Asian Journal of Information Technology 15 (13): 2228-2237, 2016

ISSN: 1682-3915
© Medwell Journals, 2016

Creation of Software Testing Environment in Cloud Platform

I. Frank Vijay and B. Hariharan
Department of Information Technology, KCG College of Technology, Chennai, India

Abstract: Cloud computing is a novel computing standard that provides major support for the software testing
and development. In this study, an efficient software testing framework with weight-based prioritization
technique 13 proposed for performing software testing in the distributed cloud environment. At first, thetest
case dataset is initialized then the frequent test case in the dataset is estimated. The weight of the similar test
cases are determined using the cosine similarity. With the estimated weight values, the weight based
prioritization technique is applied for prioritizing the test cases. After prioritization, the K-Medoid clustering
algorithm is deployed for clustering the similar test cases. To provide security for the test cases, an Attribute
key based Elliptic Curve Cryptography (ECC) algorithm 1s used for encryption and decryption. Further, a cache
memory 15 exploited for optimizing the memory consumption of the test case execution. The proposed
framework is deployed in cloudsim and the experimental results prove that the proposed framework provides
optimal results than the existing random, prioritized techmques, K-mean algorithm, Hierarchical algorithm, Test
Case Prioritization (T CP) technique, Adaptive Random Test case prioritization (ART), Local Beam Search (LBM)

and greedy approaches.

Key words: K-medoid, attribute-based Elliptic Curve Cryptography (ECC), cosine sunilarity, weight-based
prioritization technique, Test Case Prioritization (TCP) technique, Adaptive Random Test case
prioritization (ART), Local Beamn Search (LBM)

INTRODUCTION

One of the important phases of the software
development life cycle is software testing. Testing a
software demands expensive dedicated nfrastructures
and resources for analyzing the following (Narula and
Sharma, 2014):

* Application performance
* Rehability

* Security
¢ Functionality
¢+ Speed
As the business requirement increases, the

organization find difficult to maintain an in-house testing
facilities that imitate the real-time environments. To
address this issue one of the popular distributed
computing approach named cloud computing is used. The
exploitation of cloud computing environment for the
software testing and maintenance has the advantages
such as enhanced security, minimal cost requirement for
the testing process, improved testing efficiency and
realistic performance testing (Jagadeesh, 2012).

Motivation: Distributed cloud 1s a cloud computing
technology that interconnects the nodes located in

various geographic locations. The existing systems
exploit the clustering algorithms such as agglomerative
clustering and K-means algorithm for providing an
efficient software testing. But in agglomerative clustering
the distance between two clusters are always greater.
Further, it is sensitive to noise, outliers, breaks the large
clusters and finds difficult to handle the variable sized
clusters. As the K-means clustering algorithm has fixed
number clusters, it is difficult to predict the K-value.
Hence, to address the issues in the existing clustering
algonthms, a cosine similarity based K-Medoid algorithm
is proposed. The K-Medoid algorithm constructs a
similaritymatrix for clustering the test cases with similar
values. As the test case clusters are similar, accurate
results are achieved on executing the test case.

To protect the data from cloud environment attacks,
the cryptographic algorithms such as AES and DES are
commonly used. But, the level of security provided by
these algorithms are not satisfactory. Hence, to enhance
the security of the data, an efficient attribute key based
ECC algorithm is proposed for the encryption process.
When compared to the traditional cryptographic
algorithms, the proposed algorithm increases the level of
security using key pair based cryptography calculation.
Further, the use of public and private key for the
encryption process increases the security than AES and
DES algorithms. The generated keys are maintained in the

Corresponding Author: J. Frank Vijay, Department of Information Technology, KCG College of Technology, Chennai, India
2228

Asian J. Inform. Technol., 15 (13): 2228-2237, 2016

hash table for faster retrieval. Both the encryption and
decryption processes exploit the same key for encrypting
and decrypting the clustered test cases. The execution of
the test cases exploit a cache memory. Failure in the test
case execution removes the test case from the cache
memory for optimizing the memory space. The results from
each node m the distributed cloud environment are
merged for providing the final test report.

