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Abstract: The study focuses on Hadoop-based approach for web service management. Due to small amount
of web service repository, performance of traditional web service discovery approaches does not offers relevant
services based on user given query. To carry all those complications and also focuses on discovering
potentially value added web services define architecture as WSDH (Web Service Discovery using Hadoop).
Hadoop 18 a framework which is designed to support processing of large data sets mn distributed computing
environment. We propose a service discovery approach which retrieves relevant web services based on the
user query. In which, we first perform scheduling. In scheduling, schedule the user given query based on time
and then logical query execution tree is constructed. After that, preprocessing the relevant data which are
maintained in hadoop frame work. To offer a deeper understanding of time series data we use deep learning
technmique. In deep learmng the relevant data are mamtained in Hbase-OpenTSDB. So efficiently merge time
series data into open TSDB. We assess TF-IDF to calculate matching using Map/Reducer frame and similarity
is calculated using vector space model. Comparing with the existing system proves that the proposed system

provide an optimal solution for user query with mimmal search time and maximum accuracy.
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INTRODUCTION

Recent tumes have seen an explosive growth in the
availability of various kinds of data. So it require massive
amount of computation. When interacting with the web,
finding relevant mformation from the large dataset is
difficult. A person either browses or uses the search
service when they want to find specific mformation
on the Web. When a user uses search service mputs a
simple keyword query and the query response 1s the list
of pages ranked based on their similarity to the query
(Alonso et al, 2003). However, today’s a search tool have
the following problems. The first problem is low precision
which 13 due to the urelevance of many of the search
results. This result 1s difficult to find relevant information.
The second problem is low recall which is due to the
inability to index all the information available on the Web.
This results m a difficulty finding the un mdexed
information that 1s relevant. Web mimng techniques could
be used to solve the information overload problems above
directly or indirectly. However, we do not claim that web
mining techniques are the only tool to solve those
problems (Gunasn and Kanagaraj, 2014). Other techmques
and works from different research areas such as Database

(DB), Information Retrieval (IR), Natural Language
Processing (NLP) and Scheduling Tang ef af. (2015) and
Amotz et al. (2014) could also be used. Semantic web has
attached machine-interpretable information to the web
content for achieving high accuracy. The enormous
amounts of information are handling in web without any
confusion by using the semantic web. The web services
present i1 web are decoupled m nature. The semantic web
services are employed to sense acute web services such
as robotic discovery, composition, invocation and
interoperation. Descriptions of web services are
manipulated to discover various kinds of web services
(Dogan and Ozguner, 2002). So, there is a need to build an
automated system to manage web service by selecting an
optimal web service by filtering the unwanted web service
and also automated web service composition. To improve
the performance of web service management we propose
a scheduling with tree based approach for efficient
management for scale multiple users. Hadoop 1s one of the
big data problem resolver tool which is used to efficiently
manage the web service and map reduce algorithm is used
to automatically choose the optimal web service
(Wang et al., 2013, Shetty ef al., 2014). To improve the
performance of Web service management, we propose a
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Hadoop based approach for efficient management of large
scale Web services, where Hadoop can overcome the
drawback which occurs in the traditional Web service
management mfrastructure (Shashank er al., 2014). There
are three components are integrated into our approach,
HDFS, HBase and Map Reduce where an HDFS holds
very large amount of data and provides easier access. To
store such huge data, the files are stored across multiple
machines. These files are stored in redundant fashion to
rescue the system from possible data losses in case of
failure. HDFS also makes applications available to
parallel processing (Xie et al., 2010). In HBase table and
anon-functional property index mechanism is designed
to strengthen the retrieving performance of the functional
and nonfunctional properties of Web services. HBase
makes an excellent choice for applications such as
Open-TSDB because it provides scalable data storage
with support for
general-purpose Open-TSDB using deep learning. It 15 a
distributed; Time Series Database (TSDB) written on top
of HBase (Agrawal et al., 2014). Deep learning algorithms
have received significant attention in the last few vears.
Their popularity 1s due to their ability to achieve higher
accuracy than conventional machine learmng in many
research areas such as speech recognition, image
processing and natural language processing. However
deep learming algorithms require a large amount of

low-latency queries. It's a

computational power and significant amount of time to
trained. We aim in this work fetch time series data in to
Open-TSDB using Deep learning.

Moreover, a TF-IDF algorithm based on Map Reduce
is proposed to achieve the optimal service to satisfy
user’s requirement. To overcome above discussed issues,
the Proposed architecture is defined as WSDH (Web
Service Discovery using Hadoop). Generally, m map
reduce framework use random shuffle procedure for
discovering services (Lu et al., 2014). But in this study,
we propose efficient solution for scheduling techmque
mstead of the random shuffle manmner and clustering.
Performance analysis measurement is conducted between
existing web service discovery (Crasso et al., 2008) and
proposed WSDH. From that result, we prove our
proposed defined architecture achieves more efficient
result when compared with the previous algorithms,
methods and techniques. Owr proposed work is focused
towards the management of multiple user requests and
retrieving from Hadoop. Overall
contribution of owr proposed research is mentioned

relevant results
below:

¢ Creative way of scheduling the user queries based on
construction of tree

¢+ Deep Learning idea is involved for the purpose of
storing data in tume series over the Hadoop
HBase-Open TSDB

»  Matching and similarity 1s performed in Map Reduce
by TF-IDF and Cosine Similarity function by which
we rank the queries with their scoring values

