Asian Journal of Tnformation Technology 13 (8): 431-437, 2014

ISSN: 1682-3915
© Medwell Journals, 2014

Java Native Intel Thread Building Blocks for Win32 Platform

'Bala Dhandayuthapani Veerasamy and G.M. Nasira
'Research Scholar, Manonmaniam Sundaranar University, Tirunelveli, India
"Department of Computer Science, Chikkanna Govt. Arts Cellege, Tirupur, India

Abstract: Threads can be accessed by different programming interfaces. Many software libraries provide an
mterface for threads usually based on POSIX threads, Windows threads, OpenMP and Threading Building
Blocks frameworks. These frameworks provide a different level of abstraction from the underlying thread
implementation of the operating system. The general parallelism is the execution of separate tasks in parallel.
Nommumeric code 1s usually implemented with task parallelism rather than data parallelism. The data parallelism
is concerned mainly with operations on arrays of data. The data parallelism has a special significance in the era
of the multi and many-core computing where huge numbers of cores are available on single chip devices.
Multi-core processors have expressed parallel programming subject matter in interesting way for every
programmer. Every program written in multi-core processor will run on the many-core processor in future will
be difficult task. However, Intel Threading Building Blocks 1s a C++ template library that provides tasks, parallel
algorithms and containers to support for scalable parallel programming using standard CH++ code. This research
finding focused onhow Java can facilitate Intel TBB through JINT which can exploit pamless usage of Intel TBB

parallel algorithms that can be used in Java.

Key words: INI, Intel TBB, parallel for, partitioners, range, speedup, performance

INTRODUCTION

Parallel computers can be separated mto two kinds of
major categories, they are control flow and data flow
(Veerasamy and Nasira, 2014). The control flow parallel
computers are called task parallelism, it basically work
based on the similar principles as the sequential or von
Neumann computer except that multiple instructions can
be executed at any given time. Programs are already
decomposed into individual parts statements, methods
can be run in parallel. Task parallelism takes and extends
the pre-existing fimctional partitioming that already exists
and runs independent pieces in parallel with respect to
one another. The data-flow parallel computers
occasionally referred to as non-von Neumann 1s
completely dissimilar in that they have no pointer to
active mstructions. The data parallelism uses the input
data (Duffy, 2009) to some operation as the means to
partition into smaller pieces either large amount of data to
process or combination of both. Data 1s divided up among
the available hardware processors in order to achieve
parallelism. This partitoming step 1s often followed by
replicating and executing some mostly independent
program operation across these partitons. The data

parallelism approach is also nice for scalability. Scalable
parallelism can make use of additional processors to solve
larger problems. The upper limit on parallelism 1s typically
much larger because loop iteration counts are often quite
large and dependent on the dynamic size of data that must
be operated upon. Growth in data sizes in a data parallel
program translates into the exposure of more parallelism
opportunities that can scale to use many processors as
they become available. Because of this, many industry
experts believe that data parallelism 1s the most
scalable and future-proof way of building parallel
programs-programs that will not be inherently limited by
their construction.

concentrated on task
parallelism; they are setting as affimty for task
(Veerasamy and Nasira, 2012a, b), Parallel: One Time Pad
using Java (Veerasamy and Nasira, 2012a, b), INT-Java
Native Thread for Win32 Platform (Veerasamy and Nasira,
2013) and TJava Native Pthread for Win32 Platform
(Veerasamy and Nasira, 2014). This research finding
focused on how Java can facilitate Intel TBB through

The earlier researches

INI which can exploit painless usage of Intel TBB
Parallel algorithms that can be used in Java. Intel TBB
emphasizes data-parallel programming enabling multiple

Corresponding Author: Bala Dhandayuthapani Veerasamy, Research Scholar, Manonmamam Sundaranar University, Tirunelveli,

India

Asian J. Inform. Technol., 13 (8): 431-437, 2014

threads to work on different parts of a collection.
Data-parallel programming scales well to larger numbers
of processors by dividing the collection into smaller
pleces. With data-parallel programming, program
performance increases as we add processors. Intel TBB
benefits specifying logical parallelism instead of threads,
targets threading for performance, compatible with other
threading packages, emphasizes scalable and data parallel
programming, relies on generic programiming.

