Asian Journal of Information Technology 15 (13): 2133-2146, 2016

ISSN: 1682-3915
© Medwell Journals, 2016

DPHTT: A Novel Technique for Automatic Test Case
Selection Designed for Regression Testing

'G. Parkavi and °D. Jeya Mala
"Department of Regional Center Madurai, Anna University, Chennai, India
*Department of MCA, Thiagarajar College of Engineering, Madurai, Tamil Nadu, India

Abstract: Regression testing which 1s defined as re-testing technique to test the changes has been taken from
the modified or enhanced application in order to ensure the changes that do not impairment the accessible
behavior of the application. Modification of the applications mainly concentrates on three type’s namely
binding, process and interfaces. Test cases are chosen from a test suite to accomplish the regression testing
for a modified portion of an application selection and generation of the test cases are more important and also
they are tough processes n regression testing. In this research, a technique has been proposed to generate
the test cases automatically to test the modifications of various versions of BPEL (Business Process Execution
Language) dataset. Dynamic Processing Hierarchical Test Tree (DPHTT) is formed for both new and old
versions of composite services. They are changed for an application and also for the unchanged. The changes
are 1dentified by scrutimizing the control flow of both the trees formed aboveby using the BPEL dataset. The
performance of the proposed technique is analyzed and the experimental results show that the proposed method
performs well than the earlier technicues.

Key words: Regression testing, test case selection, BPEL, Dynamic Processing Hierarchical Test Tree

(DPHTT), maintenance

INTRODUCTION

Maintenance of the applications which are designed
earlier, 13 most expensive and important day by day. In for
the purpose of mamntaimning the phase of an application,
the application 1s altered according to the user
requirement. The modified part of the application along
with the enhancement is re-tested m order to verfy
that the modified parts of the application function
properly. The process of re-testing an application after
enhancement 1s called regression testing. It increases the
assurance to the stability of the program that 1s changed
by identifying errors in the program that is modified and
ensuring the operation of the application functions
perfectly. Though it can be carried out mamally using
programming methodologies, it 1s often taken through a
software testing tool. The tool helps the environment to
execute the test cases of the regression testing
automatically. Regression testing is an important part of
the acute programming. Figure 1 shows the flow of
regression testing.

Generally, this testing method is very expensive and
resource consuming process. It acts as the control
measure for mamntaining quality of the application.
Execution of regression technique always comprises the
following steps as mentioned in Fig. 2.

¢+ All the required test cases which are against the
applications are executed

+ Results of the test are recorded The results that
arestored are compared with the specimen file and the
differences are reported

To perform the regression testing, the test suites
which are already available can be reused. Test selection

Fig. 1: Flow of regression testing

Corresponding Author: G. Parkavi, Department of Regional Center Madurai, Anna University, Chennai, India
2133

Asian J. Inform. Technol., 15 (13): 2133-2146, 2016

i :
g) Testcase
&2 4

Test systems

ity

e
=

Results are compared with Specimen

Fig. 2: Execution of regression testing

techmque of regression testing helps in picking an
appropriate number of test cases from a set of the test
suite. All the test cases are verified for the modified
program. This technique is the simplest and the safest
technique for venfication. Though it 1s a simple and safest
techmique, it suffers from a drawback. That 1s, it 1s
practical only when the size of the test suite is small. Tf the
test suites are larger, then few of the test suites are
randomly chosen This random selection may not have
any relation with the customized program. An alternate
technique for this method is selected to modify the
modification revealing test cases. It executes the
customized segments of the program and the segments
that are affected by the modifications. The test cases
which help to identify the faults in the modified segments
of the program are called fault reveling test cases.
Unfortunately, the process of selection and generation of
test cases are always a daunting process.

In this research, the automatic generation and test
cases selection are focused for the given BPEL dataset.
The test cases selection can be done in four ways.
Imitially, the available data sets given arefully analyzed.
Then, the services that are presented in the data set are
selected to bind the information and to predict the
constraing to execute the services. Depending on the
services, a hierarchical tree 1s built for the process before
and after modifications. Immediately after constructing the
tree successfully, the defined and paved paths for the test
selection are compiled. All the paths which are defined
and paved for test case selection are compiled for the old
and new versions. At the third stage, the paths generated
for both versions of the data set are analyzed and they are
compared to find the alterations in the process and
binding. Besides the comparison, the message sequence
flow 1s also compared to find the mterface changes. This
evaluation decides the paths that are needed to scrutinize
through the test cases. After the comparison of paths of
both the trees, depending on the results of comparison

and mapping connection among the paths of the trees and
test suites, reusable test cases of different and sub
segment versions are recognized. Test cases that are
generated through the above steps are experimented with
various data sets. This experiment 13 performed to check
their efficiency in finding the faults. The empirical results
denote that the proposed technique has more expressive
capability to find and generate the test cases. It has been
designed and structured to identify three types of change
types (1.e., process, binding and mterface changes).

Literature review: Test case selection is the process of
selecting a subset of test cases from test suite that are
more suitable. The test cases are selected because theirr
execution is relevant to the changes between the old and
new versions of the file under testing. For selecting the
relevant test cases, various researcheshave been carried
and different approaches are proposed. The major
approaches utilized to choose the more appropriate
subset of the test cases are listed below:

» Integer programming approach
» Data flow approach

¢ Graph based approach

s Firewall approach

» Design based approach

Brief reviews of various techniques are discussed in
this study.

Integer programming approach: The new way of
selecting the test cases has been proposed by (Fischer
(1977). Integer programming was utilized by the authors to
represent the test case selection problem for testing the
FORTRAN program. Similarly, a methodology was
proposed related to the integer programming to find the
number of testing needed to ensuremaximum possible test
coverage of the test requirement (Lee and He, 1990).

2134

Asian J. Inform. Technol., 15 (13): 2133-2146, 2016

Simultaneously, the researchers minimized the number of
tests to be included in the test suite. In addition to that a
procedure was developed based on which the test cases
were determined whether it was to be eliminated or
permitted. Followed by the test selection, matrix which
denoted the test cases was constructed (i.e., sub-matrix
from the test suite). They were used for testing the
enhanced system.