Objectives: The key objectives of the proposed software
testing framework are listed below:

+ To deploy weight-based pricritization technique for
prieritizing the test cases

* To implement cosine similarity based K-Medoid
clustering algorithm for clustering the test cases after
prioritization

¢+ To enhance the security of test case execution in
cloud environment using attribute key based ECC
algorithm

¢+ To optimize the memory consumption of each test
case execution using cache memory

Literature review: This study provides an illustration of
the existing test case prioritization techniques, clustering
techniques data security techniques and security
mechamsms used for the cloud computing environment.

Test case prioritization techniques: Parthiban et al.
(2014) suggested a dependency estimation based test
case prioritization techmique for estimating the
dependencies between the tests. The information from the
previous iteration was not demanded for estimating the
priorties. Further, the fine-grained test suites were not
maintained. The functional dependency, precision, recall
and F-measure were estimated using theranking algorithm.
The functional estimation was based on the number of
accurate functions in the application. When compared to
the random and untreated testing suites, the proposed
technique provided optimal error detection Miller
(2013) proposed a family of test case prioritization
technicuesfor prioritizing the test suite. The dependencies
1n the test ordering were preserved. The evaluation results
proved that the proposed techmique automatically
extracted the dependency structures from the test suites.
The disadvantage of the proposed technique was the lack
of assumption of the dependency relationship between
the test cases (Nivethitha and Sriram, 2013) suggested a
Dependency Structure Prioritization (DSP) for prioritizing
the jobs in the cloud environment. By reducing the
number of job migration and missed deadline jobs the
resource scheduling was improved. Srikanth et al. (2016)

suggested an efficient prioritization scheme for
addressing the schedule and budget constraints at the
testing phase. The suggested scheme exploited the
risk mformation of the system and developed a
two-requirement based TCP approach. (Nguyen et al.,
2011) suggested a prioritization approach for validating
the test cases using the mformation retrieval Based on
the changes in the service, the test cases were prioritized.
Roongruangsuwan and Daengdej (2010) surveyed
multiple test case prioritization techniques. Further,
the 1ssues such as ignoring practical weight factors,
inefficient test case prioritization method, ignoring the test
case size were analyzed. From the results obtained from
the analysis, the ability of the weight was improved and
the rank test cases was enhanced using the practical
factors. Hettiarachclhi ef al. (2016) suggested a fuzzy
expert system for providing an efficient test case
prioritization. The suggested system exploited the
requirement modification status, security, complexity and
size of the software requirements as risk indicators.
Further, a fuzzy expert system was proposed for
estimating the risk requirements. The advantages of the
proposed system were early detection of faults
andflexible application of the systematic approach to the
industrial applications. Solanki et al. (2015) proposed a
modified Ant Colony Optimization (m-ACQ) technique
for prioritizing the test cases. The performance of the
suggested m-ACO was valdated with the average
percentage of the faults detected. Anitha and Srinath
(2014) surveyed the various prioritization, clustering,
load balancing and security techmques for the cloud
environment. From the swrvey results it was found
that the Dependency Structure Prioritization (IDSP)
techmquewas optimal for prioritizing the test cases. The
DSP technique reduced the time consumption and also
maximized the fault rate prediction. The clustering of the
test cases using agglomerative clustering was found to be
more flexible in the level of granularity. The exploitation of
the resources were optimal for hierarchical load balancing
algorithm. The enhancement of the cloud security using
Diffie-Hellman algorithm was found to be more efficient
that the other existing algorithm.

Clustering techniques: Srivastava ef al. (2013) proposed
a hierarchical agglomerative clustering algorithm for
maximizing the execution efficiency of the tasks in the
distributed cloud computing environment. Experimental
results proved that the proposed clustering algorithm
decreased the execution time, increased the efficiency
and parallelism. Kaur and Kaur (2013) proposed a query
redirection method for enhancing the performance and
accuracy of the K-means clustering algorthm. By

