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Abstract: The PTID controllers are widely used in industries for nearly a century due to its simplicity, flexibility
and efficiency. Recently, the control of non-linear processes in the industries have turned the attention towards
the intelligent controllers such as genetic algorithm tuned PI controllers, neural networks based controller,
predictive controller, fuzzy logic controller, adaptive controller, etc. This study focuses on the design and
implementation of neuro tuned PT controller for the non-linear conical tank level process. A conical tank is a
highly non-linear process due to the varation in the area of cross section of the level system with change in
shape. In this research, newro tuned PT controller is designed for the control of non-linear process to ensure
the exact level maintenance. The results are obtaned by servo, regulatory, servo-regulatory operation for the
non-linear conical tank process. For this research, neuro tuned PT controller is compared with Genetic algorithm
tuned PI controller. And also, the modeling aspect of the conical tank level process in which the stability
analysis of the system is evaluated through the pole zero plot and nyquist stability criteria.
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INTRODUCTION

In the chemical process industries many challenging
control problems arise due to the non-linear dynamic
behaviour of the system, uncertain time varying
parameters, constraints on the manipulated and controlled
variables, interaction between the mampulated and
controlled variables, dead time or delay input
measurement and unmeasured frequency disturbences.
The non-linear comical tank 1s widely used in
hydro-metallurgical industries, cement mdustries and
concrete handling applications, thermal plant’s coal
handling section, food processing industries and waste
water treatment plants. The control of the conical tank is
a challenging task due to its non-linearity and constant
change in the cross section which depends on the cone
mchnation angle, height of the cone and radius of the
cone.

Literature review: From 1910, onwards the Proportional
Integral Derivative (PID) controllers are widely used in
process industries due to its sumplicity, flexibility and
efficiency. A fine tuning concept for closed loop system
was developed. The standard methods for tuning of
controller includes are: Zeigler-Nichol’s ultimate cycling
method (Zeigler et al., 1942), Open loop tuming method
(Cohen and Coon, 1953), the future of PID tuning (Astrom

and Hagglund, 2001). A simplified optimum method for PT
controller has been mtroduced (Hwang ef al., 2003) which
produces high performance and widely used for linear self
regulating process. The performance between the PID
controller and dead time compensating controller based
on Integral Average Error (IAE) optimization technique
method was developed (ingimundarson and Hagglund,
2002). The tuning concept for fuzzy logic controller for
conical tank process was developed (Madubala et af.,
2004). The real time implementation of wiener model PL
controller for comical tank concept was developed (Bhaba
and Somasundaram, 2009). The neuwro based model
reference adaptive control of a conical tank concept was
developed (Bhuvaneswar ef al., 2008). Again the design
of itelligent controller for non-linear comical tank
process was developed (Nithya et af., 2008).

The real time implementation of a new CDM-PI
control scheme for a comcal tank liquid level maintenance
concept was developed (Bhaba et al., 2007). Next, the real
time application of Ant colony optimizing algorithm was
implemented for conical tank process (Ge et al., 2002). The
design of fuzzy estimator to assist the fault recovery
concept was developed (Suresh Manicet al., 2009). The
objective of this research are:

¢ To design the neuro tuned PT controller
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+  And compare the performance of genetic algorithm
tuned PT controller for a non-linear conical tank level
process and also compare the performance of the
controllers

The performance of the controller is evaluated by
performance index such as Integral Square Error (ISE),
Integral Tune multiplied Square Error (ITSE), Integral
Absolute Error (TAE), Integral Time multiplied Absolute
Ermror (ITAE) and tine doman specifications such as Peak
over shoot (M,), settling Time (T,) and steady state error
(e,). Since, neuro tuned PI controllers are based on
heuristics, they are simple to design and can perform
well on ill-defined models. The above designed controllers
are operated by servo, regulatory and servo-regulatory
operation for the non-linear conical tank level process

MATERIALS AND METHODS

Modeling of non-linear conical tank process: The
schematic diagram of the non-linear conical tank process
15 shown in Fig. 1. The mlet Flow rate (F,) can be modified
by the inlet valve and the outlet Flow rate (F,,) can be
modified by the outlet valve. Under dynamic conditions,
the conical tank Height (H) depends on the inlet Flow rate
(F,.), outlet Flow rate (F,,,) and Radius (R) of the conical
tank. The plant transfer function 1s obtamned in terms of
the process characteristics, namely, the process gain (K)
and process time constant (1). Normally, the dead time or
delay time (6,) cannot be neglected.

