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Abstract: The development of cloud and mobile teclmology leads to Mobile Cloud Computing (MCC). MCC
has become a major service structure now a days. The limitations in the battery power of mobile can be
overcome with the help of cloud technology which is having infinite amount of resources. Offloading is a
method for improving the capabilities of resource limited smartphones by augmenting with cloud resources.
The mobile applications can be partitioned mnto two in such a way that heavier parts are executed at the cloud
and the rest 13 executed m the mobile itself. This study designs a system for offloading and partitioning
architecture which will take into consideration of all the contextual information related to a mobile. The decision
of offloading and partitioning is taken considering the current connectivity, memory status, battery charge, etc.
The evaluation results reveal that this algorithm gives performance improvement, less overhead to the mobile
side and the prediction accuracy of context aware decision engine. A light weight partition algorithm 1s used
for splitting the application. The results shows significant improvement in time and energy consumed.
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INTRODUCTION

Cloud computing and mobile technologies are
getting increasingly popular. Mobile devices such as
smartphones and tablets are becoming more and are more
powerful and always connected to the internet with the
technologies like Wi-Fi/3G/4G. Even though, it is always
connected, the major limitation the mobile devices are
facing 1s stringent resource constraints such as memory,
battery lifetime, CPU power compared to the laptop and
desktop counterpart (Liu et al., 2013; Dinh et al., 2013).
Among all the above resources, the battery power 1s the
most critical one to be considered. If an application 1s to
be performed which is too resource intensive such as a
gaming application, the battery charge will drain off
quickly which may lead to poor Quality of Experience
(QoE).

The cloud can be used as an effective way of
augmenting the mobile for better performance. Offloading
1s a techmque through which the resource intensive tasks
can be migrated to the cloud for execution and the results
can be collected back to the mobile. But offloading is not
always beneficial. Tf the bandwidth is too low, it will take
a long time for the data transfer between the cloud and the
mobile and it will take a long time for completing the
offloading tasks than on the mobile itself. Hence, the

decision of offloading should be taken in such a way
that offloading will lead to significant performance
improvement. This study is dealing with a method which
15 considering all contextual mformation for an efficient
offloading decision making. Another contribution 1s the
application partitioning algorithm which will partition the
application into two, a local one and a remote one for
executing n the mobile and the cloud respectively. This
decision also considers the discommection factor.

Various studies have performed on how to make
“longer battery lifetime”. The resource limitation can be
improved by offloading the application to a resource rich
servers on the cloud making Mobile Cloud Computing
(MCC) (Kumar and L, 2010). Tn recent years, a number of
research has been taking place for offloading decision
making (Wolski et al., 2008, Liet al., 2015)and application
partitioming (L et al., 2015). The main factors to be
considered in offloading are the characteristics of the
mobile device, the wireless communication link properties,
the application demands and the user requirements. The
heterogeneous nature of the above factors make the
offloading a complex process to do. Even though enough
benefits are there on computational offleading, offloading
15 beneficial only if the saved computational time on
mobile 18 less than the computational delay in the clouds.
Most of the previous research makes the decision and
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partitioning engine in the mobile itself which will reduce
the efficiency of the offloading algorithm because of the
additional burden of this decision and partitiomng. In our
research, we are shifting all these functionalities to the
cloud so that no additional research is there in the
resource constrained mobile devices.

The contribution of our research can be summarized
as follows. We are introducing an architecture where a
light weight decision and partitioning algorithms are
selected to reduce the burden of the mobile devices. We
propose context aware algorithms so that the decision 1s
based on the current context. A partitioning algorithm
which partitions the application into local and remote for
execution.

Literature review: Recently, a number of researches are
going 1n the direction of offloading decision making and
application partitioning. Niu et al. (2014) proposed a
bandwidth adaptive partitioning for distributed execution
optimization of mobile applications approach which 1s
taking into consideration of the bandwidth changes and
making the partitions accordingly. A bandwidth adaptive
algorithm is proposed for this. This study uses static
partitioning and dynamic profiling for decision making.
Zhang et al. (2012) proposed a partitioning algorithm with
high accuracy. Tt is based on a call graph strategy and
finds a partitioning with minimum cost and minimum time
complexity. The code partitioning algorithm uses a DFS
and liner time searching algorithm.