2220

Asian J. Inform. Technol., 15 (13): 2228-2237, 2016

exploiting the validationmeasures such as entropy, time,
fomeasure and coefficient of variance, the performance of
clustering algorithm and hierarchical
clustering algorithm were analyzed. The analysis results
proved that the K-means algorithm produced less
execution time and optimal performance than the
hierarchical algorithm. The disadvantage of the suggested
analysis was the lack of consideration of normalized
and zun-normalized data. Cui et al (2014) suggested
a K-means clustering algorithm and a processing model

the k-means

for preventing the iteration dependence. Experimental
analysis proved that the proposed medel enhanced
the efficiency, robustness, scalability and performance.
Celebi et al (2013) analyzed the various clustering
algorithms along with their computational efficiency.
Multiple performance criteria was used for comparing the
linear time complexity on a large and diverse collection of
the datasets. By performing the non-parametric statistical
tests, the expermmental results using non-parametric
statistical tests were analyzed.

Data security techniques: Ora and Pal (2015) suggested
a combmation of Rivest-Shamir-Adleman partial
homomorphic and MD35 hashing algonthm for mamtaining
the data security and data integrity in cloud environment.
Before uploading the data into the cloud server, it was
encrypted using RSA partial. After uploading the data
to the cloud server its hash value was estimated using
MD35 hashing scheme. 1i et al. (2013) proposed an
Attribute-Based Encryption (ABE) technique for
encrypting the Personal Health Record (PHR) file. Based
on the multiple data owner scenario, the users of the PHR
file were divided into multiplesecurity domains. The
exploitation of the multi-authority ABE enhanced the
privacy degree of the patients. Further, the scalability,
security and efficiency of the proposed ABE technique
were increased. Sood (2012) proposed a framework that
includes various techniques and specialized procedures
for protecting the data from the owner to the cloud and
then to the user. The data was classified using three
parameters such as Confidentiality (C), Availability (A)
and Integrity (T). The classified data was encrypted using
Secure Socket Layer (SSL) 128 bit encryption. The number
of bits was then mcreased to 256 bit. The mtegrity of the
data was validated using Message Authentication Code
(MAC). Experimental analysis proved that the proposed
framework achieved optimal reliability, availability and
mtegrity.

Security mechanisms: Rewagad and Pawar (2013)
suggested a hybrid of digital signature and Diffie Hellman
exchange blended with AES algorithm for enhancing the

confidentiality of the data stored in cloud As the
proposed algorithm was composed of three-way
mechanism, the hackers were unable to crack the system
security. Malik and Kumar (2015) suggested a data
protection model for securing the data from the cloud
environment attackers. The proposed model encrypted
the data using AES algorithm and authenticated the
data using Diffie Hellman algorithm. The suggested
model prevented the key computation overhead and
management overhead. Kumar ef al. (2012) suggested an
ECC algorithm for protecting the data files in the cloud.
The suggested algorithm permitted only the group
members to access the data stored over the shared data
section. Rewagad and Pawar (2013) proposed a hybrid of
digital signature and Diffie Hellman key exchange
algorithms for enhancing the confidentiality of the data
stored in cloud. The proposed algorithm prevented the
hackers from cracking the security and integrity of the
system and thereby it protected the data stored in the
cloud. As the proposed model mtegrated the AES and
3DES, the algebraic attack on the hybrid model was
minimized. Dubey et al. (2012) suggested aRSA and MD5
based algorithm for providing cloud-user security. After
the cloud user uploads the data onto the cloud
environment, the data was encrypted using RSA
algorithm. The decryption of the uploaded data was
performed using the private key of the cloud admin. The
data was updated using a secure key with message digest
tag.

From the analysis of the wvarious test case
prioritization techniques, clustering techniques, data
security techmques and security mechanisms it 18 found
that the existing techmiques consume more execution time
for the prioritization process and consumes more
computation time for the encryption and decryption
processes. Further, the existing techmques do not
consider the memor optimization. Hence, to overcome all
these limitations, a secure software testing using
weilght-based prioritization technique 1s proposed.

MATERIALS AND METHODS

Software testing framework with weighted prioritization
technique: This section provides a detailed explanation
regarding the proposed software testing framework with
weighted prioritization technique. The overall flow of the
proposed software testing framework 1s shown in Fig. 1.