The conical tank level process consists of an mflow
rate, outflow rate and the change in height with respect to
time (Fig. 1). This can be represented by the mass balance
equation governing the system dynamics and 1s given by
the Eq. 1-2:

d_V - F:n - Fuut (1 )
dt

Where

F, = Inletflow rate of the conical tank (cm’ sec™)

F.. = Outlet flow rate of the conical tank (cm’ sec™)

R = Topradius of the conical tank (cm)

H = Total height of the conical tank (cm)

h = Height of the water in the conical tank (cm)

r = Radius of the water in the conical tank (cm)

Using the trigonometric geometry theory the conical
tank tangent angle is obtained as:

=2 (2

Tan B = —
h

| =

in

Fig. 1. Geometrical cross-sectional view of the conical
tank process

For the conical tank process, the outflow rate 1s
proportional to the square root of level and can be
represented as:

F_=twh (3)

out

where, b 1s the valve constant. The volume of the cone
can be written by the mathematical formulae:

v = iR ()
3

From Eq. 1-4, the modified mass balance equation can
be written as:

La R2ﬂ=Fm-bJH (5)
3 dt
%:mebxlﬁ 6)

Where:
A =AR* = Area of the conical tank process (cm”)
A=1/371

Constant or scalar factor between area and
radius for conical tank

The conical tank is a highly non-linear process. To
convert the non-linear model into a linear approximation
model, the taylor series 1s used for the linearization of the
non-linearity of the conical tank. Tn Eq. 3, a non-linear term
() appears which can be linearized using the tavlor
series expansion. To convert a highly non-linear conical
tank process mte linear approximation model by applying
taylor series, we get:
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Table 1: Conical tank process modeling parameters for the ditferent regions and obtaining conventional PT controller parameters

Process parameters

PI controller parameters by Skogestad’s tuningrule

For the conical tank

different height locations (cm) Process gain (K)  Time constant (1)

Process delay Time (8, ) (sec)

Proportional gain (K.) Integral gain (K))

10 3.160 52.95 4 2.0950 0.0395
20 2.230 149.78 8 4.1979 0.0280
30 1.820 27518 15 5.0390 0.0183
40 1.580 423.66 22 6.0941 0.0144
50 1.414 592.08 30 7.4773 0.0126
A dh _ E bh 7 Modelling aspects of the comical tank for different

dt " 24h,
2A\/h_sﬁ+ e 2,/h, F,
b dt

d b
e h=k,) (®)
dt

Where:
The transfer function relating the height ‘h” and

The mlet Flow rate with the parameters
= The process gain

AR

The time constant of the conical tank process

Gis)-els) K ©

For the first order process with delay time, the

standard model 1s given by:
-8 1s
G(s)= e d (10)
(1+st)
Where:
K = Process gain

0, = Transport lag or delay of the process
T = Time constant

According to the method proposed by Skogestad’s
turing rule for the PI controller 1s given by:

. . 1 T
Proportional gain K = E(edTE) (11

Integral Time Ti =t

Integral gaink, = I;': (12)

heights obtaining the process parameters (K, T and 0,)
and Pl obtamuing Pl controller parameter such as
propertional gain (K) and integral gamn (K by
Skogestad’s tuning rule is tabulated in Table 1. For the
comical tank process the selected transfer function
model:

-15%
6. (s) = L52
P (2751854 1)
This model 15 considered for the simulation studies of

the conical tank process control with different control
structures.

Stability analysis of the conical tank process: The
stability analysis is necessary to check whether the given
system is stable or not. The obtained transfer function of
the comical tank process 1s given by:

G(s) = _(S): K (13)

Pole-zero stability analysis: The transfer function of the
conical tank process can be written as:

(14)

The pole-zero plot for the conical tank process is
shown in Fig. 2. The pole S = -1/t which lies on the left
half side of the s-plane. Hence, the given system is stable.

Nyquist stability criteria: The Nyquist plot 18 an
altemative way to represent the frequency characteristics
of the dynamic system. For the obtained transfer function,
s = jw and therefore:

G(jm):rjmﬂ
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Fig. 2: Pole-zero plot representation for the conical tank
process; a) first order process without time delay;
b) first order process with delay by Pade’s
approximation through MATLAB

Amplitude Ratio( AR ) = G(j(D)| T
T +1

Phaseshift = ¢ = ‘G(jm) = -tan” (o)

In the Nyquist plot, the frequency varies from 0 to e,
we trace the whole length of the Nyqust plot and find the
corresponding values of the amplitude ratio and phase
shift. The mirror image of the polar plot is the Nyquist
plot.

