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Abstract: Outstanding bit error rate LDPC design in waterfall region and error floor region 1s one of the
challenging tasks for the past decade. In this study, we focus the design of LDPC encoder with low the error
floor and waterfall region of BER with minimum trapping set Scheduled Progressive Edge Growth (SPEG) LDPC
encoder mnovatively, the simulation result of density evolution and exit chart give the better convergence of

LDPC encoder, BER performance in error floor can controlled by mimmum trapping set and waterfall region
controlled by scheduled PEG LDPC encoder with (1000, 500) with code length (n) is <600. The girth of the SPEG
encoder 13 8. SPEG with minimum trapping set will perform well for short length code also and it converges

faster than the other PEG encoder.
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INTRODUCTION

LDPC codes are celebrated for its Shannon capacity
(Gallager, 1962) and easy mmplementation in ASIC and
FPGA. Former, the BER performance of LDPC code
depends only on decoding mechanism. But, now
implementation of proper encoder will increase the
performance of BER in both error floor and waterfall
region. Most of the studies (Richardson, 2003; Tian et al.,
2004, Zheng et al., 2010) are focus only on error floor
performance. LDPC ensembles design has lot techniques
such as Quasi Cyclic (QC) LPDC, prototype, PEG with
regular and irregular construction. QCLPDC construction
with easy implementation with shift register and its
permutation matrix (7Z) plays vital role in design of
QCLDPC. Prototype and lifting prototype mechanism
vields good ensemble construction with fast convergence
even better in wregular LDPC. But PEG techmique has lot
of flexibility of designing of ensembles in regular and
wregular with high girth. If the girth of the LDPC 1s
maximum then its stopping set size will decrease. Hence
PEG with large girth will elimmate the problem of stopping
set in the tanner graph. In this study, will enrich the
ensemble design of PEG LDPC by two ways. Scheduled
PEG directed towards fast convergence PEG mechanism
growth in the fashion of mimmum trapping set.

MATERIALS AND METHODS

PEG LDPC ensemble construction: LDPC ensembles
can be represented by tanner graph edges and nodes as

(V, C,E)ywhere V = {v, v,, .., v,} is the set of Variable
Nodes (VN), C = {v,, v,, ..., v,} 18 the set of Check Nodes
(CN) and E 15 the set of edges. The edges are placed in the
graph one by one, by processing one VIN socket at a time.
At the end of the process, a bisection is established
between the VN sockets and CN (Check Node) sockets.
This class of algorithms 1s known as the class of
Progressive Edge-Growth (PEG) algorithms. The PEG
algorithm is suited to construct the unstructured finite
length LDPC code with large girth.

The motivation behind the PEG algorithm s to tackle
the problem of increasing the girth of a Tammer graph by
maximizing the local girth of a VN whenever a new edge is
drawn from this VN toward the CN set. The PEG algorithm
works for any number of VNs and CNs and for any VN
degree distribution. Therefore, 1t 13 extremely flexible. For
an irregular VN degree profile, ordering the VINs according
to their degrees from the smallest to the largest and
processing the VNs according to this ordering is in
general beneficial. PEG algorithm node by node manner
summarized as follows.

Algorithm A; PEG Algorithm
Forj=1tondo
Fork=1tod;do
Determine C,; €E
Ci—{C,;| mindeg}
Add edge (V;C;,)to E
End for
End for
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where, D, the target sequence of the variable node
degrees sorted in non-decreasing order. We denote C
the set of check node whose distance V; is maximum. If
E,#¢, C, can be determined by expanding a sub graph
from variable node V, up to maximal length. Finally we
observe that check node degree distribution of the
constructed Tanner graph 1s almost umform. Fimte length
LDPC codes are characterized by a good compromise
between waterfall and error floor performances. But
finite length codes are not providing good error
Hence some modification is made in PEG
algorithm for good error floor without sacrificing waterfall

floor.

region.

Hence, the
degree-by-degree manner minimizing the number cycles
created (Ramamoorthy and Wesel, 2004) minimizing the

improvisation of PEG done by

Aapproximate Cycle Extrinsic (ACE) message degree PEG
produce LDPC code graphs with significantly larger
mirmeal stopping set compared with random construction
algorithm. Comparing the method and the mimmal
trapping set, performs good in error floor region. But,
finding trapping set from Tammer graph 1z NP hard
problem. We will discuss the modified PEG by ACE and
degree-by-degree with scheduling method.