Literature review: Web service discovery is an important
1ssue for Web service management. Researchers
discusses (Amotz et al, 2014) the overall periodic
scheduling and tree. In this study, space and length of
cycle is very expensive for n users and tree is a cyclic
graph. By motivated the goal of minimizing waiting time,
much research has focused on scheduling which 1s not
perfectly periodic using average measure as target
function. In thus study, researchers considered several
aspects of a tree scheduling problem. First, we presented
a constant amortized time algorithm for choosing the next
client to scheduling, given a schedule tree, using only
polynomial space for most practical trees. Second,
researchers considered a problem of constructing good
schedule trees and describe an exponential time
algorithm to find the optimal schedule tree. Speculative
execution in the case of map reduce is “Improve response
time” of a job by relaunching delay processing tasks.
Crucially, speculative execution mmproves job response
time in large and heterogeneous cluster. There are two
important 1ssues involved m  speculative  execution.
First one is deciding which of the currently executing
tasks are progressing slowly relative to other tasks.
Secondly deciding a node on which a slow task must
be relaunched. Problem with this speculation execution
user searching time gets increased due to relaunching
the task. Periodic scheduling is introduced for n number
of user’s. Perfectly periodic scheduling 1s defined as “how
to predict the good schedules”. Let we take the set of user
requests {ql ,q2, ..., qn} where each ¢i represents the
fraction of the bandwidth requested by user 1, 1.e., 3} q,=1.
Given this point, an algorithm computes a perfectly
periedic schedule that matches the users as “closely” as
possible. The scheduling is implies a period B; and a
b; =1/B;. Measuring the goodness of a schedule 1s done
based on the ratio of the requested shares to the granted
shares qi/bi. Depending on the target application, the
weighted average and meximum ratios are concerned.
Formally, for each i, let p, = g/b, where pi’s define the
performance measures:

Maximum: MAX=max {p,|1<i<n},

Weighted average: AVE = Z; ap
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Next, based on the optimal algorithms, we developa
few efficient (good polynomial time) heuristics algorithms.
These heuristics produced by the uniform distribution
and zipf’s distri bution under both the MAX and AVE
measures. But perfect periodic scheduling is not always
possible (Amotz et al., 2004). The study (Tang et al.,
2015) proposed SARS (Self Adaptive Reduce Scheduling)
for reduce tasks start times in Hadoop system. An optimal
reduce scheduling is reduce task by dynamically
allocating the jobs. Hadoop introduces the greedy
strategy to schedule the reduce tasks and to perform very
fast manner. SARS algorithm schedules the reduce tasks
in optimal time point. Using this optimum point we can
reduce the system delay and to increase the resource
utilization. In this study, performance of the algorithm is
mnproved by the reduce tasks start time and job
completion time. To improve performance further more
map reduce technique is used in hadoop frame work
(Mohan and Remya, 2014). In this study discussed about
“Factors affecting by the job performance”. To mcrease
the job performance and effective resource management
is a fundamental need in Map Reduce technique. The
following factors are affecting job performance: job
scheduling, speculative execution, data locality 1ssue, task
assignment, admission control. To overcome these
problems MTSD (Map Reduce task scheduling algorithm
for deadline constramts) algorithm 1s used. The new
mechanism (Xie ef al., 2010) distributes fragments of an
input file to heterogeneous nodes based on their
computing  capacities. The approach improves
performance of Hadoop heterogeneous clusters. In
this system, performance is not improved due to
clustering algorithm in hadoop. In view of this study,
performed speculative execution to balance the
performance tradeoff between a single job and a batch of
jobs (nnumber of jobs). Delay scheduling 1s improve the
data locality but at the cost of fairness. So, researchers
proposed a technique called slot rescheduling that can
unprove the data locality but with no impact on faimess.
Finally, by combining these techniques together, a
step-by-step slot allocation system is introduced.
Dynamic map reduce technique can improve the
performance of map reduce workloads substantially.
Hadoop scheduling model 18 a Master/Slave
(Master/Worlker) cluster structure. The master node (Tob
tracker) coordinates the worker machines (Task tracker).
Job Tracker 1s a process which manages jobs and Task
Tracker 1s a process which manages tasks on the
corresponding nodes. The scheduler resides in the Job
tracker and allocates Task Tracker resources to running
tasks: Map and Reduce tasks are granted independent
slots on each machine. While performing the clustering in

hadoop, the relevant datasets are unable to retrieve
because of grouping the datasets. Drawback in this
system 1t’s only applicable for clustering environment. So
this system 18 not used for when multiple users
access the web services (Pakize, 2014). In hadoop
multiple schedulers are introduced but each scheduler has
some limitations Researchers Shashank and colleagues
introduce a Hadoop ecosystem based on Web Service
Management System (HWSMS) which is mainly focuses
on selecting the optimal web service. There are two
algorithms gets implemented m this paper. First one 1s
Optimal Web Service Selection (OWSS) and another one
1s Advanced Stop Words Based Query Search (ASWQS).
In (Shetty et al, 2014), the map reduce algorithm is
used for web service composition and discovery. For
automatically controlling mteraction between the web
services is achieved by using the DAMIL-S. By using the
DAMI-S languages the autonomous web services are
discovered which was discussed in (Gholamzadeh and
Taghiyareh, 2010) Ouzzam mtroduced efficiently querying
with web service. Fuzzy clustering is proposed and
probability vector is used for retrieving the semantic web
services (Alonso ef al, 2003) Proposes m clustered
environment to overcome the task assigmment problem
using task selection algorithm. In this research, discussed
the HBASE. Tt is database that stores the weights of
individual web services on the top of the HDFS. In some
situations two web services have the same weight that
time we cannot to store the information in database. This
frame work to analyze Open-TSDB for storing information
based on the time series (Agrawal ef al., 2014).