Magurawalage et al. (2014) proposes an energy
efficient and network aware offloading algorithm for
mobile cloud computing. This research 1s based on a
middleware cloudlet layer. The mobile device
commumicate with the cloud using cellular network.
Because of the mobility there is a chance of network
discommection. If the comection to the cloudlet 1s lost
there 13 a provision to commect to a different cloudlet.
There is enough mechanism for data recovery too in case
of disconnection.

Lin et al. (2015) research 1s based on Tine and energy
aware computation offloading m handheld devices to
coprocessors and clouds. This study is considering both
time and energy while offloading which reduces the
response time and reduces energy consumption at the
same time. It 1s dealing with a ternary decision engine for
making the offloading decision.

Barbera and coauthors proposed a bandwidth and
energy costs of mobile cloud computing by 1s dealing
with mobile computation offloading in real life scenarios.
They consider two types of clones: the off-clone whose
intention is to support computation offloading and the

back-clone which comes to use when a restore of user’s
data and apps 18 needed. They attamn tlus through
measurements done on a real test bed of 11 Android
smartphones and an equal number of software clones
running on the Amazon ECZ public cloud Verbelen et al.
(2013) proposes a graph partittoning algorithms for
optimizing deployment
computing. This study is dealing with
partitioning for offloading to the cloud. The proposed

software in mobile cloud

software

approach 18 mimmizing the bandwidth requirements.
They are usmg a KL based refinement for graph
partitioning.

Ellouze et al. (2015) offloading architecture 1s one of
the latest research for offloading. This study considers
the current CPU load and State of Charge (SoC) of the
mobile phones as the parameters for offloading. A
decision is taken for offloading based on the delay for
offloading and Quality of Experience (QoE). The decision
parameters are the critical delay, energy balance and the
state of charge of battery. A chess game, speech
recognition and a virus scan application is considered and
the results are compared based on the energy gain and
rejection ratio.

In summary, there are lot of mteresting approaches to
various issues in offloading. However, all are dealing with
the calculations in the mobile which will make the energy
issue more critical. Comparing to the existing research, the
aim of our approach 1s to move all the calculation related
to the offloading decision making and partitioning to the
cloud so that no extra burden 1s given to the phones and
efficiently managing the power. The partitioning algorithm
which 1s presented in this study considers the network
disconnection factor which will increase the efficiency of
partitioning in dynamic environment like mobile.

MATERIALS AND METHODS

System architecture and problem formulation

Architecture: The architecture for decision making and
partitioning is as shown in Fig. 1. Once, the application
starts running the context information is collected by the
profiler module. The profiler module will collect all the
context information from the mobile and the network and
it will be stored in the context database. From the data in
the context database, a decision 1s taken whether to
offload the application to the cloud or not. If the decision
15 “yes”, the partitioming module will take care of the
application partitioning and scheduling. The mobile
device will be informed of the offloading and partitioning
decision and only those modules which are referred to as
local will be executed in the mobile, rest of the
applications modules will be executed on the cloud and
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Fig. 1: Architecture

the results are send back to the mobile. The interceptor
module is responsible for passing the parameter list,
return type, etc. If the offloading decision is yves and after
partitioning, it serializes all the parameters and sends to
the mterface. A corresponding mterface at the cloud
server receives all these parameters and pass this to the
application part. After the execution through the same
mterface the results are send back to the device. The
mnterface at the mobile side deserializes the result to build
the appropriate object and returns to the invoker of the
method. In case of a local execution or a remote server
failure, this architecture lets the application continue its
normal execution flow.

If an offloading decision and partitioning is made, all
the input parameters are collected for the method to be
offloaded and pack them into a byte array. The name of
the application, method, class, parameters to the methods,
etc are collected and packed. Once, this is ready the
interceptor will send this to the interface for passing to
the cloud server. The mterface communicates with the
cloud server to execute the application part with the input
parameters and gets the result back to the interceptor. The
interceptor gives this back to the invoked application and
method.

The profiler module dynamically collect the system
parameters and resource information such as network
bandwidth, latency, memory, CPU load both at mobile and
the cloud. The latency is calculated by sending an TCMP
packet to the cloud server. The CPU and memory

availability 1s calculated by examimng proc/stat and
proc/meminfo files of the android and the cloud server.
The data size is varied in the application. For example, for
the sorting application which 1s created, different array
sizes are given to simulate different data size.