In test case, the technique of reduction was handled.
Tt reduced the test suites only when they required
(1e., on-demand) (Hao et al., 2012). This strategygathered
the mformation of statistics of the capability of fault
detection as an integer linear programming problem at
various levels of individual statement of the difficulty of
the test suite diminution. Results showed the efficient
manner of reduction of different test suites. Mirarab et al.
(2012) proposed a novel methodology of selecting the
required number of test cases which already existed
process. This process created an Integer Programming
problem through coverage-based criteria and also
constraint relaxation to find the points that were close to
optimal solution. To achieve the final solution, the points
which were detected were compared together with the
help of retesting mechamsm pomts were combined by
voting mechanism.

Data flow approach: An mcremental testing system that
helps the testing during the maintenance stage 1s
described. The testing system is designed based on the
data-flow which shares the common techniques and
mformation along with the tools. In the code of program,
the Incremental tester, responses to the changes and it
reutilizes the analysis and the test cases from the previous
testing session. The results of the analysis were updated
incrementally. These results detect the areas where
retesting 1s required. From the updated information, the
test cases which are sufficient for the modified and
enhanced program are identified and they are executed to
find the faults. The researchers havealso extended the
above study. They incorporated the dependencies of data
which exist across the procedure boundaries (Harrold and
Soffa, 1989, 1988). Here, an interprocedural algorithm has
been proposed to select and execute the test cases for
data flow analysis. A hybnd technique has been
proposed by Wong et al. (1997) to identify a subset of all
the test cases which resultin different output behavior
of modified version. This techmque has combined
minimization, prioritization and minimization based
selection of test cases. Based on the test selection to the
researchers have utilized data flow analysis to approach
test the spreadsheet programs. This approach has been
named as What-You-See-Is-What-You-Test (WYSIWYT).

WYSIWYT is a framework. Whenever the modifications
are done 1n the cells of the spreadsheet by the user, ways
in it is used to collect and update the information in the
incremental fashion. This data flow analysis 1s possesses
easy applicability in the spreadsheet.

Graph based approach: Rothermel and Harrold (1993) have
proposed an algorithm to determine the test cases from
the existing test suite that exhibit the fault on the new
version. This algorithm has constructed a control
dependence graph for all the versions of the program. Tt
selects the test cases that are used to expose the faults in
the enhanced program without the prior knowledge of
modifications. Orso et al. (2004) the scholars have
presented a new test case selection technique that is
uniquely for the programs that are developed based on
the java which is precise, safe and also scaled well to large
systems. A tool has been proposed to inplement the
technique and the performance is studied on a set of test
suttes. The result analysis shows that the proposed
technique works effectively to find the subset of test
cases for the regression testing. An alternate solution 1s
found from the article (Marting and Vieira, 2005) where the
researchers have proposed a work to guide how to use
the information whenever a class is modified. They have
also assumed that the test suite used for the old version
can be reused for the new version. However, reusing of
test suites requires more effort in order to apply to new
version totally. In such a situation, the subset of test
suites 18 used and it requires additional mformation
besides the source code. The study presented by Li et al.
(2012) and I1 et al. (2002) would help to collect such extra
information by constructing directed graph from the
activity diagram which is used to capture the behavior of
reusable classes. Such graphs are named as Behavioral
Control Flow Graph (BCFG). The main strength of the
Graph based approach is its generic applicability.

Graph based techmiques can also be applied to test
the web services. But, it is a difficult challenge to
implement due to the distributed nature of the web
service. To overcome tlus challenge, JIG-based
methodology has been proposed by Lin et al. (2006). Tt is
applied after web services are transferred to a single JTVM
local application. Apart from this, a framework 15 designed
by Binkley (1997) to carry out the regression test case
selection in an efficient manner.

Firewall approach: In this approach (Leung and White,
1990), the scholars have built a firewall around the
sections or modules of the program where retesting is
needed. Here, for any modified section of the program, the
researchers have chosen the test cases that integrate
modules and they are modified. This firewall approach 1s

2135

Asian J. Inform. Technol., 15 (13): 2133-2146, 2016

also applied in object-oriented programming (White and
Robinson, 2004) and in GUIs. They are presented in
(White et al., 2003). Zheng et af. (2007) have successfully
implemented the firewall technique based on an
information extracted from the deployed binary code.
In addition firewall technique has been applied to a
large-scale banking system in Skoglund and Rimeson.

Design based approach: Briand et al (2009) have
presented a techmque and a tool to support test case
selection for regression testing from the test suites
based on change analysis in Object-Oriented design. An
assumption 15 made that the UML 1s designed and a
formal mapping is proposed between design changes and
test cases of the regression testing. Which 1s classified
into three categories.

Other approaches: A new event-driven paradigm 1s
presented by Kumar and Goel (2012) where the test cases
are automatically compared. This event-driven technique
is based on the creation of dependencies among the event
as a graph. The graph 1s drawn for all the versions. Then
it 18 converted to the trees. The trees are compared to
detect the potentially affected nodes that enable the test
case selection. Based on the hierarchical slicing method,
a new technique has been proposed by Tao ef al. (2010).
This method has improved the precision of regression test
selection.

MATERIALS AND METHODS
In this study, a technique, that drives the test case
selection for regression testing is presented. Three major

steps are followed after selecting the services to select the
test cases. The tree steps are as follows:

Partner Links Correlation Sets

Fig. 3: General construction of DPHTT

Fault Handlers

¢ Tree construction: it is the process of constructing
the hierarchical tree namely Dynamic Processing
Hierarchical Test Tree (DPHTT) for the different
versions of BPEL data set (lLe., versions represent
the data set before and after enhancement of the
application’s composite services)

¢+ Path computation: from the tree constructed in
step 1, the path which exists among the sequence of
message 15 detected and 1t 1s computed to find the
modifications

¢ Path comparison: this step is proceeded to find the
modifications n the process, interface and binding

From the comparison of path between the old and
new versions of the BPEL dataset, the modification can be
found. Once the modifications, the test cases, that are
required to test the process, are identified. Figure 3
presents the overall structure of the proposed study. The
algorithm 1 shows the procedure to generate the test
cases for the detection of changes in the new version.
The detailed explanations of the above steps are given in
the following sub sections.