Case 1: When @ = 0 then AR =1 and ¢ = 0. Therefore, the
beginning of the Nyquist plot is on the real axis ¢ = 0 and
at a distance from the origin (0, 0) equal to 1.

Case 2: When @ = e then AR = 0 and ¢ = -90°. The end of
the Nyquist plot is at the origin and at a distance from the
origin (0, 0) equal to 0. The intermediate frequency 1s 0
<AR <1 and-90° <@ <0. The Nyquist plot will be mside a
unit circle and will not leave the first quadrant The

Nyquist  plot stability analysis for the conical tank
process 1s shown in Fig. 3. For the condition of the
stability analysis for the Nyquist plot:

N=P-Z
Where:
P =
N =
Z

Number of poles on the RHS of the s-plane
Number of encirclements of (-1+50)
Number of zeros on the RHS of the s-plane
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Fig. 3: Nyquist plot stability analysis for the conical tank
process; a) first order process without time delay;
b) first order process with delay by Pade’s
approximation through matlab

N =p-z, 0 =0-0=0; hence, the given system is stable.
For this research, the inflow rate is considered as the
input variable for the comcal tank level process and the
height is considered as the output variable.

The conical tank or first order process is controlled by
the proportional integral controller which forms a closed
loop system and is considered as a second order process.
In the second order process, the oscillation may be of:

¢ Undamped system

¢ Critically damped system
¢ Over-damped system and
»  Under-damped system

To mprove the system’s performance the important
factor is the oscillatory response. For this research, the
oscillatory response can be analyzed properly for the
conical tank dynamics. For this research, the Skogestad’s
tuning rule is used.

Control of conical tank process: A comical tank 1s a
highly non-linear process due to the variation in the area
of cross section of the level system with change in shape.
A comical tank 1s a highly non-linear process, due to its
non-linearity and constant change in the cross section
which depends on the cone inclination angle, height of
the cone and radius of the cone. The control action of the
conical tank can be obtained by servo, regulatory and
servo-regulatory operation. In servo operation, the set
point 15 variable and the process or load vamable 1s
constant. In regulatory operation, the set point is
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constant and the process or load variable is variable. In
servo-regulatory operation, the set point 1s variable and
the process or load variable is also variable.

For the given system, the error is defined as the
difference between the set point value and the measured
value. The formula for error 1s given by:

e(t) = 1(t) — e(t) (15)
Where:
e(t) = Error signal at time t
r(t) = Reference input signal may be step input
c(t) = Outputsignal produced by the process

For the above four performance index value as time
reaches infinity and the error reaches to zero:

lime(t)=0 (16)

t—peo

The performance of the controller is evaluated in
terms of the following performance indices are:

Integral Square Error (ISE) = J‘ez(t)dt (17
Intagral Time multipied Square Error (ITSE) =
= (18)
[te*tat
Intagral Absolute Error (IAE) = I|e(t)|dt (19
Intagral Time multipied Square Error (ITSE) =
(20)

Tt|e(t)\ dt

The PI controllers are generally used to control the
comical tank. Tuning of PI controller 1s very much
essential for the satisfactory operation of the system.
Zeigler et al. (1942)'s method and Cohen and Coon (1953)
method are generally preferred for PID controller tumung.
For conical tank process, the above mentioned controller
performance index values such as Integral Square Error
(ISE), Integral Time multiplied Square Error (ITSE), Integral
Absolute Error (TAE), Integral Time multiplied Absolute
Error (TTAE) and also through time domain specifications
as well as graphical approach.

Review of the Genetic algorithm: The Genetic algorithm
was first introduced by John Holland in 1975. The Genetic
Algorithm (GA) is a random search technique which
imitates Darwin’s theory of the natural evolution and the

survival of the fittest approach. This technique was
mspired by the mechamsm of natural selection, a
biological process in which stronger individuals are likely
to be winners in a competitive environment. The Genetic
algorithm 1s related to biology, computer science, umage
processing, pattern recognition, physical science, social
science and neural networks.

