this, there has been a move towards mmplementing
service differentiation via Quality-of-Service (QoS)
policies that segregate traffic for performance isolation, so
permitting high-level traffic engmeering. A natural
extension of this approach towards technologies
enabling the virtualization of data center networks is
currently gaining attention. Hence, appropriating artifices
from the end users” perspective is an important and
interesting 1ssue.

The main strength of economic models 1s distributing
incentives to the participants. But there are cases where
the participants may not act truthfully. Hence, assume
that cloud purveyors are selfish and rational. Also, the
cloud negotiator performs reverse demands on behalf of
the cloud end user. Prasad and Rao (2012) propose a
artifice appropriation module for a cloud negotiator based
on fashion design. This appropriation module enables the
cloud negotiator to imbrute artifice appropriation in the
cloud. The winner provides all the required artifices.

The scaling algorithm deployed in our work is the
well known Combinatorial Demands Branch on Bids
(CABOB). CABOB over other algorithms as it s very
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fast and is scalable. CABOB uses Depth First Search
(DFS) internally. Branch on Bids (BOB) is superior
compared to Branch on Items (BOI) (Sandholm et al,
2005). The concepts of BOB and the mtemal working of
CABOB are explained in the following sections. Since,
CABORB is built on an incremental basis, it is very easy to
process new requests of the end user as and when it
comes compared to the other standard algorithms.

Sandholm (2002) serves as the first significant
work on winner determination in combinatorial demands.
Demands with multiple distinguishable items to be
administrated but the techniques could also be used in
the special case where some of the items are
indistinguishable. These demands are complex in the
general case where the bidders have preferences over
bundles that 1s a bidder’s valuation for a bundle of items
need not equal the sum of his valuations of the individual
items in the bundle.

He presents a generic algorithm that allows
combinatorial demands to scale up to significantly larger
mumbers of items and bids than prior approaches to
optimal winner determination (Chang et al, 2010), by
capitalizing on the fact that the space of bids 1s
sparsely populated in practice. This also presents the
fact that basic combinatorial demands only allow
bidders to express complementariness of items. Formulate
demand for computing power and other artifices as a
artifice administration problem with multiplicity where
computations that have to be done concurrently are
represented as tasks and a later task can reuse artifices
released by an earlier task It shows that finding a
mimmized admimstration 13 NP complete. This study
presents an approximation algorithm with a proof of its
approximation bound that can yield close to optinum
solutions in polynomial time. Enterprise end users can
exploit the solution to reduce the leasing cost and
amortize the administration overhead. Cloud providers
may utilize the solution to share their artifices among a
larger number of end users.

Ismail et al. (2008) propose a formal model for
evaluating formal analysis of artifice administration
algorithms in grid computing. Shu uses a “quantum
chromosomes™ genetic algorithm to solve the problem
of artifice admimstration m Grid. Based on artifice
administration in grid computing, develop an optimization
model and a Quantum Chromosomes Genetic Algorithm
(QCGA) to effectively solve it. L1 and Q1 (2008) present a
grid artifice admimstration algorithm based on fuzzy
clustering. This algorithm assigns artifices based on task
need and also performs reservation of the artifices.
By this way, our algorithm can effectively avoid assigning
powerful artifices to simple and medium scale tasks or

assigning poor artifices to complex large scale tasks for
they may lead to misuse of artifices and failure scheduling
of tasks (Narahari et af., 2009). The presented algorithm
has Ingh efficiency and good robustness and works better
than other similar algorithms.

MATERIALS AND METHODS

In game theory, assume that players are rational
and have common knowledge and private information.
Rationality implies that goal 1s to maximize payoff. In our
model, cloud purveyors are rational. Hence, cloud
purveyors are risk neutral. The concepts of risk neutral
and quasi linear are described in detail elsewhere.