Tree construction: From the BPEL data set, a DPHTT
which represents all the processes such as partner likes
services, variable, etc., 15 constructed. The DPHTT which
is built is utilized to explain the characteristic behavior of
the composite services present in the BPEL data set. The
DPHTTcomprises a root node. It represents the process
name of the BPEL file. For the root node, child node are
DPHT Tcomprises a root node. Tt represents the process
name of the BPEL file. For the root node, child node are
framed. They provide the message of the sub-tags of the
process tag. All the sub-tags of the process tag waill
present the degree one. These child nodes are denoted as
categories and by using those the comparisons are done.

2136

Asian J. Inform. Technol., 15 (13): 2133-2146, 2016

Predu:t
CO"FI:r.;untr

Service
Selecti P Peth
] < ath COoOnstructj
. Cll'hpu:atlnﬁ on
MPssage
SPQUEnce

Pro:ess

e —— Change
Path

g;ndlng

1ange

_ Binding
e ——
Tree
COf‘ls-trl_u':t:icxn

Test Case
Seiection

IntErfaCP
Change

Fig. 4: Overall flow of proposed method

- <process name="AtmFrontEnd" targetNamespace="http://jbpm.org/examples/atm”
xmins:tns="http://jbpm.org/examples/atm” xmlns.atm="http://jbpm.org/examples/atm’
xmins:tic="http://jbpm.org/examples/ticket” xmins:acc="http://jbpm.org/exampl es/account"
xmlns:xsd="http://www.w3.0rg/2001/XML Schema' xmlns="http://schemas.xmlsoap.org/ws/2003/03/business-
process/">
- <partnerLinks>
<partnerLink name="atm" partnerLinkType="tns:Atm-Front" myRole="FrontEnd" />
<partnerLink name="ticket" partnerLinkType="tns:Front-Ticket" partnerRole="Ticketlssuer" />
<partnerLink name="account" partnerLinkType="tns:Front-Account" partnerRole="AccountSystem" />
</partnerLinks>
- <variables>
<variablename="ticketMsg" messageType="tic:ticketM essage" />
<variablename="connected" type="xsd:boolean" />
<variablename="logged" type="xsd:boolean" />
</variables>
- <correlationSets>
<correlationSet name="atmlnteraction" properties="tns:ticketld" />
</correlationSets>
- <sequence name="MainSeq">
+ <scope name="TicketCreationUnit">

+ <assign name="InitializeStatus'>
+ <scope name="ConnectionUnit">

</sequence>
</process>

Correlation Set
atmlnteraction

Sequence name

TicketCreationUnit ConnectionUnit

Fig. 5. Example of ATM BPEL file (version 1.0)

Similarly, the sub-tags of the BPEL file are arranged Algorithm 1; Path computation:
to form a DPHTT. Figure 4 represents the general DPHTT. 1 begin

2 Input path[count]: current Tree path to be processed;
The tree must be structured for both the old and new 3 Ingut];m: Em.ren]t Tree element fo be pmcfssed;

versions of the BPEL files. 4 Output path[count]: all Tree s to be generated,
: : : : T 5 Variable op[mcount]: all Tree out-process s generated;
With 1:_hlS process, tl.le information binding and & Process(path[count], em)
the constraints are determined. They are added to the 7 /ftermination condition of recursion
DPHTT and they are helpful for the path computation gig“mq”“ then

and comparison process. A sample DPHTT tree 10 end if
construction for BPEL file of ATM for version 11 /i/fﬂﬂ-CﬂtegDWZdSN then ol e that i defined b
10 is presented in Fig. 5 along with the source 1liikSSN- Service Node — Created for partner service that 15 defined by partner

code. 13 path[count]=path[count]? {em};

2137

Asian J. Inform. Technol., 15 (13): 2133-2146, 2016

14 for each emi ? em.oldurce or em.target do
15 if emi.category =— ME then

16 /ME — Message Edge for message exchange between BPEL and WSDL
interface

17 mcount ++;

18 create a new TREE out-process op[mcount];
19endif

20 //create out-process from ME

21 CreateOP{op[mcount], emi);

22 path[count]=path[count]? op[mcount];

23 end for

24 for each emi ? em.target do

25 it emi.category! =ME then

26 Process(path[count], emi);

27 end if

28 end for

29 else it erm.category =TN then

30 /IN — Interaction Node — created for basic activities which interact with
the partner service.

31 path[count]=path[count]? {em}

32 for each emi ? em.oldurce do

33 if emi /2 path[count]

34 pTermp=path[count];

35ifi> 1 then

36 count++;

37 create a new TREE path| count];

38 Path| count]=pTermp;

39end if

40 end if

41 path[count]=path[count]? {emi};

42 Process(path[count], ermni)

43 end for

44 else if em.category—default then

45 path[count]=path[count]? {em}

46 Process(path[count], em.target);

47 end if

48 end

Algorithm 2; path comparison:

1 begin

2 // comparioldn is to find the affected by process change and binding change
3 // Process[i] — Process version 1, Process [i+1] — Process version 2

4 Tnput Process|i], Process [i+1]: set of s to be compared;

5 Input No[i], No [i+1]: set of elements in Process[i] and Process[i+1];
6 Output Process [i+1] old: set of old paths;

7 Output Process [i+1] new: set of new paths;

8 Cormparioldn (Process[i], Process[i+1], No[i], No[i+1])

9 Let Nall =No[i] ?No [T+1]

10 for each element e? Null do

11 if e /2 Noli] ? e? No[i+1] then

12No [i+1] add=No[i+1]add? {e}

13 if n.category=—FEN) then

14 //EN — Exclusive Node — created for the activities that contain conditional
/fbehavior.