The genetic algorithm has been used for different
problems such as the filter design technique, machine
learning technique, system 1identification and process
control applications successfully. Teng et af. (2003) used
the genetic algorithm and its diect analogy of such
natural evolution to do global optimization, to solve
highly complex problems. To sclve nen-linear system
parameters, the genetic algorithm uses the direct analogy
of such mnatural evaluation with the global optimal
approach. The non-linear parameters are regarded as the
genes of a chromosome and can be structured by a string
of concentrated values. The variables are represented in
the form of bmary real numbers or other forms. The
genetic algorithm 18 governed by three operations namely
selection, cross-over and mutation.

Selection: Selection 15 a stochastic method for the
selection of mdividuals from a population, according to
their fitness to produce successive generations and plays
an important role in the Genetic algorithm. An individual
with the highest fitness has more chance to be selected
for the next generation. For this research, the tournament
selection method 1s used.

Cross-over operation: If the selection or reproduction 1s
over, it 1s again applied for the crossover operation. In the
crossover operatior, the information 1s exchanged among
the strings for the mating pool, due to which a new string
is formed. Similarly, the crossover operation is mainly
responsible for the global search property of the genetic
algorithm.  Crossover  basically combines the
substructures of two parent chromosomes to produce
new features with a specified probability.

Mutation: The final Genetic algorithm operation 1s
mutation, even though the mutation operation 1s scarcely
used, it 15 valuable in preventing the involuntary loss of
good genetic material. Mutation nvolves the altemation
of information at a random selected bit position. The value
of the chromosome at this position 1s changed (1 or 0 or
vice versa). Normally, the mutation rate is selected with a
very low value and may be 0.075 for this research.

The block diagram representation of the conical tank
process controlled by the genetic algorithm tuned PT
controller is shown in Fig. 4. The main parts are: the
conical tank level process and the genetic algorithm to
find the PI parameters such as proportional gain (K,) and
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Fig. 4:Block diagram representation of the genetic
algorithm tuned PI controller for the conical tank

process
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Fig. 5. Flow chart of the genetic algorithm tuned PIT
controller for the conical tank process

integral gain (K;). The process output is a controlled
variable which is again applied as an input to the set point
value. The value of error 1s obtained as the difference
between the set point value and measured value. The
conical tank process for the servo, regulatory and
servo-regulatory operations with the genetic algorithm
tuned PT controller. The flow chart representation of the

genetic algorithm tuned PT controller for the conical tank
process 1s shown in Fig. 5. The Genetic algorithm tuned P1
controller, consists of the following steps:

Stepl: Imtial setting of the Genetic Algorithm (GA)
parameters and generating an initial random population
interval.

function for each

Step 2: Evaluate the fitness

chromosome.

Step 3: Check whether if the iteration criterion is satisfied
or not.

Step 4: If satisfied, generate the PI controller parameters
such as proportional gain (K,) and integral gain (K;).

Step 5: If not satisfied, apply the genetic operations such
as selection, crossover and mutation.

Design of neuro tuned PT controller: Neural networks are
normally preferred for control applications due to their
learning capability, fault and uncertainty tolerance,
robustness, non-linearity, optimization and real time
implementation, etc. A well trained neural network with
the mmimum Mean Square Error (MSE) techmque can
minimize the error and be used to tune the PI controller. In
this research, the neuro tuned PI controller, based
on the back propagation algorithm is developed for the
non-linear conical tank process and its performance
compared with that of the genetic algorithm tuned PIT
controller. The simulation results are obtamed by the
servo, regulatory and servo-regulatory operations for the
above mentioned controllers in the conical tank level
process.

RESULTS AND DISCUSSION

Block diagram representation of neurotuned PI
controller for the conical tank process: The block
diagram of the back propagation neural network based PL
controller for the conical tank process is shown in Fig. 6.
The controller consists of two parts, namely, the
conventional PI controller and the neural network, in
which the conventional PT directly controls the controlled
object with a closed loop and its control parameters, viz,
the proportional gain (K,) and integral gain (K,) are in an
online adjustment mode. The neural network is used to
adjust the parameters of the PI controller, based on the
operational status of the system to achieve the parameters
of the PT controller. In the neuro controller, the error (e)
and rate of change of error (de) are applied as an input.