Generation of test case: Initially, a distributed cloud
environment is created with ‘N° number of nodes, then a
test case dataset ‘D’ 1s initialized. Each test case ‘1" in the
dataset 1s allocated a test case ID. The steps mvolved in
the test case generation are illustrated:

2230

Asian J. Inform. Technol., 15 (13): 2228-2237, 2016

E Receive node
i .
Support value Share node | ! .
calculation i |Compute key
i
i
(Cosine similarity Get T ber : : Enerypt
S e hotreta il Share key clustered data
calculation of nodes !
1 S
Dependency o Distribuie
Estimation Clustering clusters to nodes|
Generate Compute Prioritize test cases) Receive encrypted
dependency Median value based an weight clusters from
matrix different nodes
¥
Estimation of " .
F Cheek weight 5 5 7
dependeney weight & h'""’: 1D for
ey

Validate the
iteration

Decrypt Generate

report

:Clusters

Exceute test
case

Map the test case
and store in catch
MCIMory

Fig. 1: Overall flow of the proposed software testing framework with weighted prioritization technique

Algorithm A; Test case initialization input: test report
(D):

Output:Test case specification (T)

Step 1: D = Test report. dataset

Step 2: TID = Test case ID

Step 3: T; = Test case specification for the i test casei=0,1, ... n

Calculation of support value and cosine similarity: After
the 1mtialization of the test cases, the support value for
the test cases are calculated by finding the frequent test
case in the dataset. To determine the weight of the similar
test cases, the cosine similarity 1s proposed. The
following are the steps involved in the cosine similarity
caleulation.

Algorithm B; Cosine similarity calculation:
Tnput: Test case specifications (T) in the dataset D’
Output:Support value for each transaction
Far each Test case T,eD

For each Test case TjsD

Bup (1;)*8up(T))

It Tt b (1)
[Sup(T,)[*8up(T))

cosf =
End for
End for
/fweight calculation
//Sort test case based on weight value
Sort (T,eD)
For each Test case T;eD
Weight (T;) = Find mean (T, D)
End for
/fPrioritize the Test case
Apply priority based on Weight value

With the estimated cosine similarity wvalues, an
adjacency matrix is constructed wsing (Eq. 1) and the

mean of all the similarity values 1s used for calculating the
weight of each test case. Based on the calculated weight,
the weight-based prioritization technique is applied. The
suggested techmique prioritize the test cases based on
the weight value. The advantage of the proposed
prioritization techmque is increased fault tolerance rate
than the traditional prioritization techniques.

Clustering using K-medoid algorithm: After the
prioritization process the number of nodes in the
distributed environment 15 computed as ‘N, then the
computed number is initialized as the number of clusters
as follows:

Cluster k =N

Based on the number of nodes, the test case from the
matrix 1s clustered. With respect to the number of nodes,
the test case prioritization size is estimated as follows:

P = size(D)k (2)
Where:
D = Denotes the dataset
k = Represents the number of clusters

For each cluster O, ..., O, and for each test
case T; €P, the clustering 1s performed using K-Medoid
algorithm. The K-Medoid algorithm exploits the most
central object named Medoid of eachcluster. The main aim
of the K-Medoid algorithm is to estimate the clusters O,
O, .., O, that minimizes the following target function,

2231

Asian J. Inform. Technol., 15 (13): 2228-2237, 2016

E_ Y beLdb,j) 3
Where:
k = Denotes the number of clusters
L = Denotes the cluster

d (b, j,) = Represents the target function

Algorithm C; K-Medoid algorithm:

Input: Number of clusters (k), Dataset D with m objects

Output: Set of k clusters that reduces the dissimilarities of all the objects
Step 1:k number of objects such as Oy, .., O, are chosen as the initial
Medoids.

Step 2: Cormpute the value of the target function using (Fq. 3)

Step 3: For all (0, £3) pairs the target function is improved by moving the
f; non-medoid point to a new medoid point and moving the medoid point
0); to a new non-medoid point.

The proposed algorithm is repeated till k number
of clusters areformed. The following advantages are
the reasons for choosing the K-Medoid clustering

algorithm.