Hadoop allows user to compose the job, submit it,
control its execution and query problem the state. Most of
the job contains individual tasks and all the tasks need to
have a machine slot to run in Hadoop all scheduling and
allocation purpose are made on a task and node level for
both the map and reduce phases. Tu and Liu (2013)
designed the mapping mechanism for k nearest neighbor
join for large dataset using divide and conquer approach.
Kamal and Anyanwu (2010). In this study for dealing with
deadline requirements in Hadoop-based data processing.
Presenting the design of constraint-Based Hadoop
Scheduler that takes user deadlines as part of its input
and determines the schedulability of a job based on the
proposed job execution cost model. Studies by Anurgj
and Remya and Hesami and colleagues discussed
semantic web service composition by using the clustering
and ant colony optimization algorithms. The main goal of
this paper is to provide a unique web service has huge
joining capability to meet customer requirement.
Connecting various web services and provides high level
abstraction. Numbers of issues are arising in traditional
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composition methods such as reduction of accuracy,
increase of response time and unselect optimal
composition. The OWL-S languages are used to describe
the web services. After describing these services perform
cluster formation. The relevant services are grouped into
form cluster. The clusters are maintains in repository. The
services are retrieved based upon the user given query.
For identify the optimal or best set of services use Ant
Colony Optimization (ACO) algorithm which is having
excessive integrate ability can derived at optimum
solution for each of the data used, 1.e., number of mappers
per stage, the number of ants per mapper and the number
of stages in the chained job. More studies can be done in
order to find a better way to implement the pheromone
updates. Because it was unable to share pheromone
updates between mappers m Hadoop, m the current
implementation all the pheromone updates are done by
the single reducer in each stage. So, the reducer has too
much work to do as the number of ant’s increases. This
behavior can be improved by studying the possibility of
having multiple reducers for pheromone updates and
reducing the duplication of research. In web service
discovery UDDI gives service registry, SOAP (Sumple
Object Access Protocol) 13 a foundation framework for
communication of web service. The WSDL is utilized to
define the web service and DAML’s is an ontology
web service, (BPEL4WS) Business Process Execution
Language for web service to develop various processes,
these are not understandable by the machine; by using
the semantic web solve that issue. Semantic web has
attached machine-interpretable information to the web
content for achieving high accuracy. The enormous
amounts of information are handling in web without any
confusion by using the semantic web. The web services
present in web are decoupled in nature. The semantic web
services are employed to sense acute web services such
as robotic discovery, composition, invocation and
interoperation (Ruben et al., 2003). Only users who can
enter the system will get the accurate recommendations.
This fails to give accurate recommendations when the
multiple users enters the system and requires personalized
recommendation list for Ranking based on the query
execution time (Padmapriya and Appandairaj, 2015).
Dimitrios Skoutas, Dimitris Sacharidis, Alkis Simitsis and
Timos Sellis, discuss the “Ranking Technique” for web
services (Skoutas et al., 2010). As the web is increasingly
used not only to find answers to specific mformation
needs but also to carry out various tasks, enhancing the
capabilities of current web search engines with effective
and efficient techniques for web service retrieval and
selecion becomes an 1mportant 1ssue. Ranking
methodology provides the relevant services for a given

user request. NLP and clustering algorithms were
used in service discovery. Every Semantic Web Service
Defimtion (SWSD) framework needs semantic languages
to describe the web services. In this study, they consider
the WSMO and OWL languages. Each web service has
semantic description. The semantic description are first
extracted the words that 1s constitute as context of words.
The context contains the mformation of noun, name of
operations.  After  extracting  words  perform
disambiguation and form cluster. User query also
extracted, disambiguated after that form cluster. Clustered
terms are maintained n some order called ranking.
Matching will be applied to discover relevant services
from the repository based on user given query. Web
services are discovered based upon which one has
highest priority. Natural Language Processing (NLP)
employed lkeyword based matching for matching
algorithm with web service context. It gives accurate
matching because for word extraction process use the
Wordnet tool, that has high word senses (Gunasri and
Kanagaraj, 2014). The proposed NLP with clustering
gives efficient result when compared with existing general
NLP method. Discuss the Score based Web Page
Ranking Algorithm m following studies (Samjay and
Kumar, 2015; Aditi, 2014; Xuet al., 2008). In page ranking
algorithm consider the number of users visits the
particular web page. So, m this algorithm uses ranking the
web pages based on user’s visits.

Problem definitions: Clustering in hadoop is a
challenging task to manipulate larger datasets. A cluster
contains a large pool of datasets ranging from a few
hundreds to thousands since the final output is generated

which leads
Whenever a new query is added in cluster identifying

from the clusters accuracy problem.
relevant query will be a tedious research (Pakize, 2014). In
hadoop multiple schedulers are introduced but each
scheduler has some limitations and disadvantages. FIFO
scheduler is designed only for single type of job based on
the job priorities in first-in first out manner. When running
multiple types of jobs it gives low performance and poor
response time for short jobs compared to large jobs. Fair
scheduler can cover some limitations of FIFO scheduler
such as work in both large and small clusters. Fair
scheduling algorithm does not consider the job weight of
m HBase which 18 an important
Capacity Scheduler is
complex among three schedulers. Another one major
issue is “Dead line constraint problem”. Dead line of

web  services

disadvantage of it most

job (job completion time) retrieved after completing
the preprocessing stage in hadoop (Kec, 2010)
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Fig. 1. Architecture of WSDH

2010). Most of the researchers use Ant Colony
Optimization (ACO) or Hierarchical ¢lustering algorithm.
Hence, this algorithm increases response time due to large
number of mput parameters used in map reduce process
(Mohan and Remya, 2014). Hadoop-HBASE is a scalable
and distributed database that stores billions of web
services. Hence, an efficient indexing strategy 1s umportant
for processing large amounts of web services. In this
index mechanism with HBase contams functional and
non-functional  property of web services. TIndex
mechanism is more complex due to non-functional
properties such as reliability, availability and reputation
(Wang et al, 2013). In previous studies, web service
selection usually uses any one of the method such as
matching (or) similarity calculation. When using any one
of the method results are not accurate and scalability
1ssues are arise in matching in such situations necessary
to perform pair wise matching (Wang et al., 2013). In the
proposed research, we perform both matching and
similarity in order to achieve high accuracy and reduce
search space for user mput without any error.