Intel Threading Building Blocks (Intel TBB)
(Reinders, 2007) is a CH+ template library developed by
Intel to purposely concentrate on programming in multi
and many-core systems. It supports Linux, Windows and
MacOSX and all major CH++ compilers. Intel TBB presents
algorithms and data structures to describe tasks in a
parallel program. These tasks are mapped by an internal
scheduler to worker threads. In contrast to other thread
programming packages the programmer has no access to
these threads, only to the tasks. Intel TBB uses C++
templates widely to mimmize runtime overhead. Intel TBB
uses generic programiming to be proficient.

Intel TBB mcludes parallel algorithms such as
parallel for, parallel reduce, parallel deterministic
_reduce, parallel scan, parallel do, parallel for each,
parallel pipeline, parallel sort and parallel invoke,
concurrent containers such as concurrent hash map,
concurrent_vector, locks and atomic operations, a task
scheduler and a scalable memory allocator.

Intel TBB uses templates (Reinders, 2007) for
common parallel iteration patterns, enabling programmers
to attain increased speed from multiple processor cores
without having to be specialist n synchronization, load
balancing and cache optimization. Programs using Intel
TBB will run on systems with a single processor core as
well as on systems with multiple processor cores. Intel
TBB promotes scalable data parallel programming. As
well, it fully supports nested parallelism, so researchers
can build larger parallel compenents from smaller parallel
components easily.

Touse Intel TBB library (Reinders, 2007), researchers
specity tasks not threads and let the library map tasks into
threads in capable manner. The result enables us to
specify parallelism far handily with better results than
using raw threads. Programming in Intel TBB offers an
opportunity to avoid thread management. This will result
in code that 1s easier to create, easier to maintain. Though,
it does require algorithms in terms of what work can be
divided and how data can be divided. The proper degree
of dividing a problem is called grain size. Grain size started
as a strange manual process which has since been
facilitated with some automation. Recursively dividing a
problem 1is better than static division of work. It fits
absolutely with the use of task stealing instead of a global

432

task queue. Reliance on task stealing is a critical design
decision that avoids implementing something as important
as a task queue as a global resource that becomes a
bottleneck for scalability.

Downloading and installing TBB: Researchers have to
download the Intel TBB current Version 4.2 update 2
stable releases from http://threadingbwldingblocks.org.
Of course, Intel TBB release available for Windows, Linux
and Mac OS X, however, researchers should choose
windows stable release. In order to use TBB, researchers
have to mstall Microsoft Visual C++ 2005 or later version
and copy all TBB associated files to Microsoft Visual CH++
folders. The files to copied are, all include files of TBB
should be copied to Microsoft Visual CH+ include folder
under like include\tbb* h, all .1ib files from TBB should be
copies to Microsoft Visual C++ 1ib folder and all .dll files
of TBB should be copies to Microsoft Visual C+ bin
folder. These .dll files are supportive or dependent
libraries for future java runtime system hence these files
should also copied to windows system32 folder.

Initializing and terminating the library: Intel TBB
components are defined i the tbb namespace. Any
program that utilizes an algorithm template from the Intel
TBB library (Remders, 2007) must be mitialized with
thb::task scheduler init object. The task scheduler shuts
down when all task_scheduler init objects terminate. By
default, the constructor for task scheduler init does the
initialization and the destructor does the termmation.

To use the tbhitask scheduler init object,
researchers must include “tbb/task scheduler inmith”
header file. The constructor for task scheduler init has
an optional parameter that identifies the number of desired
threads mcluding the calling tlwead. The optional
parameter can be one of the following:

The value task scheduler mit::automatic which 1s
the default when the parameter is not specified. It
exists for the sake of the method task
scheduler init::initialize

The value task scheduler mit:deferred which
defers the initialization until the task scheduler
imt::initialize(n) method 1s called. The value n can be
positive integer specifying the number of threads to
use

Parallel_for function: The parallel for function template
(Reinders, 2007) performs parallel iteration over a range of
values. The header for parallel for 1s “tbb/parallel for.h”.
The syntax is follows: void parallel for (const Range&
range, const Body&body, [partitioner|task group
context&group]]).

