Asian Journal of Information Technology 15 (13): 2274-2281, 2016

ISSN: 1682-3915
© Medwell Journals, 2016

Providing an Optimized Innovative System to Improve
Security of Server-Side Scripts

Milad Moradi Rad and Nasser Modiri
Department of Electrical Computer and 1T, Islamic Azad University of Zanjan, Zanjan, Iran

Abstract: Today, with development of internet and network environments all around the world, the necessity
of security to work in cyberspace 1s felt more than ever. Information disclosure can cause great and sometimes
wreversible damages to an orgamzation. Therefore, in order to prevent direct access to the codes and
manipulation of data, various ways such as obfuscation, encryption, cloaking, etc. have been suggested. In
this study, we mtend to obtain an acceptable conclusion in order to improve security of server scripts by
presenting an integrated approach of simple techniques. The proposed scheme m addition to making the code
unreadable in order to fulfil the copyright act, provides a relative security of the code agamst the attackers. At
the end in order to prove the scheme, we provide a test condition and compare the results from running with

the other available schemes.

Key words: Security of server codes, copyright protection, preventing injection attacks, code obfuscation, Iran

INTRODUCTION

With technology development, the number of
mnternet users has been significantly mcreased in recent
yvears and with the increase in number of internet users
internet interactions such as communication and sales
have had a growing trend. To launch their business, the
users need to put the applications on the shared or
dedicated servers; lots of developed applications are
important and access to their contents means the loss of
all efforts made for them. This inportance can include the
high cost of scheme development to the access to
organization’s security information. The great popularity
of PHP language as a host platform (Tatroe ef al., 2013)
has tumed it into a language of choice for the developers
and vulnerable to the malware (Cholakov, 2008). A study
conducted in the TJS National Vulnerability Database on
April 2013 showed that about 30% of all vulnerability
reports were related to PHP (Coelho, 2015). Although, this
figure may seem alarming, but it 1s important to note that
most of these vulnerabilities are not about the language
itself, but are the result of poor programming methods
used by the PHP developers. Hackers in the penetrated
systems send spam and do other illegal activities through
hosting the fake websites and exploit the victim server
with distributed denial of service attacks or serving as
anonymous platforms (Landesman, 2007). Loss of
manufacturers” copyright, manipulation of the application
by the spoilers, visibility of the information important to

the hosting servers and easier access of the hackers to
the program code are some of the challenges arisen by
direct access to the codes on the servers. However,
advanced engmeering of the code can even cause the
malware show a different behaviour (Sharif et al., 2008).
But many of the attacks are deactivated with simple
approaches and mput control. To prove the efficiency of
the scheme, we need to unplement manual and automatic
analysis and calculate the complexity of overhead using
the actual malware samples (Schrittwieser et al., 2014).
Later in the study, first we will have a look at the previous
works in field of code security and become acquainted
with the presented methods. Then, the proposed scheme
will be discussed with the details of its stages. Next, we
will evaluate the run output using the RIPS security
testing software and will compare the results with a
variety of models available in the market. The main
purpose of the comparison is to create a safe framework
1in which the security 1ssues of the script can be discussed
accurately and the defects are resolved.

Review of literature: The studies conducted on security
of server codes against the malware, apply four types of
approaches. The first approach 1s control of the inputs in
each system. The second approach includes the
conceptual models and behavioural pattern recognition
and the thurd approach 1s the malware recognition and
applying effective solutions and running 1 protected
modes. To achieve an understanding of the malware

Corresponding Author: Milad Moradi Rad, Department of Electrical Computer and IT, Islarmic Azad Umiversity of Zanjan,