Advantages of K-Medoid algorithm:

* Mimmal execution time for clustering process

¢+ Robust

* Easy to implement

+ Provides clustering result in minimal number of steps
* Prevents the outliers

After clustering the similar test cases, the created
clusters are distributed among various nodes of the
distributed cloud environment. To facilitate a secure
cluster distribution, the clusters are forwarded m an
encrypted format.

Encryption and decryption using ECC: To protect the test
cases from the security threats of the cloud, an Attribute
key based Elliptic Curve Cryptography algorithm 1s
proposed. Initially, the attribute key is generated as
follows:

For each node N,... N,
AK(N) < Nodeld(N)) “
End For

The suggested attribute based ECC algorithm assigns
the node ID of a nodeas the attribute key of the same
node. After the generation of the attribute key it is
stored in the Hash table with the corresponding node
mformation. After the generation of the attribute key, the
ECC algorithm 1s used for encrypting and decrypting the
clusters. The steps involved in the ECC based cluster
encryption is illustrated as follows.

Algorithm I): Encryption using ECC algorithm:
Step 1: Initialize the private and public key using Eq. 5 and 6:
For each cluster C, ... C,

Private Key = AK (N,) &)
Public Key = d*Private Key (@
Where:
d = A random value
Step 2 = Initialize two cipher text as C1 and C2
Step 3 = Calculate C1 using Eq. 7
C,= kP @
Where:

k = Denotes a random number
p = Represents the number of partitions

Step 4: Compute C2 using Eq. 8

C,=M+*Q ®
Where:
M = Denotes the message

k = Represents the random number
() = Denotes the public key

Step 5: After encrypting the clustered data, the encrypted cluster is mapped
to the nodes as follows:
For each encrypted cluster E (C)...E (C,)
For eachnodeN; ... N,:

End for
End for

The proposed attribute based ECC algorithm creates
the private and public key using two cipher text such as
Cl and C2. The message that needs to be encrypted 1s
denoted as “M’. Both the text C1 and C2 are campaigned
and assigned for each node created on the distributed
environment. The generated keys are maintained in the
hash table for faster retrieval. To decrypt the test cases
the keys that are used for the encryption process are
used. The steps that are mvolved in the decryption
process 18 illustrated below:

Algorithm E; Decryption using ECC algorithm:
For each encrypted cluster E (CD ... E(CD
Get AK from the distributed hash table

D*(Cy=-Decrypt (E (C))
Private Key = ABK (N))

Public key->d*Private Key (10

M = C2-d*C1 (1)
End for

At first, the attribute key for each encrypted cluster
is retrieved from the distributed hash table then the
encrypted cluster is decrypted and assigned toD (C;). The
attribute key for each node is assigned as the private key
and the public key 1s estimated based on Eq. 10. After the
estimation of the private and the public key, the message
1s decrypted using (Eq. 11).

2232

Asian J. Inform. Technol., 15 (13): 2228-2237, 2016

Memory optimization: The test cases are executed using
the cache memory. If any test case gets failed on their
execution it is removed from the cache memory, thus
optimizing the memory space. The overall steps involved
in the memory optimization process is illustrated below.

Algorithm F; Steps involved in the memory optimization:
Step 1: Initialization of the cache
For each Cluster C, C,
Cache <- Execute (C))
End for
Step 2: Removal of failed test cases
Cache. remove (failed test case)
Return cache

RESULTS AND DISCUSION
Performance analysis: This section illustrates the
performance results of the proposed software testing
framework with weighted prioritization techmque. The

following are the metrics used for comparing the
performance of the proposed method:

* Percentage of defect detected

* Percentage evaluation of test case
¢« Entropy

* Hxecution time

Table 1: Comparison of percentage evaluation of test case
Proposed suppoit

Random Prioritized based weight
Metrics (%%) (%) prioritization (%)
Data severity 51 72 88
Test case size 75 80 91
Total prioritization time 50 30 10

Random ®Prioritized

100

O o0
L] L]

o .
]

]
L]

Percentage of test cases executed
(%)

10 20 30 40 30

» Test case execution time
» Prioritization time

Percentage of defect detected: The number of defects
estimated during each test case executionis denoted as
percentage of defect detection. By detecting the defects,
the repeated test cases are eliminated. The percentage
of defect detected with respect to the percentage of
the test cases execution for the existing random and
prioritized technique (Muthusamy, 2013) and the
proposed support weight based prioritization is depicted
in Fig. 2. The comparison results show that the proposed
supportweight based prioritization increases the
percentage of the test cases execution than the existing
techniques.