Asian J. Inform. Technol., 13 (8): 431-437, 2014

A parallel for (range, body, partitioner) provides a
more general form of parallel iteration. Tt represents
parallel execution of body over each value in range. The
optional partitioner specifies a partitioning strategy. The
range must model the range concept.

Range: The blocked range (Reinders, 2007) represents
the entire iteration space from O ton-1 which parallel for
divides into subspaces for each processor. The general
form of the constructor is blocked range<T>(begin, end,
grainsize). A range can be recursively subdivided into
two parts. It 1s recommended that the division be mto
nearly equal parts but it is not required. Splitting as
evenly as possible typically yields the best parallelism.
Ideally, a range 1s recursively splittable until the parts
represent portions of work that are more efficient to
execute serially rather than split further. The amount of
work represented by a range typically depends upon
higher level context hence a typical type that models a
Range should provide a way to control the degree of
splitting.

Type blocked range models a one-dimensional
range: a blocked range<Value> represents any integral
type that is convertible to size t The value requirements
are integral types, pointers and STL random-access
iterators whose difference can be implicitly converted to
a size t. The header for blocked range 1s “tbb/blocked r
ange.h”.

Type blocked range?d models a two-dimensional
range: blocked rangeZ2d=RowValue, ColValue>
represents RowValue and ColValue, must meet the
requirements in the table in the blocked range Template
Class section. A blocked range is splittable if either axis
1s splittable. A blocked range models the Range concept.
The header for blocked rane2d iz “tbb/blocked
range2d.h”.

Type blocked range3d models a three-dimensional
range: a blocked range3d<PageValue, RowValue,
ColValue> 1s the three-dimensional extension of
blocked range2d. The header for blocked range3d is
“thb/blocked range3d.h”.

a

Partitioners: The default behaviour of the loop templates
parallel for, parallel reduce and parallel scan tries to
recursively split (Reinders, 2007) a range into enough
parts to keep processors busy not necessarily splitting as
finely as possible. There are different partitioners are
listed.

Auto_partitioner (default): Performs sufficient splitting
to balance load, not necessarily spltting as finely as
Range::1s_divisible permits. When used with classes such

433

as blocked range, the selection of an appropriate grain
size 18 less umportant and often acceptable performance
can be achieved with the default grain size of 1.

Affinity_partitioner: Similar to auto partitioner but
improves cache affimty by its choice of mappmg
subranges to worker threads. It can inprove performance
significantly when a loop is re-executed over the same
data set and the data set fits in cache.

Simple_partitioner: Recursively splits a range until it is
no longer divisible. The Range::is divisible function is
wholly responsible for deciding when recursive splitting
halts. When used with classes such as blocked range,
the selection of an appropriate gran size is critical to
enabling concurrency while limiting overheads.

Quick introduction to lambda functions: Adding lambda
functions to C++ would let a programmer write a loop
body in place instead of having to write a separate
STL-style function object. Similar capability is found in
the anonymous method in C#, in the inner class in JTava
and in the primordial lambda expression of LISP. Lambda
expressions make the Tntel TBB parallel for much easier
to use. A lambda expression (Reinders, 2007) lets the
compiler do the tedious work of creating a function object.

MATERIALS AND METHODS

Method: NI permits us to develop native code when an
application cannot be written entirely in the Java
language. Tt want to implements time-critical code in a
lower-level and faster programming language. It has
legacy code or code libraries that researchers want to get
into from Java programs. Tt desires platform dependent
features not supported in the standard JTava class library.
In order to create and work with native threads by means
of Java Native Interface application (Liang, 1999) that calls
a C++ function with the following steps:

Declare the native method in Java class: INI begin by
writing the following program in the Java programming
language. The Program 1 defined a class named
NativeTBB that contains native TBB parallel for method.
The native keyword notifies the Java compiler that a
method is applied in native code outside of the JTava class
in which it is being declared. Native methods can only be
declared in Java classes, not implemented, so native
methods do not have a body. The native methods have
implemented using Microsoft Visual Studio 2010 Program
1n the study.