Proposed work: The proposed frame work mainly
concentrates on scheduling based on tree instead of
using clustering. Scheduling based tree 15 a wvery

Disambiguztion H-Bazs
" | Map Reduce
Prepryreming
! 1
¥
Matchig nang
OpmT3DEusig _—
Dazpl=aming

important task when schedule the n number of users
hence clustering is a grouping mechanism that consists of
matched and similar documents. Hadoop process is
carried out by clustering and so various algorithuns and
techmques were introduced for clustering (Mohan and
Remya, 2014). We prefer tree formation due to the
increased amount of dataset. In web service, clustering
was based on ant colony optimization but with the
growing munber of user queries clustering become more
challenging in retrieving relevant results Scheduling
based tree is defined an architecture WSDH (Web Service
Discovery using Hadoop) Semantic web service 1s client
server architecture. In client side just give a query and in
server side the overall web service selection, composition
and preprocessing steps are performed (Fig. 1). We clearly
show that, after giving the user query, query 1s move on
to schedule design. Schedule 1s prepared for multiple
users. When a query is submitted by a user, particular
query is placed in a pending list, periodically the
scheduler will attempt to assign highest priority query in
top of the tree. There are two approaches mvolved n this
technique: query selection and query scheduling. Query
scheduling to use of ordering the execution on
independent queries while ignoring the commonality
among queries. We introduce query scheduler to umprove
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the query scheduling. Query scheduler tool allows users
to schedule the queries or statements based on a time
mterval of multiple users. Based on this estimation, the
fastest query 1s selected. Next construct tree for user
given queries. Tree is in a form of binary tree. Tree is
traverse from Left-root-Right. Next step is preprocessing
user queries. First step 18 tokemization. Tokemization is the
process of splitting sequence of sentence mto mdividual
words, phrases and symbols. Tts output is an input of
another process. After extracting the words, we cannot
dentify the context of web services such as name of
operations and non functional operations of concepts and
definitions which are stated in noun and adverbs. Next
step is disambiguation which means each word has >1
meaning for the single word, by using wordnet tool
remove disambiguation present in the word. Wordnet 1s
just look like a dictionary, in which the words are arranged
in semantically instead of alphabetical order. Synonyms
words are combined mto form group called synsets or
synonym set, so each synset has unique concept. Finally
we got context for each web services and applying
matching and similarity functions for discovering the
optimal services. Context contams the concepts of web
services. Hadoop ecosystem 1s a combmation of HDFS
and Map Reduce. Hadoop database (HBASE) is a
database that stores data in top of the HDFS. Tt contains
of Open TSDB. HBASE-Open TSDB maimntains all time
series data. In the proposed research, we aclueve high
accuracy while perform deep learning. Tn this technique
small amount of relevant data is retrieved from a large
amount of data sets. So, deep leaming make 1t possible to
maintain database and improve efficiency of overall
system. From that relevant data matching and similarity
operation 1s done. Map reduce technique s used for
calculating matching document and Vector space model
1s used for calculating similarity n a document. TF-IDF 1s
a Term frequency and Tnverse Document frequency
which is used for calculating the term weights. After
calculates similarity value, scoring query using scoring
function. Final step 1s ranking the query based on score
list. The following mechanisms are involved in this
study:

*  Tree based scheduling
e Preprocessing steps
*  Hadoop frame work
+  HDFS
+  HBASE-Deep learing in Open TSDB
» Map Reduce: Matching wusing TF-IDF
calculation
»  Siumilarity using VSM
s  Ranking

Scheduling: Our goal is expose a control between the time
and space complexity. Memory requirements within the
context of just specified computation load. Toward this
end we must specify enough structure of a scheduling to
identify its control complexity and memory requirements.
While performing scheduling and tree we must consider
the following two objectives: Make span, first objective
is make span. Make span is a total execution time of tree
which corresponds to the times-span between the
beginming of the execution of left side of the tree then
Root and end with processing of right side of the tree.
Memory: Second objective 13 the amount of memory 1s
needed for the computation of scheduling. The peak
memory 15 the maximum usage of the memory over the
whole schedule. The goal is minimizing the memory usage.
In the scheduling, more than one user giving queries at a
time how the scheduling process will be happened. There
are two different roles are present m our scheduling
algorithms. There are query Selection and query
Scheduling. When a query is submitted by a user, the
query is placed in a pending list, periodically the
scheduler will attempt to assign the query in the top of the
tree. Query selection: every query is placed n a pending
list and the entire list is sorted mn order of priority Query
Scheduling is use of ordering the execution on
independent queries while ignoring the commonality
among queries. We introduce scheduler to improve Query
Scheduling. The Scheduler tool allows users to schedule
user queries or statements based on a time interval
between one users to another user. Based on this work,
the fastest query is selected. Query scheduling is a tree
based scheduling algorithm. We apply concept in order to
reduce time. This process is continues until the end of
process. So, the response time of the service will be
reduced (Fig. 2-4).

Tree based scheduling: In the proposed work we
construct the logical query execution tree. Tree 13 mn a
form of bmary tree. A good scheduling algorithm should
leads to better resource utilization and better performance
in insertion, minimum execution time and mimmizes the
searching cost. Tree scheduling is a methodology for
construct perfect periodic scheduling based on ordered
trees. Root node and each leaf nodes correspond to a
distinct user and the period of time 1s scheduling. Let CT,
be the completion time when the last node ‘n” finishes
processing. The main objective is minimizing the
completion time. Consider queries an increasing order of
finish time. Important operations on a tree are:

»  Searching query

»  Inserting a node

s Deleting a node

¢ Finding the minimum or maximum of values stored in
the tree (Fig. 5-7)
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The above example 1s explained the node which
consists of query execution time.Based on the timing tree
is constructed in bottom up approach.

Algorithm: scheduling multiple users:

Input:set of users ul,u2 ,....,u,

Tnitialize the set of users U and construct Schedule 8

Compute the priority order for all users ul,u2,...u,eU

Selection: Determine umin and add user umin to 8 and it remove from U do
forallU

Shedding: Remove from 1T for all those users,it it were to be added to 8
Termination: If U is empty

Algorithm: tree based scheduling:

Tnput: A sequence of ni = {ny, 1ny,....., i} is number of nodes

n; =Mz, ..., znand U= {ul, u2, u3, ..., u} be the list of users and the
number of users ordered based on the job execution time.

for ni=1 toni do

for each user following the finish time ft starting firom the leaf node do select
minimum finish time in qpp

if the node ((ul<u2) &&(ul. u 2)) then

ul;-nl

else if{(u2<u3) and (u;#us)) then

u;-n2 dountil all the nodes are predicted

end if’

end if’
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Fig. 6: Tree traversal

Fig. 7: Example for scheduling based tree for multiple users

end for .

end for
Output: A tree with minimum execution time

Starting at the root node, the search algorithm .

compares the search key (query) with the data stored in
the current node:

» If the search key 13 equal to the data of the current

node, the value has been found and the search is .

terminated

2015

Less compars

High compars

with root

High compeare

writh Fo-parent

If the search key 1s greater than the data of the
current node, the search proceeds with the right child
as the new current node

If the search key 1s less than the data of
the cumrent node, the search proceeds with
the left child as the new  cumrent
node

If the current node 1s null, the search 1s termmated as
unsuccessful
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Algorithm: searching user queries

Search LQET(Val root<pointer=,Val argument<key=)

/fSearch a logical Query Execution Tree (LQET) for a

given value

Pre: Rt is the root to a LQET/Rt is the root of logical Query Execution
Tree.