On the cloud side, the same application is installed in
a virtual machine, so that, once a call 13 coming the same
method can be called at the server side. The cloud
receives the offloading request along with the parameters
through the interface. This initiates the corresponding
methods at run time from the provided mput parameters,
executes the method through the application interface and
after completion the results are send back to the device
through the interface.

Profiler: This is one of the main function of the
offloading prediction framework. The profiler will collect
all the context information from the mobile and the cloud
and store it is a context database. From the data in this
dataset a decision of offloading is taken. The profiler is a
background service which constantly collects the
following information:

+  Signal strength (B): The profiler periodically the
collects the bandwidth (signal strength) of Wi-Fi or
3G

s Data size to be transmitted (D)

¢+ Free Memory status of the mobile in percentage

(Mmemory)
*  CPU load on the mobile in percentage (M)
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Table 1: Measures of the applications

Parameters Loop Sorting Face detection Face recognition
FP 3 13 7 10

FN 5 15 6 9

TP 556 672 549 689

™ 452 356 464 330
Sensitivity 0.991087 0.978166 0.989189 0.987106
specificity 0.993407 0.96477 0.985138 0.970588
Accuracy 0.992126 0.973485 0.987329 0.981696
Precision 0.994633 0.981022 0.98741 0.985694
NPV 0.989059 0.959569 0.987234 0.973451
F-measure 0.992857 0.979592 0.988299 0.986399
Misclassification rate 0.007874 0.026515 0.012671 0.018304

*  Battery Charge (Batt)
»  Load at the cloud (C,,.)

The applications considered can be divided into four:

*  Low Computation with Small Data transfer (LCSD),
e.g., simple looping applications

+  Low Computation with Large Data transfer (L.CLD),
e.g., nested loop with multiplication and addition or
sorting an array of random numbers 1000 times

*  High Computation with Small Data transfer (HCSD),
e.g., face detection or simple color space conversion
from RGB to YUV

+  High Computation with Large Data transfer (HCLD),
e.g., face recognition

All applications in real world will be coming under
any of the four category. Android applications are
developed for collecting the sample dataset. For simple
loops and sorting the cloud part is implemented in the
google app engine and face detection and recognition
application a tomecat server is setup as cloud. Each
application considered 1s executed 1000 times to find the
local and remote execution time. If the local execution time
is less the application is marked as local (0) and if the
remote execution time is less, the application 18 marked as
remote. The data set is created in this manner and is used
as the training set for the classification. The sample
dataset 1s given in Table 1 for sorting application. The
data field represents the number of elements to be sorted.

Offloading decision engine: The main challenge
associated with an offloading model include whether the
offloading is beneficial and how to do offloading if it is
beneficial. A decision should be taken for offloading first
and then determine which portions to be offloaded.
However, existing research addressing these challenges
have some of the following limitations:

¢ Offloading is beneficial only if it takes less time and
energy for execution and it should consider all
dynamic factors which affects offloading. Always
offloading policy will deteriorate the system if the
context is not favorable

»  Linear regression model 13 a common method used
which can consider only limited number of
features

¢ The parameters affecting the offloading decision are
highly dynamic

Considering all these limitations offloading decision
can be considered as a classification problem which 1s
highly dynamic, low biased and tolerant to the noise.
Because this researchs on the mohile, the classifier
should be light weight, adaptive and should be self
learning gradually overtime and consumes less energy
and time.

The decision algorithm assesses a processing task
and determines the location for execution that would
maximize the energy conservation and minimizes the
execution time on the mobile device. The trade-offs
between local and remote execution influence the decision
made. In other words if local computation cost is
larger than commumnication cost, offloading 1s advised
and vice versa.

The decision engine selects the most energy saving
task execution option. For this, the context data is parsed
and processed for fine tuning the decision of local or
remote execution. Following parameters are considered for
decision making which is obtained from the context
database:

<B.D,M M

memory * Cpu’Batt’ Ccpu>

By comparing different classification algorithm the
conclusion 15 given as Fig. 2. The tume, energy and
accuracy varies slightly. Even though SVM and MLP has
higher accuracy ratio, the time and energy consumed for
regression 18 less. This study the classification technique
used 18 Multiple logistic regression. SVM 18 having high
computational burden which is not desirable for this
system because time and energy are constraints for our
mobile device. This disadvantage can be overcome by
LS-SVM which solves linear equations rather than
quadratic programming. The independent variables are the
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Fig. 2: a-c) Comparison between different classifiers

above tuple from the data set and the dependent variable
1s the decision of localremote execution. Since, the
logistic regression takes categorical data, it is suitable for
the offloading decision The two categories of decision
are Local or remote execution.