Modified PEG algorithm: One of the key metrics that have
been successfully adopted to improve the original PEG 1s
referred as the Approximated Cycle Extrinsic message
degree (ACE) of cycles of Tanmer graph (Hu ef af., 2005).
The edges of VN are indexed from 0 to d -1 and the Kthe
edge of VN V, 1s dencted by e} where ke{0, ..., D1},
Moreover, the neighborhood of VNV, within the depth 1 is
denoted by N, Denoting by pl;, 1s the set of paths of
length 2 141 from V, to o€ ca);

Algorithm B; Modified PEG with ACE

It iN:%rux+1 :‘N].maxﬂ «m then
Set £ —(c v,

E g ( LY

Else

Determine the ACE of pgn:xﬂ

Do: 2 until lowest degree of pjlned
i

End

The above PEG with ACE algonithm gives better error
floor performance by giving penalty of waterfall region.
Therefore scheduled PEG degree-by-degree (Sharon and
Litsyn, 2008) is formed to overcome the tradeoff between
waterfall region and error floor region.

Scheduled progressive edge growth algorithm
proposed to improve the average inefficiency (V) of
uregular LDPC. The ensemble of wregular LDPC can be

represented by fraction on node and edge. Tet §, and v,
are the fraction on variable node and check node of
degree d. Let also A; and p, are the fraction of edges
connected to variable and check node of degree d. Where
T is the random permutation matrix:

A(x) :dexd’lp(x) zzpdxd’1 (D

S(X):;dedk(x):zhxd (2)

d

Code rate (1) 1-&2%% (3)

I

And coding inefficiency u{7m) = Eﬂ (4

It 1s assumed that girth of the graph goes infimty
with the codeword n which actually happen for almost all
the codes of irregular ensemble E(A, p). Tt follows the
decoding efficiency which can be expressed as 1-p./r also
goes to threshold value: nth=1-p.r which will referred as
wnefficiency threshold. The demsity evolution of the
irregular LDPC can be found by tracking the threshold
with the ensemble E (4, p). We consider the collection
of discrete variable node subset vP’c¢c V indexed by
tefl, 2, ..., Thand defl, 2, .., d..}:

Vgt) - Vd (5)

UJ (e ©
d=1t=1

and v{" the number of variable node m:

n= inff) (N

Algorithm C; Scheduled PEG
Fort=1 toT do
Ford=1to do
Fork=1toddo
For vjevl? do
Determine C,; cE
Ci~{C,;|minding}
Add edge (V,, () to E
End for
End for
End for
End for
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Different choice of scheduling subset {+/"} might
lead to codes with different performance. Even though the
set optimized the there should be the penalty for waterfall
region at some extent. SPEG providing good performance
with error floor and waterfall region compared with ACE
but exact calculation of scheduling subset 13 random
distribution so we focus the scheduled PEG with avoiding
minimal trapping set will yields good result m both
domain.

Minimal trapping set of irregular code: A trapping ser
for an iterative decoding algorithm i1s defined as a
non-empty set of variable nodes, that are not eventually
correct by the decoder []. A trapping set T iz called
an (a, b) trapping set if it contains a variable nodes and
the sub graph induced by these nodes has b odd degree
check nodes. T(a, b) is the subset of V, the set of variable
nodes in T are connected to T atleast twice.

The size of stopping set T is defined as the
cardimality of T. From the Fig. 1 set {v,, v;, v;} 1s a stoping
set. Tt shown in [] that the set of erasures which remains
when the iterarative erasure decoding algorithm stops 1s
equal to the unique maximum stopping set:

o
afigy| ! Arbi<n: (®)

oo Otherwise

where, n, 18 the number of degree-2 variable nodes. In
order to identify the non-selectable CNs a sub graph from

Fig. 1: Anuregular LDPC code

VN V; should be spread up to depth 2 []. The modification
on algorithm 1 with mimmal trapping set 1s remnforced by
further condition of non-select ability on the surviving
CNs in N~ By satisfying the Eq. 8 we can build PEG
avoidance of even small trapping set. This will provide
great performance in error floor region.