Return the Na if the value is found or null if the node is not in the tree/Na
be the value address

it (R, is null)

Return null

end if

if (argument <R.->key)

return search LQET(R->left, argument)

else if (argument > R->key)

Return search LQET (R->right, argument)

else

Return R,

end if

end search LQET

Since, the above search algorithm visits at most one
node in each level of the logical query execution tree, the
algorithm runs in O(h) time where h 1s the height of the
tree since O(n) is the time complexity of tree based
scheduling algorithm.

Preprocessing: This study describes the pre processing.
After constructing tree preprocess the user requests. In
pre processing stage User given query may be a single
word, single sentence or paragraph First step 1s
tokenization. Tokenization 1s a process of splitting
sequence of sentence into individual words, phrases and
symbols which 13 called tokens. Main use of tokemzation
is identification of meaning for full keywords. Tts output
1s an input of another process. After extracting the words,
we cannot identify the context of web services such as
name of operations and non functional operations of
concepts and definitions which are stated in noun and
adverbs. Next step is disambiguation which means each
single word has more than one meaning, by using
Wordnet tool remove disambiguation present in the word.

MATERIALS AND METHODS

Overview of hadoop mechanisms

Hadoop: Hadoop was created by Doug Cutting, the
creator of apache Lucene. Hadoop frame work supports
processing of large datasets in a distributed environment.
It can provide robustness and scalability for a distributed
system. Hadoop enables applications to work with
thousands of nodes and terabyte of data, without
need of user distributing the large data and allocating the
memory for massive data storage. Hadoop using three
components: HDFS, HBase and Map Reduce. HDFS is a
data storing and it is a distributed file system which

Table 1: Time series data in HBase
Colurmn Farnity it

Row keys +0 - +10 +25 - -
0.69 - 0.51 0.42

holds a large amount of data and provide access to these
data for many users distnibuted across a network
Hbase is a database and using Map Reduce to process
the large data.

HDFS (Hadoop Distributed File System): HDFS is a
distributed file system and it is used to store data in a
distributed mammer in order to solve big data problem an
effective manner. By distributing data storage and
computation across many servers, the combined storage
resource can grow with demand while remaining
economical at every size (Table 1).

HBase: HBase 1s a distributed column-oriented and
NoSQIL database built on top of HDFS. HBase provides
real-time read/write random access to very large datasets.
In HBase, a table 1s physically divided mto many regions
which are m turn served by different Regional Servers.
One of the biggest utility in HBase is to combine real-time.
HBase queries with batch Map Reduce jobs, using HDFS
as a shared storage platform. HBase can be efficient to
use m millions or billions of rows. All rows in Hbase are
sorted lexicographically by their row key. HBase
introduces time series database technology. Open TSDB
stores huge amount of (tme series) data and queries
mostly based on time or time ranges. Creating HBase table
instance is time consuming and ability to reuse the HBase
table. Different types of schema available to store time
series data in HBase.

Pseudo code for HBase Table

public class User Tnsert {

static string table Name = "users";

static String family Name = "info";

public static void main(String] | args) throws Exception {
Configuration config = HBaseConfiguration.create();
/f change the following to conmect to remote clusters
{f config. set("HBase.zookeeper.quorum”, "localhost™);
long tla = System. currentTimeMillis();

HTable htable = new HTable(config, tableName);
long t1b = Sy stem. current TimeMillis();
Systemn.out.println ("Connected to HTable in : " + (t1b-t1a)+" ms");
int total = 100;

long t2a = System. currentTimeMillis();

for (inti= 0 i < tatal; i+—+) {

int userid =1;

biyte[] key = Bytes.toBytes(userid);

Put put = new Put(key);
put.add(Bytes.toBytes(famity Narme),

htable.put(put);

}
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Row key

Column Family:name

Column Familv:id

metrics tazk
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static

procloadavg.lm

5

Hast

procloadave.lm

Fig. 8 Open-TSDB structure

Table 2: TSDB-uid Open-TSDB in HBase
Row key Familv: Column
Metric-ID Properties

Version
Current time stamp

Table 3: TSDB inside HBase
Column Famnily it

Row keys +0 +15  +20 +1890 - 3600
0.69 0.51 0.42 -
099 072

long t2b = System. currentTimeMillis();

Systemn. out.println(” inserted "+total+" users in "+(t2b
-t2ay" ms")

htable.close()

b

b
Output: Connected to Htable in: 1190 m sec
Tnserted 100 users in 350 m sec

Open TSDB: Open TSDB is an open source distributed
and scalable time-series database, developed by Stumble
upon. It supports real time collection of data points from
various sources. It is designed to handle terabytes of data
with better performance for different monitoring needs. It
stores, indexes and serves metrics at a large scale. All the
data 1s stored in HBase in two different tables: the TSDB
table provides storage and query support overtime-series
data and the TSDB-uid table meaintams an mdex of
globally unique values for all metrics and tags. Open
TSDB can store metrics per second. Performance
measure of Open TSDB:

* Read queries are generally capable of retrieving,
munging and plotting over 500k data points/sec

¢ Over 1 Byte new data points per day is 12k sec™

¢+  Hundreds of millions and billions of data points
stored

*  The <2 TB of disk space consumed

1

Open TSDB design: In Open TSDB the TSDB table stores
data using composite row keys, comprising of metric
id (3 byte), time stamp (hourly m 4 byte), tag
key-ids (3 byte) and tag values (3 byte). Each column is
grouped under one column family consisting of column
qualifiers that representing time as shown in Table 1. The
TSDB table 1s the heart of the time series database which
stores time series data points. TSDB-uid 1s a look up table
for metrics and tags (Table 2 and 3 and Fig. 8).