A well defined neural network provides the online
tuning of PI controller with appropriate gains, according
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Fig. & Block diagram representation of the neuro tuned PT
controller for the conical tank process

to the changes in the operating conditions. The aim is to
study the capability of the approach to design a well
trained neural network with minimum Mean Square Error
(MSE) which tunes a PI controller. In order to train this
neural network, nput patterns that contain the above
mentioned parameters under different conditions are used
and the output patterns that contain the optimal values of
gain are collected over several iterations of simulation.
These patterns are used to train the neural network and
the output of the newral network will be the optimal values
of the proportional gain (K,) and integral gain (K,).

Review of the neural network: Neural networks are
simplified models of the biological nervous system and
their motivation is similar to that of the human brain. The
artificial neural network has major characteristics such as
speed of operation, processing, size and complexity, fault
tolerance and control mechanism. Neural networks are
applicable in areas such as image processing, data
compressing to forecast the behaviour of complex
systems for optimization, quality control, voice
recognition and process control applications.

Artificial neural networks can be viewed as parallel
and distributed processing systems which consist of a
large number of simple and massively connected
processors. There are a number of architectures proposed
to solve different pattern recognition problems. A
multilayer feed forward network tramed by back
propegation is the most popular and versatile form of a
neural network for pattem mapping or the function
approximation problem. The structure of a multilayer feed
forward networlk is shown in Fig. 7. The input vector
representing the pattern is presented to the input layer
and distributed to the subsequent hidden layers and
finally to the output layer via weight commections. Each
neuron in the network operates by taking the sum of 1its
weighted inputs and passing the result through a
non-linear activation function. This can be mathematically
represented as follows:

COut, —f(neti)—f(iwij Outj+b1] 2D
=1

Fig. 7: Architecture of a feed forward neural network

Where:

Out, = Output of the ith neuron in the layer

Out, = Output of the jth neuron in the preceding layer

W, = Connection weights between the ith and jth
mput

b, = Constant value or bias

The most commonly used activation function for a
neural network is sigmoidal and can be mathematically
represented as follows:

1

1—exp{onet i} @2

f(netii) =

Where: ¢ represents activation gain which controls
the sigmoid function. The back propagation learning is
the most commonly used algorithm for traming a
multilayer pattern. The gradient descent method minimizes
the mean square error between the actual and the target
output of a multilayer preceptron. Normally, the training
of this network 1s based on the mmmimization of an energy
function representing the mstantaneous error. In other
words, we desire to minimize a function that can be
defined as:

1 2
_ _ 23
E(m)fzé[dn1 yq] (23)
Where
d, = Desired network output for the qth input pattern
y, = Actual output of the neural network

Each weight is changed according to the rule:

dE
AW, = n— 24
s dw,,
Where
m = Learning rate
E = Error function
Aw; = Change in weight connection between neurons

jandi
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Fig. 8 Piping mstrumentation diagram of conical tank
level process

The weight adjustment process 1s repeated, until the
difference between the node output and actual output is
within some acceptable limit. The training of the back
propagation algorithm results in a non-linear mapping
between the input and output variables.

Weight update equations: The weight updating of the
hidden to the output layer is represented by Eq. 25:
Wi =W+ W = WE+nd zf (25)

Similarly, the weight updating of the input to the
hidden layer 1s represented by equation:

W =W oWl =W+ odl x (26)

The phases 1 and 2 are repeated, until the
performance of the network is good enough.

Piping and instrumentation diagram for conical tank
setup for level control process: The Piping and
Instrumentation Diagram (P & ID) for conical tank process
is shown in Fig. 8. The Piping and Instrumentation
Diagram (P&ID) which consist of a comcal tank, Level
Differential Pressure Transmitter (LDPT), ADAM

[
-

Fig. 9: Real time experimental set up for conical tank level
process

Interface card module, a personal computer, current to
pressure converter, compressor, reservoir and pump
which feed water forms a closed loop system. The level in
the conical tank process is measured by the TLevel
Differential Pressure Transmitter (LDPT) wiuch produces
current in the range of 4-20 mA. The 4-20 mA current 15
applied as an input to the computer or controller through
the ADAM interface card input slot.

The computer which acts as a controller through the
software or algorithm and produces the output in the
range of 4-20 mA as the output of ADAM card slot. The
ADAM card output slot is commected with the current to
pressure converter. The current to pressure converter
produces the pressure in the range of 3-15 PSI which
operates the control valve due to which inlet flow rate of
the conical tank is controlled. The current to pressure
produces the pressure in the range of 3-15 PSI which
operates the control valve due to which inlet flow rate of
the conical tank is controlled.