Asian J. Inform. Technol., 13 (8): 431-437, 2014

Program 1 (Native TBB Method declarations):
/Tava Nativity Threads(JNT)
package INT. Win32 Kernel,
public class Native TBB{
public native void parallelFor(
final int FirstArray[],
final int SecondArray[],
final int ResultArray[],
char Operator);

The native TBB 1s defined in package named
JNT W32 Kernel. The class native TBB declared with
native Pthread Methods which will be implemented in C++
using JNI. The parallel for(..) declared with final int
FirstArray[] will get the first array, final it Second Array[]
will get the second array and the result will be store on
fnal mt ResultArray[] through native TBB implementation
based on the arithmetic operator mentioned m char
Operator.

Compiling Java class and creating native method header
file: Researchers have compiled the JTava code down to
byte code. One way to do this 1s to use the Java compiler
javac which comes with the SDK. The command
researchers used to compile the Java code to byte code 1s:
javac NativeTBB.Java.

This command generated a NativeTBB.class file in
the INT.Win32 Kernel directory. The next step,
researchers created C/C++ header file that defines native
function signatures. One way to do this 1s researchers
used the native method C stub generator tool javah.exe
which comes with the SDK. This tool is designed to create
a header file that defines C-style functions for each native
method it found in a Java source code file. The command
we used on JNT Win32Kemel directory 1s: Javah
NativeTBB.

The name of the header file is the class name with
“h” appended to the end of it. The command shown
above generates a file named JNT Win32
Kernel NativeTBB.h which is shown in Program 2.

Program 2 (JNT_Win32_Kernel_NativeTBB.h):
#include <jni.h>

#ifndef _Included_JNT Win32 Kemnel NativeTBB

#define _Included_JNT_Win32_Kernel NativeTBB

#ifdef _ cplusplus

extemn “C"” {

#endif

/*

#Class: JNT Win32 Kernel NativeTBBR

* Method: parallelFor
* Rignature: (I[I[TCYV
*f
JNIEXPORT void JNICALL Java JNT Win32_Kemel NativeTBB_
parallelFor
(JNIEnv *, jobject, jintArray, jintArray, jintArray, jchar),
#ifdef _ cplusplus
}
#endif
#endif

434

The C/C++ function signature in INT Win32
Kernel NativeTBB.h 18 quite different from the Java
Native Method declarations in NativeTBB java.
INTEXPORT and INICALL compiler-dependent
specifier for export functions. The retum types are C/C++
types that map to Java types. The parameter lists of all
these functions have a pointer to a INIEnv and a jobject
1in addition to normal parameters in the Java declaration.
The pointer to INTEnv is actually a pointer to a table of
function pointers. These functions provide the various
faculties to manipulate Java data m C and C++. The
jobject parameter refers to the current object. Thus, if the
C or C++ code needs to refer back to the Java side, this
jobject acts as a reference or pointer, back to the calling
Tava object. The function name itself is made by the
“Tava ™ prefix, followed by the fully qualified package
name followed by an underscore and class name followed
by an underscore and the method name.

i

Implementing native methods and creating native library:
Microsoft Visual C++ 2010 Express allows creating
Dynamic Link Library (DLL) is a shared library that
contains the native TBB code. In order to create DLL,
researchers should create a Dynamic Link Library (DLL)
project. Microsoft Visual C++ 2010 Express, on the menu
bar, chooses File, New, Project. In the left pane of the New
Project dialog box, expand Installed, Templates, Visual
C+t and then select Win32. In the center pane, select
Win32 Console Application. Researchers should specify
a name for the project, native TBB and we can specify a
name for the solution as NativeTBBDLL.

In source file folder of the project contams by default
dllmain.cpp and stdafx.cpp. Here, researchers should add
new cpp file as NativeTBB.cpp. In header file section,
researchers should add INT Win32 Kermnel NativeTBB.h
file. The TNI-style header file generated by javah helped
us to write CH++ implementations for the native method.
When 1t comes to writing the C4++ function
implementation, the important thing to keep in mind is that
owr signatures must be exactly like the function
declarations from JNT Win32 Kernel NativeTBB.h. In
stdafx h, researchers should include all necessary header
files which will be used in the NativeTBB.cpp file.
Reseachers implemented the method m C++ file named
NativeTBB.cpp as shown in the following Program 3.