Zanjan, Tran

2274

Asian J. Inform. Technol., 15 (13): 2274-2281, 2016

capabilities, this approach was also developed to a
system preventing the malware detection which uses the
destructive behavioural patterns (Bayer et al, 2009)
extracted by the runming malware i a control environment
(Kolbitsch et al., 2009). In addition, dynamic analysis of
malware (Egele ez al, 2012) has become an important
concept to help processing the large-scale malware
samples. Bmary mutated clustering for behaviour analysis
is useful as the sample model of malware systemic calls
(Lanzi et al., 2010), this method still needs the ambiguous
binary reverse engineering in order to discover very
umnportant and decisive trends including the domain
generation algorithms, ambiguous encryption methods or
cryptographic keys. Tn this study, architecture of Trojan
detection system 1s presented which 1s an anti-ambiguity
scalable systemn (Lu ef al., 2013). This system 15 composed
of several controllers, each responsible for one area of the
network which receives the suspicious programs from the
host. The research has studied the historical patterns of
vulnerabilities m order to predict the future vulnerabilities
in the applications and has shown the damages which
have been reduced or increased from 2009-2014
(Murtaza et al, 2016). Various researches have been
carried out in field of preventing the injection attacks. The
research is an automatic detection system which includes
a script finder with a list of X3S attacks and scans
different areas of the website to detect the possible
damages from JavaScript mjection (Gupta and Gupta,
2016). The study discusses the different ways to provide
security for web applications by injecting SQL and XSS
codes (Deepa and Thilagam, 2016). The damages are
classified in software development cycle phase and good
solutions are recommended to exclude them. The accurate
prevention study of XSS dynamic attacks (Bisht and
Venkatakrishnan, 2008) is in charge of input validation
and identification of the texts on the server side and
omission of each text on the input. The approach of the
study has created a security solution in web programs
designed for behaviour detection by creating a proper
response for each HTTP action. The research to avoid
code injection to web applications through the website is
in charge of analysis and filtering of the exchanged
mformation and evaluating the runtime of the web
browsers (Garcia-Alfaro and Navarro-Arribas, 2007). This
research introduces the policy-based run of the web
browsers and implementation of security policies defined
in the server section as the basis for the work, carried out
with the purpose of protecting the client from XSS
attacks. Anocther approach is code obfuscation which
leads to confusion and ambiguity in the codes for
example, it renames the functions and variables with long
strings to make the code reading and reverse engineering

difficult. Tt should be noted that there will be no
change in the program by ambiguity of the codes and the
commands will run well (Brunton and Nissenbaum, 201 5).
Mehrian et al. (2015, 2016) provide a structural health
monitoring using optimizing algorithms based on
flexibility matrix approach and combination of natural
frequencies and mode shapes. The purpose of this
obfuscation 13 more to hide the code from the attackers
and enhance the security of the code in term of author’s
copyright.

MATERIALS AND METHODS

The proposed scheme: In this part, we propose a
combimed multi-section structure by looking at the
previous schemes. Each section includes procedures
leading to improvement of the received script in order to
be able to receive an executable and
Importance of the specific data such as the connection
strings 1 software, service connection codes,
configuration file and access passwords has led us to pay
an especial attention to obfuscation and encryption of the
texts. The proposed soluton includes the simple
encryption combined operations, obfuscation and
compression. Although, performing all innovative
operations such as the proposed scheme cannot provide
a complete stability, but in general, it 1s assumed that it
will raise the costs of attacks. Operations of the proposed
security solution are in form of Fig. 1. The first few stages
of the proposed scheme are the pre-processing stages in
other words mput and preparation for algorithm’s
operations. The following gives a brief description of each
stage.

safe code.

Pre-processing: To apply security measures, a series of
operations called the pre-processing are required to be
performed. These operations lead to improvement in the
generated output.

To create a prohibited list of variables and functions
for better control of obfuscation operations, 1t 1s required
to define a list of overall variable and the functions in
default form and provide the possibility of a new variable
and function by the user. This list has been added as the
prohubited list, namely a part of the code not involved m
obfuscation procedure. To configure the settings to set
up the system, it is required to give initial values to a
series of the vanables, to take some inputs to be recorded
1n the program m a recognizable form m order to be easily
recoverable in the future processes. Before implementing
the main process, the duplication operation of all files is
done, then the files are processed one by one. Therefore,
to avold more copies, the files are put directly in the main

2275

Asian J. Inform. Technol., 15 (13): 2274-2281, 2016

To take a prohibitted list of the variables and functions
mm

I cange te strings into |m|tte caracters accorlng

to table of the equivalent characters

To change location of the codes

Random selection of the coded variables and functions
and combining them with program code (spagetti

method)

To compress the code using the GZip algorithm

Fig. 1: Stages of the proposed algorithm

path instead of being transferred to a temporary path. Our
Obfuscator algorithm 1s applicable on PHP codes.
Therefore, there is a need to exclude the other languages
such as Js, css and html from obfuscation process; thus,
we separate the PHP blocks or we can embed all other
codes within PHP codes, to make the screen include the
PHP codes uniformly but the approach of the proposed
method is the way that unknown codes from the
languages other than PHP will remain in the same way.
Next stage 1s responsible for data cleamng duty. In this
study, the voids, gaps and descriptions are deleted to
reduce the code size and for faster processing of the
operations. Descriptions m the run mode have no effect
on the output and their presence cause decrease in
running speed and increase the file size. During an
automatic process of authorized blocks, distances and
descriptions with different structural forms are omitted.