The real time experimental set up for the conical tank
process is shown in Fig. 9. The main elements are of the
conical tank process comsists of comcal tank, level
transmitter, interface card, computer or controller, control
valve. The tabulation for real time comical tank set up
specification is as shown in Table 2.

Simulation results of servo operation for neuro tuned P1
controller with Genetic algorithm tuned PI controller: In
the servo operation, the process with the load variable is
set to be a constant and the set pomnt value is a variable.
With the variation of the set point value, the closed loop
servo response for the non-linear conical tank process
using the neuro tuned PT controller parameters such as
the proportional gain (K) and integral gain (K)) is
obtained. The sunulation diagram of the neuro tuned PL
controller with the height of 20 cm from 0-500 sec and
further the height 1s increased 10 cm from 500-1000 sec 18
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Fig. 10: Sunulation diagram of the neuro tuned PI controller for the conical tank process in the servo operation
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Fig. 11: Process variable versus time graph for the servo
operation of the neuro tumed PI controller for the
conical tank process with the height of 20 cm and
further the height is increased 10 cm

Table 2: Real time conical tank set up specifications

Name of particular apparatus Details

Conical tank Stainless steel body, height of the
tank 50 crm, top diameter-30.74 cm,
bottom diameter-0.7 cm, output

4-20 mA

Rize 14" pneumatic actuated, type:

Level Differential Pressure

Transmitter (LDPT) control valve  air to open, input 3-15 PST

Pump type I/P converter Centrifugal 0.5 HP, Input 4-20 mA,
output 3-15 PSI

Compressor generated pressure 50 P8I

Pressure gauge range 0-30PSI

Simulation results of servo, regulatory and servo-regulatory operation for
neuro tuned PI controller with genetic algorithm tuned PT controller for
conical tank level process

shown in Fig. 10. The error (e) and rate of change of error
(de) are the inputs of the neural network and control
signal is the output. The input 1 represents the error (e)
and rate of change of error (de) or error sighal. The data
generation for the neural network can be obtained from
the conventional PI controller. The neural network
structure and training details are as follows:

*  Structure of neural network: back propagation neural
network

¢ Number of samples: 1000 Epochs

¢ Performance evaluation: mean square error
*  Learning rate: 0.01

»  Goal 1-¢’

The simulated output graph for level versus time 1s
shown in Fig. 11. The saturation of oscillations in the
control signal has been rectified by gain adjustment.
Similarly, the simulation diagram and simulated graph for
level versus time for genetic algorithm tuned PI controller
are as shown n Fig. 12-13. For the above controllers the
servo operation, performance index values ISE, ITAE,
TIAE, TTAE and the time domain specifications are
obtained for the above controller and tabulated in
Table 3.

Simulation results of regulatory operation for neuro
tuned PI controller with conventional PI controller: In
the regulatory operation, the set point value needs to be
a constant and the process with the load variable is a
variable. The closed loop regulatory response for the
nonlinear conical tank process, using the neuro ttmed PI
controller 1s obtained. The values of the proportional gain
(K,) and integral gain (K),are tuned and obtained as
shown in Table 1. The simulation diagram of the Neuro
tuned PT controller for the height of 30 cm from 0-1000
Seconds with+10% load changes after 800 sec through
the step signal, 1s shown in Fig. 14. The response level
versus time 1s shown m Fig. 15. The sustained oscillations
1n the control signal have been suppressed through gain
adjustment. Similarly, the simulation diagram and
simulated graph for level versus time for genetic algorithm
tuned PT controller for regulatory operation are as shown
in Fig. 16 and 17. For the regulatory operation, the
performance index values such as ISE, ITSE, IAE, ITAE
and the time domaimn specifications are obtained and
tabulated in Table 3.
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Fig. 12: Sunulation diagram of the Genetic algorithm tuned PI controller for the comcal tank process in servo operation
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Fig. 13: Process variable versus time graph for the servo operation of the Genetic algorithm tuned PT controller for the
conical tank process with the height of 20 cm and further the height 1s increased 10 cm

—

Fig. 14: Sunulation diagram of the neuro tuned PI controller for the conical tank process mn the regulatory operation