Another advantage of this regression analysis 1s it 1s
simple and less time and energy consuming. From the
previous data which is available in the data set, the
classifier will predict the fate of the current execution.
Figure 2a-c shows the energy, time and accuracy for
regression analysis compared to other classification and
prediction technicues. Compared to Threshold, SVM
(Support Vector Machine), MLP (Multilayer Perceptron)
and decision tree regression takes less time and less
energy. But the classification accuracy 1s slightly lower
than some of the methods. Because this should be
executed in the resource limited smartphones the
considerations are only time and energy as the major
factor  and regression
classification.

selected analysis  for
Based on collected information in the dataset , it
makes the decision either to offload the method or to
execute it locally. The classifier has a feedback channel as
well so that it can learn by itself through the entire
decision process. The following shows the measures for
the logistic regression analysis of the decision making.

Partitioning module: For partitioning the application is
converted into a Weighted Object Relational Graph

(WORG). If the decision taken in the decision or classifier
module is “yes” then a partitioning algorithm will take care
of the application division and the parts which i1s
classified as cloud will be executed in the cloud and local
will be executed in the smartphones.

In this method, the mobile application which is to be
offloaded 1s partitioned into two for local and remote
execution. First of all the application should be converted
into WORG. The partition strategy makes minimum data
transfer. So that the application 1s executed m a
distributed manner with minimum data transfer cost.

Weighted Object Relational Graph (WORG): The
application is converted into weighted object relational
graph using Soot Analysis frame work. Figure 3 shows a
sample WORG of a face recognition application. Each
class 1s represented as a circle node. An edge connecting
two nodes represents the communication between the
nodes corresponding to the data size which are to be
transferred. A static analysis 13 done on the source code
to make the WORG. The example shows four classes, face
preview, Image capture, face detection and face detection
library, where the face preview is the main class and from
that image capture and face detection are called. The edge
weights represent the communication weights between
the nodes.

Application partitioning algorithm: Let a graph G = (V, E)
be the application graph where G 1s the vertex and E 1s the
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Image Capture

Fig. 3: WORG

edges between the vertices. Let be the total number
of wvertices. The vertex set can be represented as
v = {v-||1€[1, 2, ..., m]}. The edge set can be represented
as E = {Cy-||1, je[l, 2, ..., m]} where C; represents the
communication cost between node V; and V., The
commumication cost can be represented as the data
transferred between node V, and V, while executing. Not
all vertex can be offloaded. Some of the vertices are device
dependent such as user interface, sensor related classes,
etc. Such vertices can be marked as non-movable prior to
execution. Let n be the number of vertices that can be
moved where n<m. Let A and B is a solution at a point
where the vertices are divided into <V ... V.. Where
Vooie Tepresents the nodes at the mobile side and V
represents nodes at the cloud side. The conditions
applied are there is no overlapping between the mobile
side and cloud side nodes and no nodes are left free (all
nodes should be include in any one of the partitions).
V atitd WV atosg a0 Vi 0 Vg = V.

Algorithm for application partitioning: A graph
partitioning algorithm 1s used to split the graph mto local
and remote partitions. A graph splitting algorithm
Kemighan-Lin is used to bi-partition the graph. The cost
which are used for partitioning is the edge weight of the
WORG which represents the commumication cost between
two nodes. The partitioning is done in such a way that
there will be minimum communication between the cloud
and the mobile. Since KL is one of the simplest graph
partitioning  algorithm, our resource  constramt
Smartphone can adapt this algorithm for partitioning the
applications.