Security measures: Adding security and limiting options
of the code is one of the capabilities of proposed scheme.
Selections of the user on the code are required to be done
mn this stage. For instance, 1if there 13 a specified expiry

date or copyright text, the restrictions are applied by
user’s selections. Possibility of choice by the user 1s
optional and causes the inputs to be identified and
appropriate filtering methods defined in the external class
to be summoned before using the inputs. Finally, a
security class file 1s created next to the obfuscated file. To
obfuscate, names of the variables and functions must
reach the lowest readability level. For example, a name
between zero and one can be considered for the variables.
The proposed scheme has used the MD35 function to mix
the names of the variables and functions. Change of the
strings into limited characters reduces the readability and
strengthens the obfuscation process. We create a table
like the ASCII table and add its equivalent strings. This
table will be assessable by a function. The function is
placed in the source codes or loaded in the server as a
library file. Because of frequent use of the replacement
process, the executive efficiency of the produced scripts
is reduced, thus, the developer can select this location
according to the conditions and interests (importance of
the code and script low processing operation). Changing
the location of the codes 1s another Obfuscation stage

2276

Asian J. Inform. Technol., 15 (13): 2274-2281, 2016

FILE EDIT TOOLS BUILD HELP

4

Options

| Preferences | Excludes | Restiction

Obfuscate Variable Mames
Obfuseate Function Names

Security And Compression

< @ E &

Remove Whitespace

Local Remate Address

Source: C:AServer_Codebwasiing

Destination: C:\Server_Codewsshout

About

PHP Security ver 0.1 "‘

Developed b: Miled Maradi
Zanjan Islanic Azad University

oEEE

C:\Server_Codewshinp2 php
C:\Server_Code'voainpfa.ohp
C:\Server_Cods'waringAid.php
C:\Server_Codsostinplst css
C:\Server_Codehwatlinphetyle.css
C:\Server_Codelwatiinphimageshaddbaskel. png
C:\Server_Codewadinpimagesharrows black ong
C:\Server_Codsostinpimageshanon_left.png
C:\Server_Codebwadinphimagesiback.jpg
C:\Server_Codevesinphimageshbulet. png
C:\Server_Codewattinphimageshcart prg
Ci\Server_Codeteinphimageshdelete. ong
C:\Server_Codevoainpimagesifind png
C\Server_Codsvustinplimageshiaphic. pg
C:\Server_Codebwsdinphimagesilogin-header.png
C:\Server_Code’watlinphimagestiogin-nav.png
C:AServer_Codetwstinplimagesimain png
C:\Server_Codsvostinpimageshonlinestore.prg
C:\Server_CodsvoninpAimages\pl-4n.png
C:\Server_Codebwsdinphimagesipl png
C:\Server_Codewestinphimagestp2-tn png
C:\Server_Codebwatlinphimagestp2 png
C:\Server_Codevominpimages\pd-4n.ong
Cr\Server_Codswarinphimagesipd.png

W

Fig. 2: PHP Security Software user interface (the proposed scheme)

where the functions and variables change place with no
order. Combining the main codes with redundant codes
can be an approach to mislead the code readers to avoid
easy analysis of the program and reduce readability of the
program. This capability in scheme implementation has
been created by applying analysis n conceptual process
of the code.

Post-processing: After the main obfuscation operations
and putting the security methods m vulnerable sections
of the code, we need to revive the output code. Volume of
the output code may increase based on various actions of
the user such as lack of code cleamng, obfuscation,
changing location of the codes, selective change of the
names (variables and methods) and adding the redundant
code. To improve this situation m the last section, a
compression operation is done using the GZIP method.
Thus stage 13 encrypted according to a series of functions.
There are different methods for text compression but, the
rate of compression operations and also obtaining the
minimuin compression 1s desired.

TImplementation: The proposed method needed practical
implementation for examination and evaluation which was
developed using the Net toolset. This software benefits
from a library file responsible for compression and
decompression of the information. In this library file in
addition to compression operations, encryption and
decryption operations are done by a series of functions.
The language of development tool 18 C# and performs the
scan process on PHP codes i order to keep the final
obtained result in an external file. The program user
interface is observed in Fig. 2. The local section makes
selecting an address from personal computer possible and

remote mode provides the possibility of access and
operating on the website or a remote place. The non-PHP
files are not selectable and are only in display mode. The
options selected in preference section change the
algorithm’s trend.