Deep learning in Open TSDB: Normally H-Base storing
the large amount of data sets in a database. But in this
system storing only relevant datasets which 1s retrieved
from the tree. So we introduce the new methodology for
“Deep Learning” in HBase-OpenTSDB. Deep learning
achieves high accuracy and improves performance of
precision and recall factor. Deep learming 15 a deep
structured learning which is used for retrieving small
amount of relevant data from a large amount of data sets.
This deep learning methodology 1s used in Open TSDB.
It 15 a distributed time series database that 1s stored n top
of the HBase that enables to store, index the query and
plot the query time (Fig. 9).

Calculating data size in Hbase: HBase stores the data in
key value format. It 1s explain the key value, data type and
byte required for each field (Table 4).

Calculate the data size: Key values consist of two parts:
fixed part and variable part.

Fixed part:

HBASE data size = Key length +Value length+
Row length+CF length+Key value+Time stamp
= 4+4+2+1+1+8 = 20 bytes
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Table 4: TSDR inside HBASE

Key length Value length  Row length Row Column family length  Column family  Column qualifier  Time stamp Key type  Value
Integer Integer Short Byte Byte Byte Byte Long Byte Byte
4 4 1 1 1 1 8 1

Data storage

HE ASE i
Darabase ‘
i

e

———

Serving querias

Fig. 9: Deep learning in open TSDB architecture

o ae

Fig. 10: Matching and similarity
Variable part:

HBASE data size =

Row+Column family-+Column qualifier+value
= 13+2+248 = 25 Bytes

Total size = Fixed part+Variable part

Column 1 = 20+25 = 45 bytes

Open TSDB consist of many column, if it send data
inevery 15 second then, we will have 240 columns in each
row for 60 min boundary as mention by Open TSDB Each
row size 1s calculated as:

Row 1 =240 x 45 = 10800 Bytes

To store 1 million records, the space required 1s 10 GB.

= 108001000 =10 GB

—

Preprocessed
data

=~ -8

Matching and similarity: Extracting accurate information
for user input is the main drawback for information
retrieval system in web. For accurate results we bring both
similarity and matching procedures. If one process 1s used
there may occur error and so the retrieved results would
not be effective. Due to verify the keywords without any
error we perform both the process. Our proposed work
implements matching using map reduce techmque and
similarity using vector space model. Open-TSDB contains
time series data using this Open-TSDB data matching and
similarity is performed. Figure 10 shows, the data retrieved
from the database then matching, it provides similar
documents. In this study, researchers present a concept
of matching method based on TF-IDF using Map Reduce
technique. We conducted a comparative evaluation of the
Hadoop based TF-IDF and without Hadoop. The results
empirically prove the strength of our approach.

Matching between two words is usually calculated
using in the space of TF-IDF. Terms are simple words,

2018



Asian J. Inform. Technol., 15 (16): 2908-2926, 2016

Input Data

Fig. 11: Map reduce frameworlk

phrases and symbols and special characters. One of the
most known techniques for calculating these measures
or term weights 183 Term Frequency and Inverse
Document Frequency (TF-IDF). Many formulas and
methods used for calculating matching documents.
TF-IDF weighting scheme are often used by search
engines for scoring and ranking a document's relevance
based on user given query.

TF-IDF without using Hadoop: TF-IDF weight (Term
Frequency-Inverse Document Frequency) 1s a weight
scheme often used in information retrieval and text mining.
This weight 1s a statistical measurement used to evaluate
how much a word present in a document from the
collection of a document sets. The importance increases
proportionally to the number of times, a word appears in
the document. But 1t’s offset by frequency of the word in
the collection. So, how quickly and efficiently calculate
the TF-IDF 18 very mnportant. TF-IDF 1s composed by two
terms one is term frequency and ancther one is inverse
document frequency.

TF calculation: Term count in the given document is
simply the number of times a given term appears m that
document. For the term t within the particular document d,
so its term frequency is defined as follows:

£ - @b) (1)
' ZCF(c,b)

In the formula, F (a,b) 1s the number of occurrences
of the considered term (ta) in document db and the
denomimator 1s the sum of number of occurrences of all
terms in document

IDF calculation: Tnverse document frequency is a
measure of the general importance of the term. The
formula is defined as follows:

Idf :log7|D‘ (2)
P |ib:toedby

Reducer

Qutput Data

Reducer

In the above mentioned formula, |D| 1s the total
number of documents in the Collection; {b; ta. db} 1s the
number of documents where the term ta appears and
F,=+0.

TF-IDF calculation: The TF-IDF weight of term is the
product of tf and idf. Equation is defined as follows:

(TF-IDF)_, = Tf,, = Idf, (3)

If term t 1s appears in a documents calculating the
following functions:

¢ Number of times term t appears in a given document

»  Number of terms in each document

»  Number of documents t appears in total number of
documents

TF-IDF with Hadoop using Map Reduce technique: Map
Reduce 13 a programming paradigm for associated
implementation for processing large datasets and
generating similar data sets. Map reduce model contains
two phases namely mapper and reducer phases. Users
specify a mapper that processes a pair to generate a set of
intermediate pairs and a reducer that merges all
intermediate values associated with the same intermediate
key. We give a TF-IDF algorithm with hadoop based on
the map reduces scheme. It provides high throughput and
accuracy to access the application data and it’s suitable
for applications that have large data sets. An experiment
shows that i the case of massive data computing and
mining, the new method applying hadoop framework
which is more efficient than the traditional methods
(Fig. 11).

