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Abstract: Job scheduling algorithm 1s used for assigmng the jobs in number of machines that will optimize the
overall performance of the running application. In this study, we proposed enhanced Artificial Bee Colony
(ABC) algorithm with cross over and mutation operator for job scheduling. The main objective of this algorithm
1s to obtain a best schedule for jobs which minimizes the makespan value. The processing time of the jobs are
generated randomly by using normal, uniform and exponential distribution. The best schedule obtained 1s then
compared with schedule obtained from normal ABC algorithm. The computational results show that the
enhanced ABC proves to be a better algorithm than the normal ABC algorithm.
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INTRODUCTION

Today world is online application specific. There are
number of jobs or processes runmng n a distributed
environment. They need more number of resources over
time for completion of their tasks. Hence, the scheduling
is the most important issues among all running jobs.
Scheduling 1s the process of allocating resources to the
jobs or processes in efficient manner. The job or process
scheduling is one of the most important optimization
problems. The problem is more complex and is proved to
be NP hard problem. Here finding an optimized schedule
plays an important role that leads to provide minimized
makespan value. Many researchers have been worked on
this job scheduling problem. Due to their computational
complexity the job scheduling cannot be solved by exact
algorithms. Hence many researchers have given different
solutions by using heuristic and metaheuristic approach.
The ultimate aim of these algorithms is to minimize the
makespan value or total flow time value of individual job
that are runming on different resources. There are number
of evolutionary algorithms used for providing the solution
to minimize the makespan value. ABC (Karaboga and
Basturk, 2007, 2008, Karaboga and Akay, 2009; Zhang and
Wu, 2011) 1s one of such algorithm to provide the solution
for this.

Most of the ABC
determimstic in which the processing time of all jobs are
well known m advance and also it 13 fixed. But in real
world, the processing time of jobs are dynamic in

scheduling algorithms are

nature. It 13 affected by uncertain parameters. To handle
this situation, the enhanced ABC algorithm is proposed.
This algorithm works on stochastic environments using
random processing time of jobs with known probability
distributions. This algorithm can also take due dates of
individual jobs. The due dates are either fixed or random
based on the nature of jobs. The main objective of this
algorithm 1s to find a feasible schedule that lead to
minimize the completion time of all the jobs runming on the
system.

Literature review: Golenko and Gonik (2002) developed
an optimal job-shop scheduling. Here there are several
decision making rules used for selecting best job among
number of jobs waiting for a particular machine. Making
the rules are tedious here. Tavakolli-Moghaddam et al.
(2005) developed a hybrid method for sclving stochastic
job shop scheduling by using both neural networks and
simulated annealing. Azadeh et ol (2012) developed a
hybrid computer simulation-artificial neural network
algorithm for optimization of dispatching rule selection in
job-shop scheduling. Michael Andresen developed
scheduling algorithm using siumulated annealing for n
jobs and n machines. Tt was open shop scheduling with
known release date of job, job weight and a due date.
Recently there are number of job shop scheduling
algorithms  with  different optimization functions
developed based on genetic algorithms (Pezzella et al.,
2008; Lei, 2011).
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But these algorithms are time consuming. Pan et al.
(2011) developed an ABC for a flow-shop scheduling
problem with enhanced version of the normal ABC. But it
works under discrete environment. Banhamsakun et al.
(2012) developed a scheduling algorithm based on
best-so-far solution rather than a neighboring solution as
proposed in the normal ABC method. Tasgetiren et al.
(2011) developed an ABC algorithm in discrete nature for
solving scheduling problem. The algorithm gives a
schedule of n items in cyclic manner on a particular
machine. Pansuwan et al. (2010) proposed an ABC
algorithm for minimizing both earliness and tardiness cost
with help of just m time philosophy. Ziarati et al. (2011)
proposed an algorithm in which the activities are selected
based on their ranks and the priority rules are used for
ranking the activities.

MATERIALS AND METHODS

System design: The proposed system consists of m
machines and n jobs. The system 1s said to complete its
work only when all the jobs run on all the machines. The
input to the system is the processing time in which every
job run on every machime and the order of precedence of
jobs running on the machine. The output of the system is
the schedule which makes the make span value efficient.
The input is in the form of matrices that shows the
processing time and precedence of different jobs. The
processing time of individual job 15 represented as the
following input matrix:

P P2 P PP
Pz Puz Pu Pu-Pum
Px Pu Ps Pu-Pm

pnl an pn3 pn4" 'pnm

where, p; 1s the processing time of 1, job and j,, machine.
For simplicity purpose the precedence and output
matrices are represented as 3x3 instance. The precedence
matrix represented as the job has a fixed path wlich goes
across all the machines in a determined order. It takes the
following form:

P> P Py
Pzu--® Pu-> Pn
P ® Py ® Pss

Where:
P, = Denotes precedence
..» = Denotes job i must run on machine j only after iy

job rum on (5-1)™ machine

The output matrix is represented as:

jll j12 j13
j21 j22 j23
j31 j32 j33

where, J; represents j, job run on i, machine. It shows the
efficient schedule of the system. The work of ABC and
enhanced ABC algorithm is to schedule in such a way
that 1t minimizes the overall makespan value. For this
many assumptions are made such as:

¢ The processing time must not be zero

»  The output must not change the precedence order
given as the input

»  There are all machines in working condition

¢ The jobs are non-pre emptive

»  Each machine can take only one job at a time

The number of solutions generated both by the ABC
and enhanced ABC algorithm are given as the random
nputs.

Algorithm implementation: Here the system consists of
m machines and n jobs. The enhanced ABC and ABC are
applied to schedule the jobs on the machmes in an
efficient way such that it reduces the total makespan
value required for all the jobs to complete their operation.
The output of this system 1s the matrix which i1s
represented by a of size m»n in which each row represents
the machines and value in the matrix represents the jobs.
This matrix gives the efficient schedule of each machine.
The block diagram of the overall system is represented in
Fig. 1. ABC consists of three phases as follows:

»  Initialization phase
+  Employed bee phase
»  Onlooker bee phase

Whereas, enhanced ABC consists of five phases as
follows:

»  Initialization phase
»  Employed bee phase
s Crossover phase

»  Onlooker bee phase
»  Mutation phase
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ABC
1. Initialization phase. Matrix
2. Employed bee phase. represents
3. Onlooker bee phase. schedule
Enhanced ABC

1. Initialization phase.
2. Employed bee phase. Matrix
3. Crossover phase. represents
4. Onlooker bee phase. schedule
5. Mutation phase.

Fig. 1: Block diagram of the overall system

Tnitialization phase: This phase has the following steps:

w
B, (t)=—l.expi—

Create m queues and calculate length which is equal
tomxn

Find what are the jobs waiting for each machine and
add them in the particular queue

Pre compute the following terms for the jobs waiting
in the queue to use them in Apparent Tardimess Cost
(ATC) (Vepsalainen and Morton, 1987 ) rule. This rule
1s used to find the best fit job (B,(t)) to be scheduled
among the jobs waiting in the queue when a machine
1s freed at time t

The set of job successor for the current job denoted
by I5(;)

Average processing time of currently waiting jobs in
that particular machine’s buffer denoted by P
Estimated lead time of current job dencted by W;
According to ATC rule, B,(t) is calculated as follows

[dj —tepy _ZJS(Jh)(W] +pu)}

Py K.p

(1)

Where:

W,
pn

d

|3

= The waiting time of that particular job
= The processing time of the current job

The level of urgency for the job j

= The scaling factor which is assumed to be 2

Reduce the value of length by 1 after each job gets
scheduled. Continue above steps until the value of
length becomes zero

At the end of this a solution will be obtained for the
given problem

Repeat the above steps employed bee times to

compute number of different solutions for the same
problem.

Employed bee phase: This phase has the following steps:

Neighbourhood search is done on solution by
randomly applying changes on that solution
Compute the fitness (makespan) value for the newly
computed solution

If the fitness value of the new solution is better than
the existing solution then, replace the old solution by
newly computed solution

Repeat the above steps for all solutions computed in
the initialization phase

Crossover phase: This phase has the following steps:

Cross two solutions and generate a new solution
called offspring

Calculate the fitness value for the new solution.

If any of the parent’s solution is worst than this
solution then, replace worst parent with the offspring
Repeat the above steps for all pair of solutions

Onlooker bee phase: This phase has the followmng steps:
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£
| T (2)
1:1f1
Where:
£ = The fitness of the solution

Tand SN = The number of solutions
Mutation phase: This phase has the following steps:

¢ Uniform mutation is applied on the solution resulted
from the onlooker bee phase to obtain new solution

+  Fitness value is calculated for the new solution

¢ If the mutation increases the fitness value then
replace the existing solution

The pseudo code of the proposed algorithm:
Step 1: Intialization phase:

for I =0 to number of solution do

length =no_of machines*no_of jobs

while length =0 do

for j = 0 to number of machines

Allocate job to the machine j at time t length

end

end

Calculate makespan value for the current solutions
end

Step 2: Employed bee phase:

for I=0to number of solution do

Conduct neighbourhood search for the current solution

Calculate makespan value for the new solution

If new makespan value is efficient than the current makespan

then replace the existing solution with the new solution

end

end

Step 3: Crossover phase:

for I =0 to number of solution/2 do

Combine pair of existing solutions to create new solution called offspring
Calculate makespan value for offspring