To implement the obfuscated code, it 1s required to
record compressor and decompressor files in the system,
so the PHP code can have access to it through APT.

Test automation necessity: From 1996-2014, =25% of the
all damages found in computer software were dependent
on PHP (Coelho, 2015). In order to include the risks of the
web’s vulnerable applications, the penetration testers are
employed to check the source code. Considering the fact
that large applications can have thousands code lines and
time 1s also limited to costs, the manual review of the
source code may be incomplete. The tools can help the
penetration testers to reduce the tume and costs by
automating the processes that depend heavily on time,
when reviewing the resource code processes. In recent
years, some tools have been mtroduced which can reduce
the time required for the penetration tester by automating
the identification process of potential security holes in
PHP source using the analysis of static source code. So,
the findings can be evaluated easily by the content
penetration testers over again without re-examiming the
whole source code. But, considering the limitations of
static source code, vulnerability analysis must be
approved by a code reviewer. In the past, there were lots
of application scammers under open source web,
published with the aim of finding the vulnerabilities in the
black box scenario by the fuzzy action. Review of source
code in the white box scenario may lead to better results,
but only a few open source PHP code analyzers are

2277

Asian J. Inform. Technol., 15 (13): 2274-2281, 2016

Result

-defined functions:
Solitees

Info:
Info:

includes.

Fig. 3: The results from RIPS software: a) Before securing the proposed software; b) After securing the proposed

software

available. The results have shown that RIPS is able
todetect the known and unknown security holes in
PHP-based under web applications within the shortest
time. Figure 3 shows an example of RIPS scan results
before and after code securing. The proposed scheme has
managed to enhance the security greatly.

For more studies on complex vulnerabilities, a list of
the functions defined by the user is displayed in software
user interface where the user can jump directly on the
function code by clicking the title. Also, all of the
functions defined by the user called as a result of
scarming can be analyzed.

RESULTS AND DISCUSSION

Evaluation: The software compared to the proposed
scheme have been mentioned in Table 1 with ther
parameters. The mentioned software are the most known
software available in the market and some are presented
commercially. In parameters section, the most important
security attacks and factors were considered. Table 1
shows a list of the software using which the code has
been obfuscated and their code output has been scanned
in RIPS Software.

The source code is turned into an encrypted and
obfuscated target code after entering the mentioned
software and the target code 1s checked in RIPS software
in terms of presence of security holes. Table 2 shows the
results of this study. Also in order to study the
performance of the proposed scheme m terms of volume

of the generated files at the script execution time,we
assess the efficiency mmprovement ratio of the target file
and the security measures obtained from RIPS.

Size of the output files: Considering the encryption and
steganography methods, size of the output files of the
software mentioned in Table 1 will be different. Figure 4
implies that the size of the output files of out scheme
takes the least host space. PHP Security 1s the same
software developed based on the proposed method and
primary code is the same basic code regardless of
obfuscation and security enhancement. Although, size of
the scripts is of no much importance compared to security
enhancement, but producing a very ligh volume 1s also
considered as a challenge. For example, FOPO changed
the file volume to over 4 times more than the primary
volume after encryption and obfuscation which 1s not
optiumal at all in terms of host consumption.

Runtime: Runtime of the program is always an important
challenge in assessments. Using the updated approaches
and algorithms can reduce the operation runtime. A code
has been created to calculate the runtime of the screen.
Figure 5 shows the runtime of the target codes created
from security software.

Efficiency: In order to calculate the efficiency of the
labour, it is just enough to divide the valueachieved from
runtime by size of the file in order to obtain a value for
each model or software.

2278

Asian J. Inform. Technol., 15 (13): 2274-2281, 2016

Table 1: Comparison parameters of the proposed scheme with the similar software

Assessed parameters Security evaluation Security software Script language
File inclusion, SQL injection, cross-site scripting, HI'TP response RIPS Zend Guard; FOPO; PHP Security; PHP
splitting, possible flow control, file disclosure, code execution, ionCube PHP Encoderj Gaijinj Code

obfuscation level, compatibility, sensitive sinks, improved security Eclipse & Primary code