Calculate frequent word in the document: In mapper, we
use regular expressions to match words and write <<word
in document Name>, 1> pairs to intermediate values which
will be processed by the reducer. Then we calculate the
frequent word in the document directly to the reducer.
Output of the reducer need to be written to intermediate
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files which will be processed in next Map Reduce process.
The output is using as key and as value ‘F as a value and
“word document Name” 15 a key. Function is designed as
follows:

Mapper () :Input: <Document Line No, contents>
Output: < <word m document name=>, 1=
Reducer (): Input: <<word in document name™>, 1>
Output: <<-word in document name>, F>

Calculate the total number of words in each document: In
this stage, we rearranged the pairs in mapper (key and
value). We calculate the total number of words in each
document in reducer. Reducer output is needs to be
written to the intermediate files or temporary files which
will be help full to process m next Map Reduce process.
The output is using as the key as the value ‘F’ is the
mumber of frequent term, ‘word” in the document
‘document Name’ and ‘N’ 1s the total number of words of
‘document name’. Map/Reduce Function 1s designed as
follows:

Mapper () :Input: <<<word in document name=>, F >
Output: <document Name, < word=F> >
Reducer ( ) :Input: <document Name, < word=F=> >
Output: <=word in document name>, <F/N>>

Calculate TF-IDF: We reorganized the pairs in mapper
(using key and value). Then we calculate the number ..d.
which is the number of documents containing this word
(or) term and the number ‘D’ which is the total number of
whole collection of documents. We can calculate the TF-
IDF according equation

F

Nxlog r

Function is designed as follows:

Mapper ( ): Input: <<word in document name> < F/N=> >
Output: <word, <document name F/N=>
Reducer ( ): Input: <word, <document name F/N >

Output: << word n document name™>, F /N * log
D/dy=

Similarity calculation using vector space model: When
two user preferences have similar, matching only 1s not
sufficient to retrieve the accurate services. Matching is
only matching query to the particular documents. So it will
give n number of services. But our main scope is retrieve
accurate web services based on the user preferences.

Similarity measure is a function that computes degree of
similarity using similarity function. The vector space
model represents, documents and queries as vectors in
dimensional space (multi dimensional), the terms are used
as dimensions to build an index to represent the
documents. Each term represents documents. If a term
occurs i document, its value 1s calculated using cosine
similarity function. It 1s used in information retrieval,
indexing and ranking and can be successfully used in
evaluation of search engines. The vector space model can
be divided m to two stages. The first stage 1s sunilarity
calculated using cosine similarity function. A common
similarity measure known as cosine measure determines
angle between the query vector and document vector. A
vector distance measure between the query and
documents 1s used to rank retrieved documents. The
second stage, rank the documents with respect to the
query according to a similarity values.

X=X, Xy X Y = {1 Yoo ¥ad
Where:
x = A set of queries
y = A set of documents

The cosine of the angle. The 6 between x and y can
be as follows:

2y (5)
JZ1=1Xi2 JZFIin
Where, x1 be the TF-IDF weight of term I in the query

and Y1 be the TF-IDF term weight of term I in the
document (Fig. 12

Cos(x,y) =

Xy XY

=

Scoring documents: Scoring each document in the
datasets is very essential technique. In case of large

Dacuiment 1

Query

Document 2
15' : Document &

! Document n

Fig. 12: Vector space model
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Table 5: Calculating relevance score and rank for the word retrieve from

document
Querries Score values Ranks
Qy 0.00045 2
Qs 0.00123 1
Qs 0.000432 3
Qy 0.00473 4

document collections, the resulting number of matching
documents can far exceed the number of a human user.
Accordingly, it is important for a search engine to rank
(or) order the queries. To do this, the search engine
computes a rank for
using score list.

each matching document

Scoring function: Score calculation for each document 1s
done using Vector space of query and documents. If the
query term does not occur in the document score should
be 0.The most frequent query term in the document, the
score should be higher.

vigv(d) 6
Score(q,d) 7|§(Q)HV((D‘ (6)

Where, q is a query and d is a document.

Example for ranking technique

Ranking technique: Documents are rank based on the
score list. To rank similar documents based on score
values. We do it by assigning numerical rank to each
document based on a scoring value function which
incorporates features of the query (q), document (d) and
the overall document collection (D). Ranking technique is
indexed by the score list, to be able to provide the order
of relevance documents, for the web services, with
respect to the user query (Table 5).

Algorithm for Ranking
Input: set of queries
Word tokenizes the query to a set of words.
Set ranks to an empty list ranks= { } output will be
produced here.
Cormpute for each document di in the n documents.
Initializes score of d=0.
Cormpute for each term t in docurment D.
//Matching-Map Reduce Technique
compute term frequency: n=tf (t,d)
compute idf for across documents: m=idfit,d)
nxm = tf*idf
/i8imilarity -Vector Space Model Technique
Calculate score value:
V(g ¥(d)
[(||¥¢q)
Construct (index of d, score for d)
sort the list
Return ranks
Output: Rank list RI(Top ranked document)

Score(q,d)

Performance evaluations

Performance metrics: In the expeniments we compare our
proposed system with existing mechanisms. From that we
are going to prove the proposed method is achieving
efficient result when compared with remaming algorithms.
The main objective is to increase the accuracy rate,
efficient precision, recall and response time. Tn existing
system only focused scheduling using different Hadoop
scheduler. Using these schedulers retrieve similar web
services from large size datasets. So, the proposed
research, we considered the following parameters m the
experiments:

*+  Accuracy

+  Precision and recall factor

+  Response time vs. number of web services

»  Differences between open TSDB and TSDB using
deep learning

¢ Hadoop scheduling vs. tree based scheduling

Experimental setup: We conduct the experiment on
Hadoop frameworl installed on single computer windows
environment. The configuration of tlus stand alone
computer is 6 GB Ram and 3 GHZ CPU, Pentium or dual
core processor and the Hadoop version is 2.60. Map
Reduce algorithm 1s implemented using jdk 1.8 and Net
beans 8.0. We use towr dataset from our tour-pedia.org.
This dataset has information of various places and
reviews. But, reseachers considered the place of dataset
only for the experiments. The reviews contain the
information of review of described places present in
place dataset.