Replace the worst parent with the offspring it it is better than that
end

Step 4: Onlooker bee phase:

for I =0to number of solution do

Calculate probability value for the current solution

end

Select the solution with greater probability as the result of onlooker bee
phase

Step 5: Mutation phase:

Apply mutation operator to the resultant solution from above phase
Calculate makespan value for new solution

if new makespan is efficient than existing

then

Replace the existing solution with the new solution.

end for if

Finally, the solution obtained from the mutation bee
phase 18 considered as the ultimate solution given by the
enhanced ABC algorithm. The flowchart of this algorithm

is represented in Fig. 2.
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Fig. 2: Enhanced ABC algorithm
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Table 1: The computational result of m machines and n jobs under normal distribution with @ = 0.1

ABC Enhanced ABC

Size mxn Instance number Best Average Worst Best Average Worst
10%10 1 51.251 65.625 75.402 45.144 53.673 61.692
2 40.939 46.107 51.508 38.625 43.481 48.934

3 52.08% 63.981 69.117 52.081 56.753 63.930

4 50.962 59.861 60.582 48.562 54.711 59.321

5 56.120 61.354 67.508 50.457 54.893 59.642

15%10 6 65.399 69.752 72.852 64.306 67.973 70.743
7 92.016 95.457 98.895 90.231 92.673 93.989

8 76.712 80.836 83.947 31.264 34.946 38.932

9 67.644 68.972 70.953 32.768 36.826 40.971

10 98319 102.450 108.445 93.219 95.314 98.937

15%15 11 93.923 97.456 101.963 93.310 94.982 96.346
12 86.791 90.347 92.098 83.791 85.360 89.861

13 104.421 106.027 109.837 104.421 105.221 107.582

14 61.483 64.862 68.852 58.356 60.349 63.495

15 102.615 105.387 109.546 101.093 103.349 106.462

2020 16 132.595 138.986 143.863 94.183 98.825 103.452
17 156.231 160.386 167.384 144.876 147.863 151.341

18 92.457 95.954 98.620 90.659 93.865 97.644

19 100.230 103.086 107.393 98.003 101.245 105.781

20 154.823 159.041 162.428 148.907 150.855 154.936

RESULTS AND DISCUSSION where, © is level of variability. Table 1 shows the

The performance analysis of ABC and enhanced
ABC 1s done by, comparing the results generated by both
the algorithms provided the same set of processing time
are given to them. The processing time are randomly
generated for three different distributions namely: normal
distribution, Uniform distributon and exponential
distribution. In all test cases, we consider m machines and
n jobs with instances.

The instances are indexed with i and j. Here i refers
job instance at time t and j refers machine instance at time
t. In each instance, the path is a random precedence of m
machines. The common computational time 1s set for both
ABC and enhanced ABC algorithm. The common
computational time 15 50 sec. The best, average and worst
makespan values are taken from random generated
processing times.

Normal distribution: The processing time under normal
distribution 1s generated based on the following: for job
1 and machine j, the processing time p; is calculated as
follows:

p; = N (mean,, std; ) (3

ij?
Where:
N = Normal distribution
mean; = Generated from uniform distribution within the
interval (1, 99) and standard deviation
std, = Derived from Eq. 4

std;, = @ Xmean, 4

computational result of m machines and n jobs under
normal distribution with & = 0.1.

Uniform distribution: The uniform distribution represents
a situation where all outcomes m a range between a
minimum and maximum value since every outcome is
equally likely to occur. The processing time under tniform
distribution is generated based on the following:

p; = U(mean,-wid,,, mean; +wid,) (5)
Where:

U = Uniform distribution and width parameter
wid, = Derived from Eq. 6

wid, = @Xmean, (6)

where, © is level of variability. Table 2 shows the
computational result of m machines and n jobs under
uniform distribution with @ =0.1.

Exponential distribution: Exponential distribution will
represents the time between events m a poisson process.