Table 2: Results from the Security Holes after obfuscation in different software

HTTP response Possible flow File Code

Software Texe(mics) Size (kb) Fileinclusion SOL injection X88 splitting control disclosure execution
Primary code 0.015 257 1 7 13 1 80 0 0
ionCube PHP encoder 0.090 53.7 0 0 3 0 2 0 0
PHP security 0.019 12.8 0 0 1 0 0 1 1
FOPO 0.014 111.0 0 0 0 0 0 0 2
Gaijin 0.017 32.9 0 7 13 1 0 0 6
Code eclipse 0.014 25.3 1 0 13 0 0 0 62
Zend guard 0.042 29.0 0 0 2 0 0 0 0
Size(kb)
120
100
80
60
40
20
0
PHP Code Primary Zend Gaijin ionCube FOPO
Security Eclipse code Guard PHP
Encoder

Fig. 4: Comparing the volume of output files

Texe(mics)

0.1
0.09
0.08
0.07
0.06
0.05
0.04
0.03
0.02 -
0.01 - = —

FOPO Code Primary Gaijin PHP Zend ionCube
Eclipse code Security Guard PHP
Encoder

Fig. 5: Comparison of outputs in terms of runtime
As observed in Fig. 6, our idea has the most following relationship has been wused to calculate
efficiency compared to its rivals. This efficiency can efficiency. In this relationship, C; 15 the efficiency rate,

satisfy the costumers with the script running. The Sqpz 18 the size of source file before obfuscation, Sy 18

2279

Asian J. Inform. Technol, 15 (13): 2274-2281, 2016

Performance(Texe,size)

200

—@—Texe(mics) —@—Size(kb) —@—Performance

150

100

50

0 go—
PHP Code Primary Gaijin Zend FOPO ionCube
Security Eclipse code Guard PHP
Encoder
Fig. 6: Compearison of software efficiency m terms of runtime and file size
100 e - =
20
80
70
60
50
40
30
20
10
0
Zend FOPO PHP ionCube Gaijin Code Primary
Guard Security PHP Eclipse code
Encoder

Fig. 7: Security enhancement comparison

Table 3: Security enhancement rate in security software

Software Security enhancement (%o)
Zend guard 98.03
FOPO 98.03
PHP security 97.05
ionCube PHP encoder 95.09
Gaijin 73.52
Code eclipse 25.49
Primary code 0.00

the runtime of the target file code and Digyp and Dy
respectivelyare the size and runtime of the target file:

Cp = ROUND ((Sgzz % Stexe)/(Digzp * Dregz) % 100)

If the answer to the above equation, Cp, equals 100, it
means that the obfuscated file 15 equal to target file in
terms of runtime and file size. If it becomes more than 100,
it means that the output file is even more optimal than the
source file. As observed in Fig. 6, our scheme has
obtained this efficiency.

Security enhancement: The most important part of

comparison is the improved security discussion.

According to the tests taken from different files each
coded with different styles using the RIPS software, it was
proved that PHP Security (the proposed idea) has a good
position among the known software with a 97%
enhancement of security. Table 3 shows the security
improvement percentage by the proposed software n a
descending order. To calculate the enhancement rate, the
following relationship 1s established:

ISEC = 100_((DSINKSX1 00)/SSINKS)

Where:

Isee = The enhancement rate in percentage

Duyes = The number of holes found in the code
obfuscated and tested in RIPS

Sapes = The hole numbers of the source code obtained

in RIPS software

Figure 7 shows that the four zend, PHP Security,
FOPO and TonCube software benefit from a close and
good security level.

2280

Asian J. Inform. Technol., 15 (13): 2274-2281, 2016

CONCLUSION

Obfuscation and encryption are two unportant
processes for software security. This study amns at
improving the safety and no access or costly access of
the other people to the primary codes. Specifying the
possible threads and attacks in the program, using the
experts to identify the weaknesses in common codes,
immunization plan of entry and exit points, adding the
security extensions, encryption and compression are the
most mmportant processes m the implemented idea and
software. At the end, the security test determimes the
accuracy of the work. In this study, we tested the
server-side scripts to detect the holes by presenting a
security scheme. In a few case studies, the obtained
results n term of security and executive efficiency of
this software show that software security has increased
up to 97% compared to the primary code, keeping in the
mind that the file size 1s decreased and the script runtime
1s not changed.

REFERENCES

Bayer, U., 1. Habibi, D. Balzarotti, E. Kirda and C. Kruegel,
2009. A view on current malware behaviors.
Proceedings of the 2nd UUSENTX Conference on
Large-Scale Exploits and Emergent Threats:
Botnets, Spyware, Worms and More, January 23,
2009, USENIX Association -.