Each cloud end user has artifice requirements. The
end users perform reverse demands for appropriating
artifices. Cloud purveyors offer artifices but with varying
costs and quality metrics. The goal of the cloud end user
15 to mimimize the total cost of appropriating artifices
without compromising quality of service. To minimize the
appropriation cost, it 1s necessary for the cloud end user
to know the real costs of cloud puveyors. A end user
announces its specifications for desiwed artifices and
quality of service to all cloud purveyors with the
negotiator acting as a middleman. The cloud purveyors
decide whether to participate in the demand based on the
end user mformation and submit their bids to the
negotiator. The negotiator aggregates the bidding
information and selects the appropriate cloud purveyor.
Cloud purveyors are rational and intelligent. Hence, one
of them might bid with a false valuation to maximize its
utility. The goal of providing incentives is to encourage
truthful bidding,.

The study presents a mnovel cloud artifice
appropriation approach in this proposed work the cloud
optimal modules artifices admimstrated based on the
Expectation Maximization (EM) algorithm 13 an iterative
method for finding maximum likelihood for virtual host
winner value the virtual host winner value payment rule
where the model depends on unobserved dormant cloud
artifice variables. Expectation Maximization (EM)
algorithm 1s an iterative method for finding maximum
likelihood artifice appropriation results to estimates of
cost and Quality of Service (QOS) parameters in statistical
models where the model depends on unobserved cloud
artifices.

Elliptic Curve Cryptography (ECC) 18 responsible for
corroborating end users and cloud purveyors. In ECC
methods they exchange the key values between the cloud
end user and cloud purveyors. Each and every key i1s
verified by both cloud end user and cloud purveyor.
If the key value anyone becomes wrong the artifice
appropriation 1s not admimstrated to cloud end user, since
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Fig. 1: Proposed architecture

these end users becomes uncorroborated end user, there
are not allowed to done artifice appropriation process. A
cloud negotiator with such a appropriation module
enables end users to imbrute the choice of a cloud purvey
or among many with diverse offerings and s also an
essential first step toward implementing dynamic pricing
mn the cloud. The proposed architecture representation 1is
shown in Fig. 1.

Appropriation demand using expectation maximization:
Cloud purveyors are represented by M= {1, 2, ..} in this
appropriation demand, each cloud purveyor responds by
bidding with total cost and promised QoS parameters.
These parameters are converted into numbers using the
technique presented in the previous section. Hence, the
bid 1s an ordered pair (¢, g,). Each cloud purveyor 1M has
execution cost where 0 and QoS where 0<g;. Let be the
lowest cost valuation and the highest cost valuation. The
cloud purveyor’s cost is always intheinterval [€. €] ie, e<¢ <T.
Similarly, let be the lowest QoS value and the highest QoS
value. The cloud purveyor’s QoS 13 always in the
interval [ﬂ’ ﬁ}i.e., q<q,<q, this information is private to
the cloud purveyor. Let be the set of all possible
true types of the cloud purveyor and o, =[c, T]x[q. 7]
Let 0 = 0,x0,x . x0_ Assume that cost and QoS are

correlated. Hence, there 15 a joint distribution function
of cost and QoS represented by. Then, assume that the
joint distribution function is the same for all n cloud
purveyors, 1e., ® = @, =.= @, Hence, all cloud
purveyors are symimetric.

Given a statistical model consisting of a set of
observed cloud purveyor artifices m terms of cost and
quality of service and a vector of unknown artifices
appropriation results as along with a likelihood function
L(B, ¢, Q) = P{c, q|0), the Maximum Tikelihood Estimate
(MLE) of the inknown perameters 1s determined by the
marginal likelihood of the Maximum Likelthood Estimate
(MLE) of the inknown perameters 1s determined by the
marginal likelihood of the observed data:

L(0,c) = P(c|o) (1)

The EM algorithm seeks to find the MLE of the
marginal likelihood by iteratively applying the following
two steps. Expectation step (E step): calculate the
expected value artifice appropriation value for cloud
purveyors of the log likelihood fimetion with respect to
the conditional distribution of QOS under the current
estimate of the artifice appropriation results:
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Maximization step (M step): find the parameter that
maximizes this quantity:

+1) _ ()
gy = argmax Q(9|B ) (3

If know the value of the artifice appropriations results
can usually find the artifice appropriation value for cloud
purveyors QOS Q by maximizing the log-likelihood over
all possible values of quality of service g, either simply by
iterating over. Conversely, if know the values of quality of
service g, can find the estimate artifice appropriation value
for cloud purveyors of the parameters fairly easily,
typically by simply grouping the observed data points
according to the value of the associated dormant variable.
This suggests an iterative algorithm in the case where

both and are unknown:

¢  First, initialize the artifice appropriation results
parameters to some random selected cloud purveyors

*  Compute the best QOS artifice appropriation value
for given artifice appropriation results parameters

¢ Then, use the just-computed values of ¢ to compute
a better estimate for the parameters. Parameters
assoclated with a particular quality of the service
requirement QOS value

¢ Tterate steps 2 and 3 until convergence

Elliptic curve cryptography based enabled security: Toan
arbitrary pair of elliptic curve points specified by their
affine coordinates P = (x,, y,) and Q = (X, y,), the group
operation assigns a third point R = Px(Q with the
coordinates (x;, y;). Given such a cuve E, the
cryptographic group of the c¢loud end wser and
cloud purveyor that is employed in protocols is a large
prime-order subgroup of the group E(F,) of rational points
on E. The group of cloud end user and cloud purveyor
rational points consists of all solutions (x; y)eF,’ to the
curve equation together with a point at infinity, the
neutral element. The number of rational points 1s denoted
by #E(F,) and the prime order of the subgroup by a fixed
generator of the cyclic subgroup is usually called the base
peint and denoted by GeE(F,).

Elliptic curve public-key pairs: Given a set of cloud end
user and cloud purveyor domain parameters that include
a choice of base field prime, an elliptic curve and a base
point of order on an elliptic curve key pair consists of a
private key for each cloud end user and cloud purveyor
which is a randomly selected non-zero integer modulo the

group order and a public key for cloud end user and cloud
purveyor is defined as the d-multiple of the base point.
Thus, the point 15 a randomly selected point in the group
generated by F.

Elliptic curve key exchange: Diffie-Hellman protocol is
used here to exchange the key values between one cloud
end user to another cloud puwveyor based on the
following key pairs (d, Q,) and (d,, Q. They then
exchange the public keys Q, and Q, such that each can
compute the pomnt P = d,Q; = d;Q,) using their respective
private key. The shared secret key is derived from by a
key derivation function, generally being applied to its
x-coordmmate. In this phase the signer generates a key
pair (d, Q) consisting of a private signing key and a public
verification key Q = dF. To sign a message m, the signer
first chooses a per-message random integer i such that
1 <i<n-1, computes the point (% y,) = kg, transforms to an
integer and computes r = x, mod n. The message is hashed
to a bit string of length no more than the bit length of n
which 1s then transformed to an integer.

The signature of m is the par (r; s) of integers
modulo n where = k™ '(e+dr) mod n. Note that r and s need
to be different from 0 and k must not be revealed and must
be a per-message secret which means that it must not be
used for more than one message. It 1s important that the
per-message secret k is not revealed, since otherwise the
secret signing key j can be computed by j=r1""(ks-e)
(mod n) because r and s are given in the sighature and e
can be computed from the signed message. Even if only
several consecutive bits of the per-message secrets for a
certain number of signatures are known, it is possible to
compute the private key. Also, if the same value for k 1s
used to sign two different messages and using the same
signing key d and producing signatures (T, s,) and (T, s,)
then k can be easily computed as k = (s,-8,)7" (e;-¢,)
{mod n) which then allows recovery of the secret key.

RESULTS AND DISCUSSION

Currently, the miscellany of a cloud puveyor is
manual. The miscellany of a cloud purveyor with low cost
is also acceptably called the first price demand. Similarly,
a end user can perform a Vickrey demand and pay the
second-lowest cost to the wimmer.