The processing time under exponential distribution 1s
generated based on the following:

p, = EXP(r,) (7)
where, EXP is exponential distribution and:

A, = l/mean, (8)
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Table 2: The computational result of m machines and n jobs under unitform distribution with @ = 0.1

ABC Enhanced ABC
Size mxn Instance number Best Average Worst Best Average Worst
10%10 1 52.088 56.753 69.113 42512 52.241 63.191
2 51.251 61.108 73.701 33.359 45.144 51.108
3 50.962 54.106 59.861 43.062 48.244 51.321
4 56.120 60.410 63.771 34.431 39.737 46.862
5 40.939 48.549 53.634 26.436 33.438 40.931
15%10 6 65.398 69.753 72.982 38.727 43.852 51.369
7 92.016 95.378 99.564 66.918 70.572 75.954
8 76.712 80.644 84.874 24.912 31.738 42.854
9 67.644 73.843 81.845 19.687 27.746 31.874
10 93.219 102.747 113.685 59.482 64.854 71.758
15%15 11 93.310 95.358 97.978 88.858 90.945 94.345
12 86.790 89.304 93.683 43.755 49.435 57.564
13 104.426 108.453 116.435 92.047 97.987 99.430
14 61.483 64.653 69.456 61.433 64.563 68.657
15 102.505 106.566 110.345 91.680 94.546 96.950
2020 16 158.394 163.873 171.558 114.916 123.641 132.743
17 132.595 138.673 143.782 83.291 89.578 94.952
18 156.238 160.742 163.784 144.876 150.546 154.742
19 92.360 98.742 103.239 85.700 92.785 97.238
20 150.427 154.734 160.845 110.564 116.874 121.032
Table 3: The computational result of m machines and n jobs under exponential distribution
ABC Enhanced ABC
Size mxn Instance number Best Average Worst Best Average Worst
10%10 1 92.123 97.248 102.258 87.232 89.362 99.456
2 94.432 98.482 104.236 90.324 93.982 99.237
3 95.137 96.457 107.567 89.460 92.342 102.287
4 110.614 114.736 132.496 103.159 109.351 128.143
5 104.349 107.217 128.320 98.353 101.235 123.640
15%10 6 112.342 114.287 130.187 105.643 110.153 124.364
7 121.356 127.456 140.753 109.349 116.430 132.730
8 118157 124.287 139.563 106.237 119.415 123.437
9 103.262 107.454 127.361 96.325 102.737 122.173
10 117.224 119.856 132.452 112.768 112.613 128.281
15%15 11 120413 122.316 139.124 110.235 117.219 130.126
12 123.523 125.213 148.234 117.642 121.342 141.579
13 142349 144.453 164.543 134.321 138.548 161.328
14 129.743 131.238 159.438 121.467 126.634 153.129
15 137.294 139.314 156.312 126.238 132.416 149.253
20x20 16 167.423 169.246 203.125 148.234 149.453 176.237
17 158157 161.458 192.453 139.237 142.103 182.423
18 176.234 180.242 210.463 157.234 158.543 198.231
19 185.473 191.547 220.821 164.345 167.249 204.135
20 198364 201.261 227.632 180.275 182.347 218.127

Table 3 shows the computational result of m
machines and n jobs under exponential distribution.
Based on the results shown in all tables, it can be
observed that the total makespan value using enhanced
ABC is lesser than the total makespan value using ABC
algorithm under different distributions and under different
dimensions. So, it can be concluded that using enhanced
ABC, the completion time for each job under each
machine can be further reduced thus leading to an optimal
solution.

In addition, the Mann-Whitney U-test 18 conducted
for comparing the values in all tables statistically. Tt is
non-parametric test. Here the ABC and enhanced ABC

algorithms are run for 15 independent times on first ten
instances. Thennl =n2 =15 in the Mann-Whitney U-test.
The critical value of T iz 90 for two-tailed test of
Mann-Whitney U-test at the 0.05 significance level. The
critical wvalue of U i3 73 for two-tailed test of
Marm-Whitney U-test at the 0.01 significance level. To be
significant, the obtained U for first ten instances has to be
less than the available critical value of U. The obtained U
value 1s shown mn Table 4 based on ten nstances. So, the
obtained U 1s less than critical value U for both 0.05 and
0.01 sigmificance level. Based on statistical evaluation, the
enhanced ABC is significantly better than the normal
ABC algorithm.
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Table 4: Obtained u-value from mann-whitney u tests on the computational

results
Tnstance Normal distribution Uniform distribution Exponential
Size m*n number with © =0.1 with © = 0.1 distribution
10x10 1 48 49 31
2 43 44 27
3 45 44 28
4 42 43 24
5 49 40 20
15%10 6 46 49 18
7 42 45 17
8 49 42 17
9 46 40 15
10 43 39 13
CONCLUSION

In this study, an enhanced ABC is proposed for
getting the best schedule in scheduling system with
randomly generated processing times of mdividual jobs.
The computational results under different probability
distributions show that the makespan value of enhanced
ABC is better than the normal ABC. The best schedule is
used for minimizing the makespan value. Our future
research lies in experimenting and making use of the many
new evolutionary algorithms that have been proposed to
unprove the performance of the job scheduling algorithm
in a distributed systems environment.
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