15 No [i+1] _add=No[i+1] _add? {e}

16 endif

17 if n.category—=8N && n.category—IN) then

18 No [i+1] _add=No[i+1] _add? {e}

19 end if

20 else it e? Noi]? e /2 No[i+1] then

21 Noi] Del=Noa[i] del? {e}

22 end if

23 end for

24 for each element n_add? No[i+1] add do

25 for each element of Process[i+1]? Process[i+1] do

26 if n_add? Process[i+1] then

27 Process [i+1] new =Process [i+1] new ? {Process [I+1]}

28 end if

29 end for

30 end for

31 Process [i+1] old =Process [i+1] s ‘Process[i+1new

32 for each Process[i]? Process[i] do

33 for each No[i]del? No[i]ldel do

34 if No[i]del? Process[i] then

35 NProcess[i] Del=NProcess[i] del? {No[i]del}

36endif

37 end for

38 if Process[i+1]=(Process[i]-NProcess[i]del)? Process[i+1]
39 Process [i+1] new =Process [i+1] new ? {Process [T+1]}
40 end if

41 end for

42 Retum Process [i+1] old, Process [i+1] new

43 end

Path computation: Path computation is the process which
calculates the number of process operations, message
operations, mvoke operations and conditions. From the
DPHTT tree constructed in step one is used for the
computation. From the root node, 1e., from the process
node, the traversal starts along all the nodes that are
present at degree one that 1s the cluld of the root node
and through which all the categories presented will be
found out. The partner link istraverses and the total
number of partner links 1s equal to the number of children
the partner link node contains. To help tree traversal, a
service node 1s created. It keeps track the nodes that are
still to be traversed Similarly, the variable, correlation
sets and all other attributes present in the DPHTT are
computed. Operations and the conditions
calculated with the help of traversing sequence node. The

can be

corresponding child nodes which provide the total
mumber of conditions, process, invoke operations and
message sequence are available, present in BPEL file. If
there 1s no child node for the root node, it 1s clear that
there is no category for that process. The path calculation
process 18 done for both the old and new versions of
BPEL file. If Fig. 5 is considered in which the path
computation 1s carried out as follows:

Path computation:

» Partner links: 3

*» Varables: 3

+ Correlation: 1

» Sequence: 2 (this contains further sub tags that are
not shown in Fig. 5 on expansion of the source code
DPHTT tree also grows)

Message sequence: To find the modified portion of the
BPEL file, path comparison is utilized. It detects the
process, binding and interface change. Process change
can be identified by using the BPFL file it self. At the

2138

Asian J. Inform. Technol., 15 (13): 2133-2146, 2016

-<wsdl name="ATM WSDL INTERFACE">

-<defimitions targetNamespace="DPHT Tp://jbpm.org/examples/ticket”
xmlns: tns="DPHTTp://jbpm.org/examples/ticket"
xmlns: xsd="DPHT Tp://www.w3.0rg/2001/XMLSchema"
xmlns="DPHT Tp://schemas.xmlsoap.org/wsdl/">
+<message name="ticketRequest">
+<message name="ticketMessage">
+<portType name="TicketIssuer">

</definitions>

-<definitions targetNamespace="DPHTTp://jbpm.org/examples/account”
xmlns:tns="DPHTTp://jbpm.org/examples/account” xmlns:xsd="DPHTT
pwww. w3 org/2001 XML Schema” xmlns="DPHT Tp://schemas.xmlsoap
org/wsdl/"=>

+<types>

+<message name="customerMessage">

+<message name="accessMessage">
+<message name="balanceMessage">
+<message name="accountOperation">

+<portType name="AccountSystem">

</definitions>

-<definitions targetNamespace="DPHT Tp:/jbpm.org/examples/atm"
xmlns: tns="DPHTTp://jbpm.org/examples/atm"
xmlns: tic="DPHTTp://jbpm.org/examples/ticket"
xmlnsg:ace="DPHTTp://jbpm.org/examples/account”
xmlns: xsd="DPHT Tp://www.w3.0rg/2001/XMLSchema"
xmlns="DPHTTp: /schemas xmlsoap.org/wsdl/">

<import namespace="DPHT Tp://jbpm.org/examples/ticket"
location="ticket.wsdl" /=
<import namespace="DPHTTp://jbpm.org/examples/account”

location="account. wsdl" />

+<types>

<message name="connectRequest" />
+<message name="logOnRequest">
<message name="logOnResponse" />
+<message name="statusResponse">
+<message name="balanceChange">
+<message name="
+<message name="1nsufficientfunds">
+<portType name="FrontEnd">
</definitions>

<fwsdl>

unauthorizedAccess">

Fig. 6: Message sequences in ATM WSDL file (version 1.0)

same time, BPEL file 1s not sufficient to detect the binding
and the interface change. In BPEL files processes that
interact with the partner links can be found and whose
exposed interfaces are found in the corresponding WSDT,
file. To detect the interactive behavior, the order in which
the mput and output messages are exchanged 13 used
depending on the input and output variables of BPEL

file. Therefore, 1t 1s mandatory to invoke the WSDL file
which corresponds to the BPEL file and 1t 1s taken mn the
present work. Likewise, the message sequence is
identified in the corresponding WSDIL file. Figuer 6
denotes the portion of the ATM WSDL that corresponds
to the ATM BPEL file. It 1s chosen and it contains
the message sequences. These message sequences

2139

Asian J. Inform. Technol., 15 (13): 2133-2146, 2016

Fig. 7: The DPHTT tree representation of message sequence

Kprocess name="AtmFrontEnd"
targetNamespace="http://jbpm.org/examples/atm"

xmins:tns="http://jbpm.org/examples/atm’
xmins:atm="http://jbpm.org/examples/atm"
xmins:tic="http://jbpm.org/examples/ticket"
xmins:acc="http://jbpm.org/examples/account"”
xmins:xsd="http://www.w3.0rg/2001/XMLSchema"

process/">

+ <partnerLinks>

+ <variables>

+ <correlationSets>

+ <sequence name="MainSeq">

\<kprocess>

xmins="http://schemas.xmlsoap.org/ws/2003/03/business-

Version 1.0

process name
AtmFrontEnd
= //

sequence

correlation -
Sets

Fig. 8: BPEL file of ATM (version 1.0)

correspond to the function call m WSDL files. These
message sequences are also tracked and drawn in the
DPHTT tree. The subtree of DPHT T which contains only
the message sequence 1s shown in Fig. 7.