Program 3 (NativeTBB.cpp):
#include<tbb\blocked_range.h>
#include<tbbiparallel for.h>
#inchide<thbitask scheduler init.h>
#include<iostream=>

using namespace std;

using namespace thb;

#pragma warning (disable: 588)
#include “stdafx.h”

#include <jni.h>

Asian J. Inform. Technol., 13 (8): 431-437, 2014

#include “JINT Win32 Kernel NativeTBR.h”
JNIEXPORT wvoid JNICALL Java JNT Win32 Kemel NativeTBB
parallelFor (JNIEnv *env, jobject obj, jintAmray IPArrayl, jintArray
IPArray2, jintArray Result, jchar ope){
const jsize lengthl = env->GetArrayLength (IPArray1);
jint *TParr1 = env->GetIntArrayElements (TP Armray 1, NULL); /input array
const jsize length2 = env->GetArrayLength (TPArray 2);
jint *TParr2 = env->GetIntArray Elements(TP Amray 2, WULL); /input array
const jsize length3 = env->Get ArrayLength(Result);
jint *Res = env->GetIntArrayElements(Result, NULL); //input array
tbb::task_scheduler_init init(); # Automatic number of threads
thb:tick_count parallel start = thb:tick _count: now();
it ((lengthl = length?2) & (lengthl = length3))
thb::parallel for(thb:blocked range<size t=(0,lengthl),
[=l(const tbb::blocked_range<size_t>& range) {
for (size_t i =range.begin(); i! = range.end(); ++i){
ifistatic cast<char>(ope) =""
Res[i] = [Parr1[i]+IParr2[i];
else if{static_cast<char={ope) =—"-"
Res[i] = Parr1[i]-TParr2[i];
else if(static_cast<char>(ope) =—'*"
Res[i] = IParr1[i] *IParr2[il];
else if(static_cast<char>(ope) ="
Res[i] = TPar1[i]/ TParr2[i];

1 thb:affinity partitioner());

else

std::cout<<**Array length are not equals™;
env->ReleaselntArrayElements(Result, Res, NULL);
thb:tick_count parallel end =thb:tick_count: now();

std::cout << “Parallelism completed at” << (parallel end-parallel start).
seconds() <<Sec™;

}

The NativeTBB.cpp Program 3 included with
thbiblocked range.h,tbbiparallel for.h, thbitask
scheduler mit.h. A Java INT Wm32 Kernel
NativeTBB parallelFor (JNIEnv *env, jobject oby,
jintArray TPArrayl, jintArray TPArray2, jintArray Result,
jchar ope) method creates tbhi:parallel for(...). The
GetArrayLength(...) Method will get length of arrays.
Here, all the arrays are expected in equal length. The
GetIntArrayElements(...) Method will get array elements
and will assign to pointer variable such as *TParr], *TParr2
and *Res. The *Res will be used for storing the results
which can be used at the java program. The TBB is
scheduler initialized with automatic number of threads
using tbbitask scheduler init init() or using
tbb::task scheduler init mit(tbb::task scheduler
it automatic). Researchers can also used to specify
number of thread explicitly using tbb::task scheduler init
init(100). The variable parallel start allows to find the
staring of vparallel for(...) usmng tbb:tick
count::now() likewise the parallel end allows us to find
the end time of parallel for(...) using tbb:tick
count::now(). Hence, researchers can calculate the actual

time

time used for our parallel for(...).
Before to execute the parallel for(...), researchers
have checked the arrays lengths are equal or not. Once

435

arrays are equal, researchers used to call tbb:parallel
for(...) Method. Inside tbb::parallel for(...), researchers
declared the array range in thb: ‘blocked range<size t=(0,
lengthl) and the blocked range starts with range.begin()
and ends with range.end(). Based on the arithmetic
operator passed in the Java INT Wm32 Kemel
NativeTBB parallelFor(...) method, the results
manipulated and stored in Res[] array.