Bisht, P. and V.N. Venkatakrishnan, 2008. XSS-GUARD:
Precise dynamic prevention of cross-site
scripting attacks. Proceedings of the International
Conference on Detection of Intrusions and
Malware and Vulnerability Assessment, July 10-11,
2008, France, pp: 23-43.

Brunton, F. and H. Nissenbaum, 2015. An Obfuscation
Vocabulary. 1st Edn., MIT Press, Massachusetts.

Cholakov, N., 2008. On some drawbacks of the PHP
platform. Proceedings of the 9th International
Conference on Computer Systems
Technologies, June 2008, New Yorlk, USA -.

Coelho, F., 2015. PHP-related vulnerabilities on the
national vulnerability database. http://www.coelho.
net/php_cve.html.

Deepa, G. and P.8. Thilagam, 2016. Securing web
applications from injection and logic vulnerabilities:
Approaches and challenges. Inform. Software
Technol., 74: 160-180.

Egele, M., T. Scholte, E. Kirda and C. Kruegel, 2012. A
survey on automated dynamic malware-analysis
techniques and tools. ACM Comput. Surveys, Vol.
44.10.1145/2089125.20891 26

and

Garcia-Alfaro, J. and G. Navarro-Arribas, 2007. Prevention
of cross-site scripting attacks on current web
applications. Proceedings of the OTM
Confederated International Conferences on the
Move to Meanmngful Internet Systems, November
25-30, 2007, Portugal, pp: 1770-1784.

Gupta, 3. and B.B. Gupta, 2016. Automated discovery of
javascript cede injection attacks in PHP web
applications. Procedia Comput. Sci., 78: 82-87.

Kolbitsch, C., P.M. Comparetti, C. Kruegel, E. Kirda,
X. Zhou and XF. Wang, 2009. Effective and
efficient malware detection at the end host.
Proceedings of the 18th Conference on USENIX
Security, December 14-18, 2009, India -.

Landesman, M., 2007. Malware revolution: A change in
target. Microsoft Security Research and Response.
https://technet. microsoft. com/en-us/library/cc512

596.aspx.
Lanzi, A., D. Balzarotti, C. Kruegel, M. Christodorescu
and E. Kirda, 2010. Accessmmer: Usmng

system-centric models for malware protection.
Proceedings of the 17th ACM Conference on
Computer and Communications Security, October
4-8, 2010, Chicago, TL.., pp: 399-412.

Lu, H., X Wang, B. Zhao, F. Wang and J. Su, 2013.
ENDMal: An anti-obfuscation and collaborative
malware detection system using syscall sequences.
Math. Comput. Modell., 58: 1140-1154.

Mehrian, SH.Z., S AR Amreir and M. Mamat, 2016.
Structural health monitoring using optimizing
algorithms based on flexibility matrix approach and
combination of natural frequencies and mode
shapes. Int. J. Struct. Eng., Vol. 7, No. 4.

Mehrian, SMN. and S.7. Mehrian, 2015. Modification of
space truss vibration using piezoelectric actuator.
Applied Mech. Mater., 811: 246-252.

Murtaza, S.5., W. Khreich, A. Hamou-Lhadj and
A B. Bener, 2016. Mining trends and pattems of
software vulnerabilities. J. Syst. Software, 117:
218-228.

Schrittwieser, S., 5. Katzenbeisser, P. Kieseberg,
M. Huber, M. Leithner, M. Mulazzam and
E. Weippl, 201 4. Covert computation-hiding code in
code through compile-time obfuscation. Comput.
Secur., 42: 13-26.

Sharif, M., A. Lanzi, J. Giffin and W. Lee, 2008. Impeding
malware analysis using conditional code
obfuscation. Network and Distributed System
Security (NDSS), hitp://llvm. org/pubs/2008-02-Imp
edingMalwareAnalysis.pdf.

Tatroe, K., P. MacIntyre and R. Lerdorf, 2013.
Programmmg PHP. O'Reilly Media, Sebastopol,
California, ISBN: 9781449365844, Pages: 540.

2281

	2274-2281 - Copy_Page_1
	2274-2281 - Copy_Page_2
	2274-2281 - Copy_Page_3
	2274-2281 - Copy_Page_4
	2274-2281 - Copy_Page_5
	2274-2281 - Copy_Page_6
	2274-2281 - Copy_Page_7
	2274-2281 - Copy_Page_8