Path comparison

Process change: This type of change shows the changes
n the mnternal structure of the BPEL file. Internal changes
of the BPEL file happen as a result of insertion or change
of services depending on the user’s functional need.
Changes which occur mn the execution sequence and
activities are treated as process change. Changes in the
process can be found with the assistance of the size of
the BPEL file. The process change is expressed either by
replacement or by increasing the size of the process.

Binding change: Modifications will after the addresses of
the partner links in the functions of the BPEL file. This
change will become the reason for the variations while
choosing different candidate service and it will replace the

original one that 1s not available now. Hence, these types
of changes can be deleted by using the message
sequence change.

Interface change: Similar to the binding change, the
interface change can be found using the changes in
message sequence and it is determined through the
DPHTT of WSDL file. This type of change comprises the
composite and partner service interface changes. These
interfaces contain the explanations of the messages,
ports, variables and operations. In most of the cases, the
interface modifications are considered to improve the
ability of the program and the readability of the WSDL
files. These modifications of the partner link will indicate
the service integrator to change the comresponding
interface.

For example, the ATM examples with changes are
considered they exist between two different versions of
BPEL files along with their corresponding interface
changes m the WSDL file. Figure 8 and 9 shows the

2140

Asian J. Inform. Technol., 15 (13): 2133-2146, 2016

- <process name="AtmFrontEnd"
targetNamespace="http://jbpm.org/examples/atm"
xmins:tns="http://jbpm.org/examples/atm"
xmins:atm="http://jbpm.org/examples/atm"
xmins:tic="http://jbpm.org/examples/ticket"
xmins:acc="http://jbpm.org/examples/account”
xmins:xsd="http://www.w3.0rg/2001/XMLSchema"

+ <partnerLinks>

+ <variables>

+ <correlationSets>

+ <if name="Personalization">

+ <else name="Personalization">

+ <sequence name="MainSeq">
</process>

partnerLink
s

xmins="http://schemas.xmlsoap.org/ws/2003/03/business-process/">

variables

correlatio
nSets

sequence

Version 1.1

Fig. 9: BPEL file of ATM (version1.1)

- <wsdl name="ATM WSDL INTERFACE">

- <definitions targetNamespace="http://jbpm.org/examples/ticket"

xmins:tns="http://jbpm.org/examples/ticket"
xmlins:xsd="http://www.w3.0rg/2001/XMLSchema"
xmlns="http://schemas.xmlsoap.org/wsdl/">
+ <message name="ticketRequest">
+ <message name="ticketMessage">
+ <portType name="Ticketlssuer">
</definitions>

+ <definitions targetNamespace="http://jbpm.org/examples/account”

xmins:tns="http://jbpm.org/examples/account"
xmlins:xsd="http://www.w3.0rg/2001/XMLSchema"
xmlns="http://schemas.xmlsoap.org/wsdl/">

+ <definitions targetNamespace="http://jbpm.org/examples/atm”

xmlins:tns="http://jbpm.org/examples/atm"
xmins:tic="http://jbpm.org/examples/ticket"
xmlins:acc="http://jbpm.org/examples/account™
xmlins:xsd="http://www.w3.0rg/2001/XMLSchema"
xmins="http://schemas.xmlsoap.org/wsdl|/">

<part name="detail" element="tns:insufficientFunds" />

</message>

</wsdl>

definitio

Version 1.0

<wsdl name="ATM WSDL INTERFACE">

xmlins:tns="http://jbpm.org/examples/ticket"
xmins:xsd="http://www.w3.0rg/2001/XMLSchema"
xmins="http://schemas.xmlsoap.org/wsdl/">

<message name="docketRequest">

<message name="docketResponse">

<portType name="Docketlssuer">

</definitions>

+ o+ o+

+

xmlIns:tns="http://jbpm.org/examples/account"’
xmlns:xsd="http://www.w3.0rg/2001/XMLSchema"
xmins="http://schemas.xmlsoap.org/wsdl/">

+

xmlins:tns="http://jbpm.org/examples/atm"

xmlns:tic="http://jbpm.org/examples/ticket"

xmlns:acc="http://jbpm.org/examples/account"’

xmlns:xsd="http://www.w3.0rg/2001/XMLSchema"

xmins="http://schemas.xmlsoap.org/wsdl/">
</wsdl>

<definitions targetNamespace="http://jbpm.org/examples/ticket"

<definitions targetNamespace="http://jbpm.org/examples/account™

<definitions targetNamespace="http://jbpm.org/examples/atm"

definitio

Version 1.1

Fig. 10: Modifications n WSDL file of ATM

difference in the two BPEL files of ATM. The encircled
portion in Fig. 8 expresses the enhancement that is taken
inversion 1.1. Similar changes can be carried out in all the
programs through expanding the sub tags of the BPEL file
and thereby DPHTT tree also grows. The comparison can
be found through traversing the tree along the path of the
sub trees. Here, only degrees zero and one of DPHTT are

presented. Similarly has to be expanded the tree. Tn similar
manner, the WSDL files can be compared to detect the
interface and binding changes. Figure 10 denotes the
modifications m the WSDL file.