Percentage evaluation of test case: To evaluate the test
cases the metrics such as data severity, test case size and
total prioritization time are used. The performance of the
proposed support weight based priontization technique
for these metrics are compared with the existing random
and prioritized (Muthusamy, 2013) techniques. The
comparison results are depicted in Table 1. From Table 1
it 1s clear that the proposed support weight based
prioritization techmque provides optimal performance
than the existing techniques.

Entropy: Entropy measures the purity of the clusters with
respect to the class labels. The lower the value of the
entropy, the higher will be the quality of the clustering.
The comparison of entropy for the existing K-means,
Hierarchical clustering algorithms (Kaur and Kaur, 2013)
and the proposed weight based K-Medoid algorithm is

Support Weight based Prioritization

g0 70 80 S0 100

Percentage of defect detected (%o)

Fig. 2: Comparison of percentage of defect detected for the existing and the proposed methods

2233

Asian J. Inform. Technol., 15 (13): 2228-2237, 2016

"k-mean WHierarchical ®ProposedWeightbased K- Medoid

045
c.4

0.35
i 0.3
§0.25
0.2
0.15
0.1
0.05
30 100 150

Entr

L]

200

3530 400

250 300

Mumber of records

Fig. 3: Comparison of entropy for the existing and the proposed methods

Ml-mean ®™Hierarchical ™ Proposed Weightbased K-Medoid

300

250

Time (rnsg]
—
LA .}
L] L}

—
L]
L]

5

]

]

50 100 150 200 250 300 350 400

No. of Records

Fig. 4: Comparison of execution time for the existing and the proposed methods

depicted in Fig. 3. The analysis results show that the
proposed algorithm provides an optimal entropy value
than the existing algorithms.

Execution time: The amount of time consumed for the
execution of different number of records is depicted
i Fig. 4. The performance of the proposed weight based
K-Medoid algorithm is validated with the existing
algorithms such as K-Mean algorithm, hierarchical
clustering algorithm (Kaur and Kauwr, 2013). The
comparison results show that the proposed clustering
algorithm provides minimal execution time than the
existing K-means and hierarchical clusteringalgorithm.

Test case execution time: The amount of time consumed
for the execution of each test case 13 shown in Fig. 5. To
validate the performance of the proposed support weight

based prioritization, it 1s compared with the existing Test
Case Prioritization (TCP) technique (Elbaum et al., 2002).
The validation results prove that the proposed support
weight based prioritization techmque provides minimal
execution time for all the test cases.

Prioritization time: The prioritization time 1s defined as
the amount of time consumed for the prioritization
process. To validate the performance of the proposed
support weight based prioritization, it 1s compared with
the existing techniques such as Adaptive Random Test
case prioritization (ART), Local Beam Search (LBM)
and greedy approaches (Jiang and Chan, 2015). The
comparison results shown in Fig. 6 shows that the
proposed support weight based prioritization method
provides mimimal prioritization time than the existing ART,
LBM and greedy approaches.

2234

Asian J. Inform. Technol., 15 (13): 2228-2237, 2016

TCP Technique

— — 2 2
L} Lh i IR

h

Test case execution time (Sec)

T1 T2 T3 T4

Support Weight based Prioritization

TS Teé T7 T3 T%

No. of Test Cases

Fig. 5: Comparison of test case execution time for the existing TCP technique and support weight based prioritization

&
-ART

5
o LES
o
g 4 Greedy
ﬁ
g 3 Supp Qr_‘tWeightbased
= Prioritization
=
Bz
8
&

1

0

10 20 30 40 50

60 70 80 %0 100

Fercentage of test poolused

Fig. 6: Comparison of prioritization time for the existing and the proposed methods