Place dataset collects information from the various
social medias and which contains the following fields
such as id, name, address, category, location, latitude,
longitude, services, subc ategory, website.icon,
description, external wrl’s, statistics and polarity. Each
record nearly contans the 5500 records.

RESULTS AND DISCUSSION

In this study, we discuss about performance results
of all parameters and it’s discussed in section 5.1. For
conducting the experiments we use 5000 records. Table 6
shows the performance result of our proposed concept
SDH.

To analyze the performance metrics in Hadoop, we
use measurement indicators like accuracy, precision, recall
and response time. Result is shown in Table 7. A perfect
precision score of 1.0 means that every correspondence
computed by the algorithm was correct (correctness),
whereas a perfect recall scores of 1.0 means that all correct
correspondences were found (completeness). To compute
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Table 6: Calculating relevance score and rank for the word retrieve from
document

Querries/Results Response time (sec) Accuracy (%0 Precision  Recall
1000 1.0 91.0 0.735 0.865
2000 2.0 92.3 0.741 0.875
3000 3.4 94.0 0.743 0.880
4000 5.2 95.0 0.756 0.885
5000 2.1 98.0 0.778 0.890

precision and recall, the alignment X retumned by the
algorithm is compared with a reference alignment Y.
Precision is given by equation:

P(X,Y)= XNyl (7)
Y|
Whereas recall 1s defined as:
R(X,Y):L{nﬂ (8)
[

Accuracy: Accuracy 1s reduced, when increases the
amount of data. Tn the proposed system shows when
increase the amount of records, accuracy is also
mcreased. Because, it 13 one of major factors in
performance metrics. So main scope of our web service
discovery is to achieve high accuracy. Tn existing paper
using Apache Hadoop and Mahout can recommend large
amount of data efficiently (Thangavel et al., 2013). But
when 1t comes to real time, random access 1s not possible
by using Apache Hadoop. So, the proposed worl we use
Hadoop framework alone to increase the accuracy, in that
system matching and similarity 1s done using map reduce
techmque. In this techmique similar web services are
sorted based on their scores. Based upon user given

query the accuracy value will be differing. An

4000 50090

experimental result shows the proposed SDH give
more coherent result when considering Hadoop
framework (Fig. 13):

Nurmmber of words

%)

succesfully corrected

Accuracy = :
Number of input words

Precision and recall: Precision and recall factor is used to
measure the efficiency of similarity searching and
matching. Figure 14 shows the result of precision and
recall factors.

Response time: Figure 15 gives the results of response
time of proposed hadoop system with existing without
hadoop system. Response time of each service will be
varied when increasing the number of web services
(Shetty et al., 2014).

From that result we prove that our proposed
approach achieves efficient result. The amount of
response time will be gradually mcreased with respect to
increase the web services. Response time is represent as,
difference between the starting time of query processing
and fimshing time of process. During this result web
service will be discovered. In previous papers they
calculate the response time between Hadoop and without
Hadoop framework. Response time of existing system
has high response time when increasing records but in
our proposed system only slight mecrease of response
time results.

Speed up: In this experiment, we are comparing speed up
of the system when increasing number of nodes, accuracy
will also increased. Speed up is given by the ratio of
execution time with increasing the number of nodes. Given
by shown in Fig. 16:
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Speed up = —T(l)
T{N)
Where:

N = Number of nodes

T = Execution time

The T (1) represents times taken by single node
and T (N) represents tune taken by n number of
nodes. Figure 17 shows that the number of users
increased ,the speed has also increased. This is achieved
by using “best performance scheduling”.

Differences between Open TSDB and TSDB using deep
learning: Open TSDB is a tume series database that stores
data on top of the HBase. In existing system it will stores
the information in database for huge amount of data. But
our proposed work we use scheduling with tree, in that we
retrieve relevant results from scheduling technique. This
information is stored in open TSDB using deep learning.
In deep learming techmque small amount of data retrieve

from huge set of datasets. When we compare with existing
Open TSDB (Agrwal, 2014) and our proposed Open TSDB
system. Figure 18 shows the effective results.

Hadoop vs proposed scheduling: Hadoop system
introduced many schedulers to minimize the job
completion time. It 1s critical to select a scheduling
algorithm by considering the Hadoop factors like
scalability, accuracy, precision and recall factor and
desired performance level. Scheduling algorithm which
performs well in one Hadoop system, may not work well
for a system that differs in these factors. These entire
algorithms proposed to address one (or) more problems
and none of them is suitable for our objectives (Pakize,
2014). Due to these important issues, we described Tree
based scheduling. In this technique scheduling is
performed after given user query. Our proposed scheduler
attempts to schedule every user by the user query with
completion time 18 determmed by the logical query
execution tree (Fig. 19).
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Comparative analysis of overall scenario: Figure 20
shows the performance analysis by two measurement first
one is Entire Scenario with following methodologies:
scheduling with tree, preprocessing and deep learning
then calculate matching and similarity using Hadoop
framework and second one scenario 1s scheduling with
tree, preprocessing, Hadoop-Deep leammng in HBase
Open TSDB, then calculating matching and similarity.
Deep learning is a deep structured learning used for high
level abstractions in data. When compare with deep
learning and open TSDB based Deep Learning. Open
TSDB based deep learming technique gives the better
performance and high accuracy that shows m Fig. 18.

CONCLUSION

Owing to massive vogue of service oriented
architecture, there has been notable extension m service

repository when the repository size will be increased
response time of service discovery 1s reduced. A
traditional web service does not offer ideal result for user
given query due to storage issue. To avoid this problems
Hadoop frameworlk is introduced. In hadoop framework
we mvite WSDH (Web Service Discovery using Hadoop).
In this architecture, we perform Tree based scheduling,
preprocessing, Deep learning and matching and similarity
using Map Reduce and Vector Space Model in order to
achieve high accuracy, reduce response time and increase
precision and recall factor wvalues. We conduct
experimental analysis for WSDH i Hadoop environment
and consider the parameter as response time, accuracy,
precision and recall. From the experimental results we
prove that owr approach attain effective results. The
values are stored in tabular format. The approach
achieves 98% accuracy when amount of records
Increasing in web services.
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