Test case selection: The changes which are identified in
the new versions of the BPEL files have to be examined to

2141

Asian J. Inform. Technol., 15 (13): 2133-2146, 2016

Test case selection for service
using HTT

Test case selection for service
using XBFG

Time taken for test case selection

m Time (in Milliseconds)

Fig. 11: Time taken for tests case selection

make sure that they do not affect the fimdamental
functionalities. The test can be performed by using the
test cases. The selection of test cases 15 the challenging
task for testing the modified part. For choosing the test
cases, the modified path in the DPHTT tree is computed.
The modified path consists of two paths namely:

+ (Old path
* New path

Old pathrefers the test cases that alreadyexist for the
baseline version andit is selected in order to re-run. In the
case of new path, new test cases should be generated.
Both the paths are analyzed to decrease the number of
test cases required to test the modified part of the
program. Since, the test cases can be applied for the
baseline version, they can be adopted for the new path as
well. In addition to the common test cases, new test cases
can also be added for regression testing.

A simple case study: For ATM, all DPHTT paths and
corresponding message sequences of v1.0 and v2.0 are
built. Three types of changes which are presented in the
enhanced version are detected and manipulated. From
section 3, the process change, binding change and
interface changes are found. The process changes are
detected among the two versions v1.0 and v2.0 of the
ATM BPEL files, when the number of elements present in
the version v2.0 is either greater than or not equal to the
version v1.0. The process changes can be expressed
mathematically as follows:

ps[1.0] =el Ue2ue3 e
ps[2.0] =el enz el ueduesed

Condition: ps[1.0] = ps[2.0] Hps[l.O] <ps[2.0]

From Fig. 8 and 9, we can find the number of elements
can be found for version v1.0 and v2.0, respectively as
follows:

ps[1.0] = partnerlink Variables . Cotrelation set L sequence
ps[2.0] = partnerlink . Variables . Correlationset L

if welse Usequence

From the above equation, it is evident that the
number of element present in the ps (1.0) 15 lesser than the
ps (2.0). Therefore, it shows that ps (1.0) = ps (2.0)as well
as ps (1.0)<ps (2.0). This implicitly expresses the existence
of process change in the modified version of 1.0 (ATM’s
BPEL file), i.e. version 2.0. The elements that are taken for
example are only the tags and are immediate children of
the root node. Likewise, the binding change occurs, when
changes in the services that are bind with the process
change, exist. Mathematically the binding chance can be
explained as below:

bs[1.0] = {bLb2,b3,b4,b5}
bs[2.0] © {nbl,nb2, nb3,nb4,nb5}
Condition: bs[1.0] = bs[2.0]

Figure 11 shows the binding changes that occur in
both the versions of ATM BPEL file. It 13 evident from
Fig. 11 that the binding changes occur with the
modifications m the service name. The service name of
ticket n v1.0 13 modified as docket in v2.0. The example
presented in Fig. 11 is a part of BPEL file and it is not for
the entire process:

bs[1.0] = {atm, ticket,account |
bs[2.0] o {atm, ticket, account }
= bs[1.0] £ bs[2.0]

Similar to the process and binding change, interface
change can also be detected. To find this, the messages

2142

Asian J. Inform. Technol., 15 (13): 2133-2146, 2016

<partnerLinks>
- <!-- relationship with the ATM
>

- <!-- relationship with the ticket issuer
>

>

- <!-- relationship with the account system
->

partnerRole="AccountSystem" />
</partnerLinks>

version 1

<partnerLink name="atm" partnerLinkType="tns.Atm-Front" myRole="FrontEnd" />

<partnerLink name="ticket" partnerLinkType="tns:Front-Ticket" partnerRole="Ticketl ssuer"

<partnerLink name="account" partnerLinkType="tns:Front-Account"

<partnerLinks>
- <!-- relationship with the ATM
>

- <!-- relationship with the ticket issuer
>

>

- <!-- relationship with the account system
>

partnerRole="AccountSystem" />
</partnerLinks>

version 2

<partnerLink name="atm" partnerLinkType="tns.Atm-Front" myRole="FrontEnd" />

<partnerLink name="docket" partnerLinkType="tns.Front-Ticket" partnerRole="Docketlssuer"

<partnerLink name="account" partnerLinkType="tns:Front-Account"

Fig. 12: Binding change

which are received and sent to the WSDL process are
considered. The interface change can be mathematically
represented as follows:

is[1.0] = {mLm2,m3,m4,m5}
is[2.0] > {um1,nm2,nm3,nm4,nm5}

Condition: si[1.0] = is[2.0]

Congider Fig. 12 and 13. Tt denotes that the message
used i v1.0 15 changed i v2.0. That is shown precisely
as below:

is[1.0] = {ticket Request, ticketMassage |
is[2.0] o {docket request,docket response}
=si[1.0] #is[2.0]

The name of the changes and its location that are
presented m the enhanced version are presented in the
Table 1. Path details of DPHTT are show in Table 2. The
DPHTT path is shown in Table 2 for two different
versions of ATM files. The

numbers present in

Table 1: Changes and its location

Changes type Location Enhancement result
Process chang BPEL Process chang occurs
Binding change BPEL Binding change occurs
Interface change WSDL Interface change occurs

Table 2: DPHTT path

Version HTT path

P1(1.0) 3,5 7,11, 2,4, 6,10, 17, 23, 25, 12, 13, 14, 30, 27, 34, 35,
28, 29,40, 22,19, 31, 32, 37, 41,45, 46, 2, 1, 9, 15, 47, 22,
8, 16,43, 44, 38

3,5 7,11, 2,4, 6,10, 17, 23, 25, 12, 13, 14, 30, 27, 34, 35,
28, 29, 40, 22, 19, 31, 32, 37, 41, 45, 46, 2, 1, 9, 15, 47, 22,
8, 16,43, 44, 38

3,5, 7,11, 2, 4, 6, 54, 49, 52, 57, 60, 51, 0, 17, 23, 25, 12,
13, 14, 30, 27, 34, 35, 28, 29, 40, 22, 19, 31, 32, 37, 41, 45,
46,2, 1, 9, 15, 47, 22, 8, 16, 43, 52, 64, 53, 55, 68, 66, 39,
44,38