After all implementing the NativeTBB.cpp Program,
researchers can build the dynamic link library by choosing
Build menu then Build Solution on the menu bar. This will
create NativeTBB.dll which can be accessed in Java
program through System.load(“Native TBB.dI1”).

arc

Testing Native Intel TBB Program: Currently,
researchers have NativeTBB.class file, NativeTBB.dll
native TBB library and Intel TBB supportive or dependent
library files that researchers already described in
downloading and mstalling TBB section. The following
Program 4 the testing native TBB program,
TestNativeTBB class allowed us to run the program on
Win32 platform because researchers have used TBB
libraries through TNI. First of all the program should be
imported with INT. Win32 Kernel Native TBB; this package
library included a line of code that loaded a native library
1nto the program through System. load (“NativeTBB.dII™).
When program started execution the public static void
mam(String[] args) 1s create TestNativeTBB object which
will automatically call the TestNativeTBB constructor.

the TestNativeTBB constructor,
researchers declared sa[], sb[], sc[] and pa[], pb[], pe[]
array. As usual way sa[], sb[], pa[] and pb[] arrays are
initialized. Here, sa[], sb[] and sc[] arrays will be used for
sequential array mampulations, like wise pa[], pb[] and
pel] arrays will be used for parallel array manipulations.
However, both of the array manipulations are preformed
based on what operator declared on ‘ope’ variable.

18

Inside class

The actual differentiation only illustrated m array
marmipulations. The sequential array i1s mampulated in
usual java code; however the parallel array 15 manipulated
using native TBB code.

The variable startTiume allows to find the staring
time of sequential array mamipulation using system.
currentTimeMillis() likewise the stopTime allows us to
find the end time of sequential array manipulation using
System.currentTimeMillis(). Hence,
calculate the actual time used for the sequential array
manipulation which is stored on elapsedTime variable.
The variable N used to declare array size. Of course,

researchers can

researchers can create array length based on the computer
system memory stack availability.

Asian J. Inform. Technol., 13 (8): 431-437, 2014

Table 1: Performance analy sis

Sequential executions Parallel executions Performance
Processors Array size (msec) (msec) Speedup improvernents
Core 2 Duo 2.10 GHz with RAM 2 GB 100000 1 0.00529292 188.9316 0.994707
1000000 8 0.03282340 243.7286 0.995897
10000000 7 0.29542000 240.3358 0.995839
Core i5 3.30 GHz with RAM 4 GB 100000 1 0.00181435 551.1616 0.998186
1000000 4 0.00864509 462.6904 0.997839
10000000 34 0.07854530 432.8712 0.997690
Core i7 3.40 GHz with RAM 4 GB 100000 1 0.00223593 447.2412 0.997764
1000000 16 0.01001130 1598.194 0.999374
10000000 31 0.09127830 339.6207 0.997056
Program 4 (TestNativeTBB.Java): RESULTS AND DISCUSSION

package INT.Win32. Kernel;
import INT Win32. Kernel.®;
public class TestNative TBB extends NativeTBB{
static {
Systermn.loadLibrary(“NativeTBBDLL”);
)
public TestNativeTBB() {
try{
int N = 10000000;
int sa[] = new int[N];
int sb[] = new int[N];
int sc[] = new int[N];

char ope ="+,

for(int i =0 i<N; i++){
safi] =1;
sb[i] =1;

}

long startTime = System. currentTimeMillis();

for(int 1= 0;i<N; i++){
iflope ="
sc[i] = sa[i]+sb[i];
else if{ope=—"-"
scli] = sa[i]-sb[i];
else if{ope ="""
sc[i] = sali]*sb[i];
else iffope ="
sc[i] = sa[i]/sb[i];
}
long stopTime = System. currentTimeMillis ();
long elapsedTime = stopTime-start Time;

Systemn.out.println (“Serialization completed at “+elapsedTime+" Sec™);

/parallel operatons

int pa[] = new int[N];

int. pb[] = new int[N];

int pe[] = new int[N];

for(int i = i< i++){

pali] =1i;
pblil =i

}

parallelFor(pa, pb, pc, ope);
Yeatch (OutOfMemoryError e){

System. out. println (“Error: *“+e);
)

}
public static void main (String[] args) {
try{
TestNativeTRB Test] = new TestNative TRR();
Yeatch(Exception e){
Sy stem.out.printIn{“Error “+e); }
}

)

436

The evaluation of the parallel execution performance
is measwred with respect to speedup, performance
improvement and efficiency with reference to the time
taken for both sequential and parallel processing. Speed
up measures how much a parallel algorithm is faster
than a Corresponding Sequential algorithm. The speedup
calculation 1s based on the following equation:

_ Sequential execution time

Speedu
P P Parallel execution time

The performance improvement depicts measurements
relative improvement that the parallel system has over the
sequential process. This performance 1s measured based
on the following equation:

Sequential extcution time-
Parallel execution time
Sequential execution time

Performance improvements =

The Program 4, experienced in dissimilar processor
core enviromment and array size; the execution time of
sequential array mampulations results and execution time
of parallel array mampulations results are arranged in the
Table 1. In addition, the actual speedup and the
performance impairments are computed and listed in the
Table 1.