Algorithm A; Graph partitioning algorithm:
Compute T =cost (A, B) of initial partition A, B
Repeat

Face Detectionl

15(13):2177-2185, 2016

Face Detection2

166

20

Face
DetectionlLib

Compute costs D(n) for all n in N
Unmark all nodes in G
While there are unmarked nodes
Find an unmarked pair (a, b) maximizing gain (a, b)
Mark a and b (but do not swap thern)
Update D(n) for all unmarked n as though a and b had been swapped
End while
Pick j maximizing Gain = sum;-; _; gain (i)
If Gain >0 then
Update A = A-{a,, ..., 3} U {b;, ..., by}
Update B =B-{b, ... b} U{a, .., a}
Update T =T-Gain
End if
Until Gain <=0

RESULTS AND DISCUSSION

The implementation of the decision making and
partitioming algorithms uses a Gionee V43 Smartphone
(Low end) and Samsung Galaxy S4 (high end). The server
1s installed on apache tomcat and Google app engine for
cloud for real time applications. The applications are
randomly executed and the time and energy are calculated.
Power tutor 1s used for measuring the power consumption
of the applications.

Real time application results: A Real time android
Application is developed for this experiment. This
application was using randomly by 5 members of the
University and the results are based on the average value
obtained from all these users. The applications taken mto
consideration are simple looping, sorting, face detection
and face recognition (Table 2).

The following figures shows the performance of our
approach compared to the no offloading and total
offloading scenario. Even though total offloading gives
almost equal performance as context aware for high
bandwidth, in the case of low bandwidth total offloading
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Table 2: Sample dataset generated

Mobile CPU Rattery charge Free memory on Bandwith Data [1-1000] Cloud load (%6)
load (%6) [Mcpu] (%) [Batt] mobile [My o] [B] [D] [Cepu] Execution
11 41 905 23 123 58 Remote
33 97 503 T4 1000 56 Remote
85 42 276 52 606 51 Remote
2 18 648 30 7ol 92 Tocal
10 30 137 39 826 44 Local
3 16 644 94 809 a4 Tocal
5 38 711 96 975 44 Tocal
9 52 994 55 339 71 Remote
89 78 270 27 119 33 Remote
11 50 438 88 102 94 Remote
43 10 934 53 917 15 Remote
61 57 546 58 346 85 Remote
28 87 415 67 111 23 Remote
6 23 228 75 145 63 Remote
19 95 536 73 277 25 Remote
60 70 195 59 977 91 Remote
20 42 311 26 790 12 Remote
8 94 674 77 549 78 Remote
6 33 395 76 749 75 Tocal
76 73 275 53 956 62 Remote
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Fig. 4: Execution time

gives poor performance than context aware offloading.
Figure 4 and 5 shows the preliminary results. Compared to
total offloading, the user’s response time with Context
Aware approach 1s reduced to 59.39, 9, 11.99 and 72.28%
of the response time 1if face detection, sorting, looping,
face recognition applications are always offloaded to the
server. Correspondingly, in Context Aware approach, the

energy consumed on the Smartphone is 57.21, 9.49, 25.80
and 90.01% of the energy consumed if these applications
are always offloaded.

On the other hand, compared to No offloading where
the applications are always executed locally, Context
aware approach also provides the user faster response
time for face detection and face recognition (34.70 and
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Fig. 5: Execution energy

81.32% of their local execution time, respectively). The
corresponding energy consumption 1s about 48.61 and
89.48%, respectively of the energy consumption when
they are executed locally. For looping, context aware
approach’s performance is similar to that of the local
execution and sorting for lower bandwidth local
execution 1s better than remote execution because of
large data transfer.

Among the evaluated applications, the context
aware approach does not perform well for looping
and sorting. This 1s because sorting 1s purely data
intensive and always has the best performance when
executing on device. Looping is neither data-nor
computation-intensive. Looking into the applications, the
execution time on the device 1s very small. Thus traiming
and classification time in context aware approach becomes
significant overhead compared to its actual execution time
(in terms of percentage). In general, data intensive tasks
will never get the benefits of offloading because of the
high data transfer between the cloud and the mobile.

CONCLUSION

The proposed architecture where the offloading 1s
based on the current context of the mobile device. In the
cloud the profiler is dealing with the collection of all the
context information. This will be given to the decision

malker for making the decision of offloading. With the help
of the energy model the decision 15 taken whether to
offload or not. If the decision 1s to offload the control 1s
given to the partitioning module. The partitioning module
with the help of the information from the profiler partitions
the applications and inform the mobile devices about the
partition and execution starts. With the numeric results
obtained there is improvement in the energy and time of
execution with this method Since the calculations are
totally done at the cloud side more improvements are
showing m the results compared to the existing
methods. In future more applications can be taken into
consideration. More real time applications can be used to
verify the results.
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