3,5 7,11, 2, 4, 6, 54, 49, 52, 51, 60, 57, 10, 17, 23, 25,12,
13, 30, 14, 34, 27, 35, 28, 29, 40, 22, 19, 31, 32, 37, 41, 45,
46, 2,1, 47, 22, 22, 9, 15, 8, 16, 43, 52, 64, 53, 55, 68, 66,
50, 44, 38,

3,5 7,11, 2, 4, 6, 54, 49, 52, 51, 60, 57, 56, 10, 17, 23, 25,
12, 13, 30, 14, 34, 27, 35, 28, 29, 40, 22, 19, 31, 32, 37, 41,
45, 46, 21, 47, 22,9, 15, 8, 16, 43, 52, 64, 53, 35, 59, 68, 66,
44, 38

P2(L.0)

P1{2.0)

P2(2.0)

P3(2.0)

the table represent the node number to which an element
of the files 1s presented 1 the DPHTT. The highlighted
part shows the nodes path at which the changes occur.

2143

Asian J. Inform. Technol., 15 (13): 2133-2146, 2016

<message name="ticketRequest">
</message>
<message name="ticketM essage' >
<part name="ticketNo" type="xsd:int" />

</message>
<portType name="Ticketlssuer">

version 1

<documentation>ticket creation request</documentation>

<documentation>ticket number wrapper</documentation>

<message hame="docketRequest">
</message>
<message name="docketResponse'>

<part name="ticketNo" type="xsd:int" />
</message>

<portType name="Docket| ssuer">

version 2

<documentation>ticket creation request</documentation>

<documentation>ticket number wrapper</documentation>

Fig. 13: Interface change
RESULTS AND DISCUSSION

To verify the proposed study, two different versions
of BPEL files of ATM are taken. For both the versions of
BPEL file, DPHTT tree is builtand from which the path 1s
computed and compared to detect the modifications such
as process, mterface and binding. Once the modifications
are found, the test cases which are suitable to test the
changed or enhanced portion of the application are
chosen in order to provide the confidence that the
modified portion does not affect the other parts of the
application. Efficiency of the proposed worl is analyzed
in determining the test cases is by using processing time,
time taken for selecting the test cases and time taken to
detect the faults using the selected test cases as major
performance metric. The proposed method is compared
with the existing graph based on technique name by
XBFG. The analysis and their results are expressed in the
following sub-section.

Time taken for test case selection: Test case selection
requires considerable amount of time. Therefore, this
metric acts as a major role in deciding the time factor for
the algorithms. Figure 12 and 13 shows that the time taken
for selecting the test cases through the graph based
algonthm 1s more than the tree based proposed technique.
Time measurements are carried out in (ms). The proposed
tree based DPHTT technique DPHTT requires 2000 ms
whereas graph based XBFG technique need 2500 ms.

Time taken for fault detection in test cases: Another key
metric n the analysis of the test case selection 1s the time
taken to detect the faults that have occurred because of
the modified portion of the application. If the algorithm
detects the faults that occur due to the algorithm faster it
implicitly improves the running time of the entire
algonthm. From Fig. 14, it 1s understand that the proposed
DPHTTtechnique consumes lesser time than the graph
based technique XBFG.

The proposed method consumes 1700 ms in order to
fix the faults whereas the existing graph based technique
needs 3000 ms. The processing time necessary for both
test case selection and fault detection is lesser for the
proposed method and thereby, the proposed DPHTT
technique implicitly reduces the overall time needed to
execute the process.

Processing memory: Memory usage is the primary metric
that determmes the required memory to execute the
techniques. Figure 14 expresses the utilization of the main
memory during the execution of both the proposed and
existing techniques. The memory usage 18 expressed in
bytes. Figure 15 portrays that DPHTT requires lesser main
memory than the existing method.

Other metrics: Number of parameters must be decided
earlier for graph, i.e., the number of sub tags should be
known earlier before the graph is drawn for the BPEL files.
Initially, a graph should be constructed for any additional

2144

Asian J. Inform. Technol., 15 (13): 2133-2146, 2016

Time taken for fault detection in test cases

>
s000 g8 o
2500 i
2000 e
o | B Time (in Millisecondsh
1000 ol
so0 1 o .

BPEL Service using HTT

BPEL Service using XBFG

Fig. 14: Time taken for fault detection in test cases

Processing Memory (in bytes)

9,000,000
5,000,000
4,000,000

P
§,000,000
v, B Memory (in bytes)
3,000,000

7,000,000
2,000,000
0+

6,000,000
1,000000 1~
BPEL Service using BPEL Service using

XBFG HTT

Fig. 15: Memory usage

Classification Limits for HTT and XBFG

| e =
£ l’/, T
wEsenice T
USingXBFG T oooCTCe

BPELService
using HTT

H Classification Limit

using HTT BPELService

using HTT
Fig. 16: Applicable conditions

sub tags. Therefore, for all different versions, graphs
should be drawn separately. But, it is not in the case of
tree based construction. Any modifications can be added
without buillding it from preliminary level Figure 16 shows
that a graph based technique cannot be modified, once it
1s drawn for a version with 20 conditions. It should be
constructed from the preparatory stage for next version
with 30 and 40 conditions correspendingly. Whereas the
proposed DPHTT based technique can be modified for
the new versions of the BPEL file and it can use the trees
that are drawn for earlier versions.

CONCLUSION

Modifications or enhancements n the services of an
application make an immense challenge to testing and
maintaining the application. In the presented research a
DPHT T-based regression testing technique 1s proposed.
It helps in detecting the influence caused by binding,
process and interface change. Tnitially, DPHTT tree is
constructed for the different versions of the BPEL files
that are to be tested. From the DPHTT tree, paths are
generated and computed Computed paths are compared
in order to detect the modifications among both versions.
Depending on the comparison result, two different types
of test cases are generated, first part from the baseline
version and second part of test case 18 generated newly.
These are used to detect the modified portion of the
application. Experimental results show that DPHTT
works well than the existing method named XBFG. This
proposed work analyses only how to retest the modified
or enhanced portions of the BPEL files and it is
considered as one of the many service composition
languages. If the services are composed based on other
composition languages such as WS-CDL, OWL-5 how to
deal with the maintenance and regression testing is in the
future study.