Simulation results of servo-regulatory operation for
neuro tuned PI controller with Genetic algorithm tuned
PI controller: In the servo-regulatory operation, the set
point is variable and the process with load variable is also
a variable. With the variation of the set point value and

load variable changes, we obtain the closed loop
servo-regulatory response for the non-lmear comcal tank
process with the neuro tuned PT controller parameters
such as the proportional gain (K,), integral gain (K;). The
simulation diagram of the neuro tuned PT controller for the
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Fig. 15: Process variable versus time graph for the regulatory operation of the neuro tuned PT controller for the conical
tank process with the height of 30 cm with+10% load changes after 800 sec
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Fig. 16: Sumulation block diagram of genetic algorithm tuned PI controller for regulatory operation
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Fig. 17: Process variable versus time graph for the regulatory operation of the genetic algorithm tuned PI controller for
the conical tank process with the height 30 cm with+10% load changes after 800 sec
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Fig. 18: Simulation diagram of the neuro tuned PI controller for the conical tank process in the servo-regulatory operation
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Fig. 19: Process variable versus time graph for the servo regulatory operation of the neure tuned PI controller for the
conical tank process with the height of 20 cm and further the height is increased 10 em with+10% load changes
after 800 sec
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Fig. 20: Simulation diagram of the genetic algorithm tuned PI controller for the conical tank process in the servo-
regulatory operation

height of 20 cm from 0-500 sec and further the height is simulated graph for level versus time for Genetic algorithm
increased 10 ¢m from 500-1000 sec with load changes of  tuned PI controller for regulatory operation are as shown
+10% after 800 sec is shown inFig. 18. inFig. 20 and 21.

The simulated output graphs for level versus time are For the servo-regulatory operatior, the performance
shown in Fig. 19. Similarly, the simulation diagram and index values such as ISE, ITSE, TAE, ITAE and the time
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Table 3: Compaision of neuro tuned controler with genetic algorithm tuned PI controller for performance index values and time domain specifications

Neuro tuned PI controller

Genetic algorithm tuned PI controller

Performance index values, time

domain specifications and optirnal Servo-regulatory Servoregulatory
values of PI tuning parameters Servo operation  Regulatory operation operation Servo operation  Regulatory operation operation
ISE 2160.00 1965.00 2062.00 4652.000 4172.000 4362.000
ITSE 18715.00 17632.00 17958.00 65340.000 51512.000 58352.000
ITAE 6238.30 5877.30 5982.50 20419.000 18615.000 19152.000
TAE 352.50 332.30 340.20 712.800 672.500 693,300
Peak overshoot (M) 0.23 0.21 0.20 6.200 5.800 7.900
Settling time (T.) 188.50 185.00 195.80 218.000 215.000 223,000
Steady state error (e,) 0.14 0.13 0.11 0.172 0.156 0.142
35 with less oscillations compared with Genetic algorithm
20t tuned PI controller. From the simulation results, it is
5 observed that the performance of neuro tuned PI
25 25
23 controller are better, smooth response and less
832 oscillations compare with the Genetic algorithm tuned PL
go 5 controller for the non-linear conical tank process.
Q E L
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Fig. 21: Process variable versus time graph for the
servo-regulatory operation of the genetic
algorithm tuned PT controller for the conical tank
process with the height of 20 cm and further the
height 1s increased 10 cm with+10% load
changes after 800 sec

domain specifications are obtained and tabulated in
Table 3. From Table 3, it is concluded that the neure tuned
PI controller which produces minimized performance mdex
error and excellent time domain specifications compare
with genetic algorithm tuned PI controller and the
simulation results are obtained by servo, regulatory and
servo-regulatory operation.

CONCLUSION

This study proposes the design and implementation
of neuro tuned PI controller for non-linear comnical tank
level process and compare the performance with genetic
algorithm tuned PI controller. The simulation results are
obtained for the above mentioned controllers by adjusting
set point and load changes and set point with load
changes. The controller performance are evaluated by
performance index such as Integral Square Error (ISE),
Integral Tune multiplied Square Error (ITSE), Integral
Absolute Error (IAE), Integral Time multiplied Absolute
Error (ITAE) and time domain specifications such as pealk
over shoot, settling time and steady state error. From the
system response, it is observed that the newro tuned PI
controller tracks the set pomt with smooth transition and

Researchers are grateful for the valuable comments
and suggestions for the reviewers. The valuable
comments and suggestions will enhance the strength and
sigmficance of this study.
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