In the real world, cloud purveyors follow different
price distributions. In this kind of scenario, the winner
determination and appropriation cost computation using
first-price and Vickrey demands 1s not optimal. Hence, this
approach should not be followed in the real world. It may
be noted that if we do not use fashion design, would need
to use standard demands like first bid, second bid and so
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Fig. 3: Comparison of appropriation costs of C-DSIC,
CBIC, C-OPT and C-EM-ECC in Scenario 2

on. However, cannot enforce truthfulness simply using
demands. Truthfulness cammot be measured. Hence, there
1s no other baseline to compare our models.

Currently, the miscellany of a cloud purveyor 1s
manual. The miscellany of a cloud purveyor with low cost
is also acceptably called the first price demand. Costs and
tasks are umformly distributed. The average appropriation
cost 18 calculated in every fashion and compared.

In Fig. 2, the x-axis scale is with one unit length
representing 100 cloud purveyors in scenario 1. The
performance comparison results of the proposed EM
based cloud appropriation artifices administration
performs best than existing appropriation cost to the end
user in C-DSIC, C-BIC and C-OPT for different number of
cloud purveyors. Since, proposed work calculates the
cloud artifice appropriation based on the probability
values and more secure by proposing ECC cryptography
methods in corroboration manager phase.

The mmimum mumber of cloud purveyors 1s taken to
be 10 sumilarly, also 1s the case with Fig. 3 shows the
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Fig. 4. Time Comparison vs. C-DSIC, CBIC, C-OPT and
C-EM-ECC

graph of appropriation costs in C-DSIC, C-BIC, C-OPT
and C-EM-ECC for different number of cloud purveyors in
Scenario 2.

Time comparison results of the existing methods and
proposed methods results are shown in Fig. 3. Tt shows
that the proposed C-EM-ECC shows have less time for
different mumber of cloud purveyors and it is compared
with existing C-DSIC, CBIC and C-OPT methods.

CONCLUSION

Currently, the cloud end user pays a fixed price for
artifices or services. This type of pricing 1s called fixed
pricing. Fixed pricing is very accepted with telecom
providers. On the flip side, there is no provision for
incentives for end users mn the fixed strategy. Artifice
Appropriation is not only an important problem in cloud
computing but is also an unfamiliar province. Currently,
artifice appropriation is done manually and there is a
pressing need to mnbrute it. To mnbrute appropriation,
three fashions are wsed: C-DSIC, C-BIC and C-OPT.
C-DSIC are a low bid Vickrey demand. Tt is allocate
efficient and mdividual rational but not budget balanced.
If the fashion is not budget balanced, then an external
agency has to provide money to perform appropriation. In
cloud artifice appropriation module still the miscellany of
the optimal cloud artifices becomes difficult and security
based fashion 1s not done m this research. In order to
overcome these problem in ouwr work proposed a
artifice appropriation module based on the expectation
maximization algorithm between the cost and QOS in the
cloud purveyor for cloud computing environment. The
proposed EM algorithm finding maximum likelihood for
cost and QOS where the model depends on unobserved
dormant cloud artifice variables. To perform QOS where
the model depends on unobserved dormant cloud artifice
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variables. To perform the security process in efficient
manner proposed Elliptic Curve Cryptography (ECC) is
responsible for corroborating end users and cloud
purveyors. In ECC methods they exchange the key values
between the cloud end user and cloud purveyors
without loss of the cloud data in the cloud computing
enviromment. The experiments reveal an interesting
pattern. The artifice appropriation cost reduces as the
number of cloud purveyors increase, irrespective of the
fashion implemented. The cost in CEM reduces more
significantly, compared to the other two fashions.

The major issue of the present ECC methods it
doesn’t not stem from a weakness in the underlying
hardness assumption but rather from implementation
1ssues such as side-channel attacks, software bugs or
design flaws In the current work artifice appropriation
modules doesn’t consider the following features such
as caching and the refresh. After determining optimal
mtegration of artifices appropriation based on
mathematical models, these methods 1s applied to any
type of real cloud related artifice appropriation application
along with efficient secure fashion identified based on
calculated optimal integration.
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