REFERENCES

Bikley, D., 1997. Semantics guided regression test cost
reduction. IEEE Trans. Software Eng., 23: 498-516.

Briand, L.C., Y. Labiche and 5. He, 2009. Automating
regression test selection based on UUMI, designs. Inf.
Software Technel., 51: 16-30.

Fischer, K.F., 1977. A test case selection method for the
validation of software maintenance modifications.
Proc. COMPSAC., 77: 421-426,

Hao, D., L. Zhang, X. Wu, H. Mei and G. Rothermel, 2012.
On-demand test suite reduction. Proceedings of the
34th International IEEE. Conference on Software
Engmeering, June 2-9, 2012, IEEE, Piscataway, USA.,
ISBN: 978-1-4673-1067-3, pp: 738-748.

Harrold, M.J. and M.L. Soffa, 1989. Interprocedual data
flow testing. Proceedings of the ACM conference on
Software Engmeering Notes, December 8, 1989,
ACM, New York, USA, I[SBN:0-89791-342-6,
pp: 158-167.

Harrold, M.J. and M.L. Souffa, 1988. An incremental
approach to unit testing during maintenance.
Proceedings of the TEEE Conference on Software
Maintenance, October 24-27, 1988, IEEE, Scottsdale,
Arizona, ISBN: 0-8186-0879-X, pp: 362-367.

2145

Asian J. Inform. Technol., 15 (13): 2133-2146, 2016

Ii, MF., D. Jin, G. Rothermel and M. Burnett, 2002.
Test reuse 1n the spreadsheet paradigm. Proceedings
of the 13th International IEEE Symposium on
Software Reliability Engineering, November 3,
2002, TEEE, New York, USA., ISBN: 0-7695-1763-3,
pp: 257-268.

Kumar, A. and R. Goel, 2012. Event driven test case
selection for regression testing web applications.
Proceeding of the International TEEE. Conference on
Advances m Engineering, Science and Management,
March 30-31, 2012, IEEE, Nagapattinam, Tamil Nadu,
ISBN: 978-1-4673-0213-5, pp: 121-127.

Lee, JJAN. and X. He, 1990. A methodology for test
selection. I. Syst. Software, 13: 177-185.

Leung, HKN. and L. White, 1990. Insights mto testing
and regression testing global variables. I. Software
Maintenance: Res. Pract., 2: 209-222.

L1, B, D. Qu, H Leung and D. Wang, 2012. Automatic
test case regression testing of
composite service based on extensible BPEL flow
graph. I. Syst. Software, 85: 1300-1324.

L, F., M. Ruth and S. Tu, 2006. Applying safe regression
test selection techniques to java web services.
Proceeding of the International TEEE. Conference
on Next Generation Web Services Practices,
September 25-28, 2006, IEEE, Seoul, South Korea,
ISBN: 0-7605-2664-0, pp: 133-142.

Martins, E. and V.G. Vieira, 2005. Regression Test
Selection for Testable Classes. In: Dependable

selection for

Computing. Cin, M.D., M. Kaamche and A. Pataricza
(Eds.). Springer Berlin Heidelberg, Berlin, Germany,
pp: 453.

Mirarab, 3., S. Akhlaghi and L. Tahvildar, 2012.
Size-constrained regression test case selection using
multicriteria optimization. Software Eng. IEEE. Trans.,
38: 936-956.

Orso, A., N. Shi and M.J. Harrold, 2004. Scaling regression
testing to large software systems. Proceedings of
the ACM Conference on Software Engineering
Notes, November 6, 2004, ACM, New York, USA.,
pp: 241-251.

Rothermel, G. and M.J. Harrold, 1993. A safe, efficient
algorithm for regression test selection. Proceedings
of the International Conference on Software
Maintenance, September 27-30, 1993, Montreal,
Canada, pp: 358-367.

Tao, C., B. L1, X. Sunand C. Zhang, 2010. An approach to
regression test selection based on luerarchical slicing
technique. Proceeding of the 34th Annual TEEE
Conference Workshops on Computer Software and
Applications, Tuly 19-23, 2010, TEEE, Seoul, South
Korea, ISBN: 978-1-4244-8089-0, pp: 347-352.

White, L. and B. Robinsonn, 2004. Industrial real-time
regression testing and analysis using firewalls.
Proceedings of the 20th International TEEE.
Conference on Software Maintenance, September
11-14, 2004, TEEE, New Yok, USA, ISBN:
0-7695-2213-0, pp: 18-27.

White, L., H Almezen and 3. Sastry, 2003. Firewall
regression testing of GUI sequences and their
interactions. Proceedings of the International
Conference on Software Maintenance, September
22-26, 2003, Washington, DC., USA., pp: 398-409.

Wong, W.E., JR. Horgan, S. London and H. Agrawal,
1997. A study of effective regression testing in
practice. Proceedings of the 8th IEEE Intermational
Symposium on Software Reliability Engineering,
November 2-5, 1997, Albuquerque, NM., pp: 264-274.

Zheng, I., L. Williams and B. Robinson, 2007, Pallino:
Atomation to support regression test selection for
COTS-based applications. Proceedings of the
22nd IEEE/ACM International Conference on
Automated Software Engineering, November 5-9,
2007, ACM, New York, USA., ISBN: 978-1-59593-882-
4, pp: 224-233.

2146

	2133-2146_Page_01
	2133-2146_Page_02
	2133-2146_Page_03
	2133-2146_Page_04
	2133-2146_Page_05
	2133-2146_Page_06
	2133-2146_Page_07
	2133-2146_Page_08
	2133-2146_Page_09
	2133-2146_Page_10
	2133-2146_Page_11
	2133-2146_Page_12
	2133-2146_Page_13
	2133-2146_Page_14