V proposed work speg with avoidance of small trapping
set: This study gives the idea of SPEG and small
trapping set condition. In SPEG the scheduled
parameter v\ calculation is trial and error problem. then it
is optimized by diffrential evolution method. But, still
calculation of scheduling parameter is exhaustive search,
due to that the performance of error floor falls with some
extent, hence this can be overcome by adapting the idea
of avoidance of mimmal strappmg set (Tian et af., 2004)
with SPEG will result outstanding performance i error
floor region without sacrificing of waterfall region. This
notion can be used for regular and irregular PEG LPDC
construction. PEG with minimal trapping set algorithm
applicable for BSC and AWGN also. Hence, the proposed
work gives the universal use of algorithm with various
family of PEG.

Algorithm D; SPEG with avoidance of minimal trapping

set:
Fort=1to T do
Ford=1to d,. do
Fork=1tod do
For Vie y{) do
Determine C;cE
It

Det.distance: d. (i, j) = |i-j| for i, jen+1
Along the selectable survival path jgimax
Cy~{Cy|minding} ?
Add edge (V,, () to E

}

Else

}

Reject the survival path pgbmsx
e = pphruae +1 K
3o 4
End for
End for
End for
End for

Algortihm 4 shows the degree-by-degree manner
scheduled progressive check node and variable node but
the elimination of trapping set from the small subset level
will reduced the untraceable erasure when decoding
process. Hence, the combination of these two techniques
together yields good error floor performance.

RESULTS AND DISCUSSION

Figure 2 shows that performance of random
LDPC ensemble (1024, 500) and decoded by Nommalized
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—&— random LDPC ensemble
—s— PEG{1024,500)
—&— modPEG(1024,500)

Fig. 2: BER vs Eb/NO for random T.DPCs ensemble and
PEG with modPEG

Min-Sum algorithm (NMS) with 50 iteration under AWGN
channel. Trregular (1024, 500) PEG ensemble generated
with the girth = 9 and check node fractional edge
polynomial 1s:

(x)=0.32660A°+0.11960A"+0.18393 A"+ 0.360882°

Modified PEG with ACE 1s also plotted. This
performance can also be analyzed in binary symmetric
channel also (Richter, 2006).

Tt is obvious to infer from the BER curve at 3.5 dB the
error region of mod-PEG falls and the error rate not
reducing more than that the expected one. Comparing PEG
and mod-PEG are performing very similar at water fall
region (1.e., 2-3.2 dB).

SPEG scheduling factor calculated by mutating the
parameter for 50 generation and 1s obtained in three level
of scheduling. SPEG irregular (1000, 500) generated with
the optimized scheduling factor and with fraction edge of
check node A(x) and girth also 9 using.

Density evolution Mutual mformation threshold is
0.918. From Fig. 3 SPEG provide good performance in
water fall region and error floor region. But, error floor get
saturated at 3 dB onward. Because the trapping set lead
to propagate the error m this level

SPEG avoidance of small trapping set use the Eq. 8 to
open the socket connection between check node to
variable node. From the beginming itself the process of
rejection node starts so the mimmum trapping set 1s
avoided Figure 3 comparing to SPEG and avoidance
trapping set good improvement of in the error floor up to
3.2 dB. So, the proposed work improvises the SPEG to
some extent.

102
—&— SPEG
i —&— SPEG-avoidance of trapping set
1074
b e
o 10
10°8
10710
1 15 2 25 3 35 4

Eb/NO

Fig. 3: BER vs Eb/No for SPEG (1000, 500) r =% N = 500.
With avoidance of minimal of trapping set

CONCLUSION

In this study, we have proposed the SPEG with
minimal trapping set. The proposed algorithm exploits the
work 1n two ways SPEG construction on ensemble with
scheduling factor which enhance the waterfall region of
BER Rejection path of PEG under the scheduling by
avoldance of mimmal trapping set. Option will reduce the
error of NMS decoding in distributed way. So, the LDPC
wregular ensemble (1000, 500) constructed with girth of 9
for the finite length N = 500; the simulation result show
that this method behaves very well in waterfall region
while also maintamn error floor. This proposed work
mnprovises the SPEG with 12%. Note that the error floor of
after 3.5-4 dB is increasing further error rate. This is due to
complete avoidance of trapping set 1s hardest task. Hence,
we focus still to improvise the error floor level as our
future research work.
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