CONCLUSION

Multi-core processors are becoming familiar these
days yet writing an efficient scalable program is much
harder. Scalability represents the concept that a program
should get benefits of the performance as the number of
processor cores increases. Intel TBB assisted us create
applications that collect the benefits of new processors
with more and more cores as they become available. It
uses templates for common parallel iteration patterns,
enabling us to attain mcreased speed from multiple

Asian J. Inform. Technol., 13 (8): 431-437, 2014

processor cores without having to be experts in
synchronization, load balancing and cache optimization.
Intel TBB promotes scalable data parallel programming.
The data parallelism has a special significance in the era
of the multi and many-core computing where huge
numbers of cores are available on single chup devices. The
data parallelism 13 concerned mainly with operations on
arrays of data. The data parallelism involves sharing
through
memory coherence, improving performance by reducing
the time required to load and access memory.

This research finding exercised on how Java can
facilitate Intel TBB through INI. This contribution
exploited painless usage of Intel TBB Parallel algorithms
used in Java. In this research, researchers especially
focused on utilizing parallel for algorithms with
blocked range which supply an iterator that determines
how to make a task split m half when the task 1s
considered large enough. In turn, Intel TBB will then
divide large data ranges repeatedly to help spread work
evenly among processor cores. The parallel for loop

common data among executing processes

constructs deserved overhead cost for every chunk of
work that 1t schedules. It chooses chunk
automatically, depending upon load balancing needs. The
blocked range supported to work with single dimensional

sizes

array. Thus, researchers illustrated manipulating array
on single dimensional and the speedup and performance
improvements demonstrated. If some other operations
required performing on one dimensional array, researchers
are expected to change the code on NativeTBB.cpp
program. At present, there are opportunities to work with

437

two dimensional arrays through using blocked range2d
arrays through using
blocked range3d. Not only the parallel for loop can be
used in java but also there are huge opemings for utilizing
the entire Intel TBB parallel library template that can be
used for various purposes.

and three-dimensional

REFERENCES

Duffy, 1., 2009. Concurrent Programming on Windows.
Pearson Education Inc., New York, USA.

Liang, S., 1999. The Java Native Interface: Programmer's
Guide and Specification. Addison-Wesley, Boston,
MA., USA., ISBN-13: 9780201325775, Pages: 302.

Reimnders, J., 2007. Intel Threading Bulding Blocks:
Outfitting CH+ for Multi-core Processor Parallelism.
OReilly Media Inc., New York, UUSA., TSBN-13:
9781449390860, Pages: 336.

Veerasamy, B.D. and G.M. Naswra, 201 2a. Setting CPU
affimity m windows based SMP systems using Java.
Int. I. Sci. Eng. Res., 3: 893-900.

Veerasamy, B.DD. and G.M. Nasira, 2012b. Parallel:
One time pad using Java. Int. I. Sci. Eng. Res.,
3:1109-1117.

Veerasamy, B.D. and G.M. Nasira, 2013. INT-Java native
thread for Win32 platform. Tnt. 7. Comput. Appl.,
71:1-9.

Veerasamy, B.D. and G.M. Nasira, 2014. Java native
threads for Win32 platform. Proceedings of the
World Congress on Computing and Communication
Technologies, February 27-March 1, 2014, Tamil
Nadu, India.

	18573-AJIT 13 (8) 431-437_Page_1
	18573-AJIT 13 (8) 431-437_Page_2
	18573-AJIT 13 (8) 431-437_Page_3
	18573-AJIT 13 (8) 431-437_Page_4
	18573-AJIT 13 (8) 431-437_Page_5
	18573-AJIT 13 (8) 431-437_Page_6
	18573-AJIT 13 (8) 431-437_Page_7