CONCLUSION

Software testing is the process of validating the
performance of the software package
according to the user expectations. As cloud computing
environment provides the services to the customers mn a
flexible manner it is preferred for the software testing
process. In this study,
welght-based prioritization techmque 1s proposed for
performing the software testing n distributed cloud
environment. Initially, a distributed cloud environment is
created with ‘N’ number of nodes then the test case
dataset 13 imtialized. The suggested technique exploits the

functions

an efficient and secure

cosine similarity for estimating the weights of the similar
test cases. Based on the weight values, the prioritization
technique is applied for prioritizing the test cases. After
the prioritization process, the K-Medoid algorithm is
proposed for clustering the sunilar test cases.As the test
cases are executed in the open environment of cloud, it 1s
prone to various security threats. Hence, to enhance the
security of the test cases an attribute based ECC
algorithm 1s proposed for the encryption process. To
provide faster retrieval of keys, the keys are stored and
retrieved from the hash table. By exploiting the cache
memory the memory consumption for the testing process
15 reduced. Fmally, the results from all the nodes are

2235

Asian J. Inform. Technol., 15 (13): 2228-2237, 2016

merged and the test report is produced as output. To
validate the performance of the proposed secure
weight-based prioritization technique it is compared with
the existing random and prioritized technique for the
metrics such as percentage of defect detected, percentage
of evaluation of test case. The entropy and execution time
for the proposed technique are compared with the existing
K-means, hierarchical algorithms. The test case execution
time of the proposed method is validated with the existing
TCP technique. Further, the prioritization technique of the
proposed technique is compared with the existing ART,
1.BS and greedy technicues. The comparison results show
that the proposed method provides optimal performance
than the existing methods.

As a future enhancement the security of the test
cases can be enhanced. Further, the key size required for
the computation can be made smaller and the efficiency of
the prioritization process can be increased.

REFERENCES

Amnitha, D. and M. V. Srinath, 2014. A review on software
testing framework m cloud computing. Int. J. Comput.
Sei. Inf. Technol., 5: 7553-7562.

Celebi, M.E., HA. Kingravi and P.A. Vela, 2013. A
comparative study of efficient imtialization methods
for the k-means clustering algorithm. Hxpert Syst.
Appl., 40: 200-210.

Cu, X, P. Zhu, X. Yang, K. Liand C. Ji, 2014. Optumized
big data k-means clustering using MapReduce. T.
Supercomputing, 70: 1249-1259.

Dubey, AK., AK. Dubey, M. Namdev and S.S.
Shrivastava, 2012. Cloud-user security based on RSA
and MD35 algoritim for resource attestation and
sharing in java environment. Proceedings of the 2012
CSI Sixth International Conference on Software
Engineering (CONSEG), September 5-7, 2012, TEEE,
Indore, India, ISBN: 978-1-4673-2174-7, pp: 1-8.

Elbaum, S., A. Malishevsky and G. Rothermel, 2002. Test
case prioritization: A family of empirical studies. TEEE
Trans. Software Eng., 28: 159-182.

Hettiarachchi, C., H. Do and B. Choi, 201 6. Risk-based test
case prioritization using a fuzzy expert system. Inf.
Software Technel., 69: 1-15.

Tagadeesh, S.A., 2012, Cloud based testing: Need of
testing in cloud infrastructures and cloud platforms.
Int. J. Comput. Sci. Inf. Technol. Secur., 2: 398-401.

Tiang, B. and W.K. Chan, 2015, Input-based adaptive
randomized test case prioritization: A local beam
search approach. I. Syst. Software, 105: 91-106.

Kaur, M. and U Kaur, 2013. Comparison between
K-mean and hierarchical algorithm using query
redirection. Int. J. Adv. Res. Comput. Sci. Software
Eng., 3: 1454-1459.

Kumar, A., B.G. Lee, H. Lee and A. Kumari, 2012. Secure
storage and access of data in cloud computing.
Proceedings of the 201 2 International Conference on
ICT Convergence (ICTC), October 15-17,2012, IEEE,
Teju City, South Korea, ISBN: 978-1-4673-4829-4,
pPp: 336-339.

Li,M., S.Yu Y. Zheng, K. Ren and W. Lou, 2013. Scalable
and secure sharing of personal health records in
cloud computing using attribute-based encryption.
IEEE Trans. Parallel Distrib. Syst., 24: 131-143.

Malik, R. and P. Kumar, 201 5. Cloud computing security
unprovement using Diffie Hellman and AES. Int. T.
Comput. Appl., 118: 25-28.

Miller, T., 2013. Using dependency structures for
prioritization of functional test suites. TEEE. Trans.
Software Eng., 39: 258-275.

Muthusamy, SK.T., 2013. A test case prioritization
method with weight factors in regression testing
based on measurement metrics. Int. J. Adv. Res.
Comput. Sci. Software Eng., 3: 390-396.

Narula, T. and G. Sharma, 201 4. Framework for analyzing
and testing cloud based applications. Int. J. Adv.
Res. Comput. Sci. Software Eng., 4: 592-596.

Nguyen, C.D., A. Marchetto and P. Tonella, 2011. Test
case prioritization for audit testing of evolving web
services using information retrieval techniques.
Proceedings of the 2011 TEEE International
Conference on Web Services (ICWS), July 4-9, 2011,
IEEE, Washmgton, DC., USA., ISBN: 978-1-4577-
0842-8, pp: 636-643.

Nivethitha, S. and V.S. Sriram, 2013. Consolidating batch
and transactional workloads usmg dependency
structure priontization Int. J. Eng. Technol,
5:128-1334.

Ora, P. and P.R. Pal, 2015. Data security and integrity in
cloud computing based on RSA partial homomorphic
and MDS5 cryptography. Proceedings of the
2015 International Conference on Computer,
Communication and Control (IC'4), September 10-12,
2015, IEEE, Indore, India, ISBN: 978-1-4799-8163-2,
pp: 1-6.

Parthiban, D.T., M.R. Kamalraj and D.S. Karthik, 2014.
Establishing a test case prioritization technique using
dependency estimation of functional requirement. Int.
J.Inn. Res. Sci. Eng. Technol., 3: 1526-1529.

Rewagad, P. and Y. Pawar, 2013. Use of digital signature
with Diffie Hellman key exchange and AES
encryption algorithm to enhance data security in
cloud computing. Proceedings of the 2013
International Conference on Communication Systems
and Network Technologies (CSNT), April 6-8,
2013, IEEE, Gwalior, India, ISBN: 978-1-4673-5603-9,
pp: 437-439.

2236

Asian J. Inform. Technol., 15 (13): 2228-2237, 2016

Sood, S.K., 2012. A combined approach to ensure data
security in cloud computing. J. Network Comput.
Appl., 35 1831-1838.

Roongruangsuwan, 3. and I. Daengdej, 2010. A test case
prioritization method with practical weight factors. T.

Software Eng., 4: 193-214. _ _ _
Solanki, K., Y. Singh and S. Dalal, 2015. Test case Srikanth, _H'= C. g{ettcllarachc}u. and H DO_’ 20161('
prioritization: An approach based on modified ant Requn"emen‘.ts ased lesl priortizalion using ois
o . factors: An industrial study. Inf. Software Teclmol.,
colony optimization (m-ACO). Proceedings of the 69: 71-83
2015 Ir?terr.lational Conference on Computer, Srivastava, K., R. Shah, D. Valia and H. Swaminarayan,
Communication and Control (IC4), September 10-12, 2013. Data mining using hierarchical agglomerative

clustering algorithm in distributed cloud computing

2015, IEEE, Indore, India, ISBN: 978-1-4799-8163-2,
enviromment. Int. J. Comput. Theory Eng., 5: 520-522.

pp: 1-6.

2237

	2228-2237_Page_01
	2228-2237_Page_02
	2228-2237_Page_03
	2228-2237_Page_04
	2228-2237_Page_05
	2228-2237_Page_06
	2228-2237_Page_07
	2228-2237_Page_08
	2228-2237_Page_09
	2228-2237_Page_10

