Asian Journal of Information Technology 9 (2): 98-100, 2010

ISSN: 1682-3915
© Medwell Journals, 2010

Developing a Maintainability Metric for Inner Classes

Sim Hui Tee
Faculty of Creative Multimedia, Multimedia University,
63100 Cyberjaya, Selangor, Malaysia

Abstract: Tnner classes are widely used in some programming languages, such as Java. Inner classes are known

as helper classes which are defined within outer class. They play the role to assist thewr outer class in

performing a specific task. However, extensive use of inner classes may cause difficulty in software
maintenance. This research proposes a maintainability metric for inner clagses. The maintainability metric

provides a gmdeline for software developers to define maintainable mner classes in an application.

Key words: Software maintainability, inner classes, object-oriented programming, software metric, outer

clagses, class complexity

INTRODUCTION

In some of the object-oriented programming
languages such as Java, a class could contain nested
classes (Sierra and Bates, 2003). These nested classes are
known as mmner classes (Horstmann and Comell, 2004).
The class which contains mner classes 1s called outer
class (Eckel, 2006). Inner classes are defined as helper
classes for their outer class (Sierra and Bates, 2003). The
purpose of defining mner classes 1s to assist outer class
mn performing a specific task. Thus, mmer classes are
subsets of outer class which is functionally related to the
latter.

Inner classes share all the features of a regular class.
They could contain constructors, attributes, methods and
further mmer classes. Furthermore, an mner class can
mherit other class and implement interfaces. Inner classes
can be abstract or final as a regular class does (Sierra and
Bates, 2003). Program 1 demonstrates a typical mner class
named TnnerA that is defined within a root outer class
named QuterA. Inner class InnerA contains a constructor,
attribute, method and ancther mner class named InnerAl.

Program 1: Examples of inner classes are given:

public class OuterA{
public class TnnerA {
int i;
public TnnerA(){ }
void run(){ }
public class TrmerAl{

}

Well-defined inner classes are important to promote
class cohesiveness. Unfortunately, extensive use of mner

classes increases the difficulty of software maintenance.
Software maintenance 1s a long term effort that mvolves
problem fixing and operational improvement along the
course of software evolution (Bhatt et al, 2006;
Aggarwal et al., 2002).

Heitlager ef al. (2007) claim that the increasing class
complexity and class size contribute to mereasing
maintenance efforts.

Extensive use of inner classes is inevitably leading to
greater class complexity and class size, which results in
greater difficulty of maintenance.

The feasible solution of this problem is to reduce the
number of immer classes that defined within a root outer
class. To date, there is no available metric which provides
a guideline for software developers m defining
maintainable inner classes. This research aims to develop
a maintainability metric that helps software developers to
understand the extent of mamtenance difficulty of mner
classes.

This proposed metric provides a guideline for
software developers to define maintainable inner classes.

MATERIALS AND METHODS

Maintainability metric for inner classes: The difficulty of
maintenance increases as the number of inner classes
increases 1 a root outer class. This research proposes a
maintainability Metric (M) as:

M=Xc
Where:
¢ = The measure value of each class (outer and mner
classes)
c¢=1/T+n

Asian J. Inform. Technol, 9 (2): 98-100, 2010

Where:
n = The number of immediate inner class of an outer
class

For a regular class that contains no inner class, the M
valueis l,asn=0andc=1. When M is 1, it implies that
the maintainability of inner class 1s not an 1ssue because
mner class 13 absent. The higher the M value, the
difficulty level of inner class mamntamnability increases
correspondingly.

Program 2 and 3 demonstrate two independent regular
classes that have the same difficulty level of maintenance
i term of mmner class, which 1s M = 1. Inner classes are
absent in Program 2 and 3. Hence, n = 0. House class and
Store class have respective, ¢ = 1 based on the above
mentioned formula.

Program 2: When summing up ¢ value in Program 2,
Class house with M = 1 and 3, respectively M =1 1s
vielded. Class house with M =1 1s as:

public class House{
private int size;
int getSize(){
return size;
}

}
Program 3: Class Store with M =1 is as:

public class Store{

}

The minimum maintainability Metric value (M) for a
class 13 1 which indicates that there is no mmner class
defined. Program 2 and 3 yield the minimum
maintainability metric value. When inner class is defined,
M value will be >1.

Program 4 demonstrates an outer class MyOuter
which contains an inner class Mylmner. The number of
immediate inner class (n) of MyOuter is 1. The number of
immediate inner class (n) of MyInner is 0. Hence, ¢ value
for MyOuter is 0.5; whereas ¢ value for Mylmneris 1. The
summ of ¢ values indicates the maintainability Metric value
(M), which1s 1.5.

Program 4: Root outer class MyOuter with M = 1.5 is as:

public class My Outer{
public class MyTrner{
}

For a root outer class which contains multiple inner
classes at multiple depth, the ¢ value of all classes needs
to be summed up to yield M value for that program.
Program 5 shows an example of multiple-depth inner

Table 1: ¢ vahie for outer and inner classes

Classes Number of immediate inner class, n C

A 1 0.50
B 2 0.33
C 0 1.00
D 0 1.00

Table 2: Summary of maintainability Metric value (M) for four programs
Program Total mumber of inner classes Maintainability Metric vahie (M)

2 0 1.00
3 0 1.00
4 1 1.50
3 3 2.83

classes. In Program 5 root outer class A contains
multiple-depth inner classes 1s as:

class A{
class B{
class C{
)
class D{
)
}
}

In Program 5, class A contains an immediate nner
class named B. Class B contains two immediate mner
classes named C and D, respectively. Tnner classes C and
D do not contain any mmer class. The ¢ values for all
classes are shown in Table 1.

According to Table 1, when ¢ values of all classes are
summed up, the maintainability metric value (M = 2.83) is
obtained. The maintainability metric values (M) of
Program 2-5 summarized m Table 2.

RESULTS AND DISCUSSION

Tt is observed that as the total number of inner class
increases in a program, the maintainability metric value for
inner classes is increased. Tt is because the maintainability
metric value 1s derived from the sum of ¢ values of all
classes in that program. Greater maintainability metric
value indicates that the difficulty level of mmner class
maintenance is increased Based on Table 2, Program 5
has the greatest total number of inner classes and
mamtamability metric value. It implies that mner classes
in Program 5 are harder to maintain as compared to
Program 2-4.

Using maintainability metric in defining inner classes:
Maintainability metric is a guideline for software
developers to decide how many inner classes to be
defined within a root outer class. There is no absolute
maintainability metric value to decide the total number of
inner classes should be defined in a root outer class. The

Asian J. Inform. Technol, 9 (2): 98-100, 2010

decision lies in the functionality of a root outer class and
its usage demand in the whole application. A root outer
class which is expected to perform a detailed functionality
can tolerate with a greater mamtainability metric value for
its inner class. However, a more general class, such as
abstract class 1s not greater
maintainability metric value. It 13 because greater
maintainability metric value renders a general class harder

expected to have

to be mamtained as the software evolves.
CONCLUSION

The proposed maintainability metric for inner classes
15 an indicator of the complexity of mmner classes m a
program.

A higher mamtamability metric value implies that
greater maintenance effort is needed to maintain the inner
classes. It 18 desirable to keep the total number of inner
classes within a reasonable range. Maintainability metric
allows the software developers to reduce the extensive
number of inner classes in a root outer class.

REFERENCES

Aggarwal, K., Y. Singh and J. Chhabra, 2002. An
mtegrated measure of software mamtainability.
Proceedings of Annual Reliability and
Maintainability Symposium, JTan. 28-31, Seattle WA,
PP 235-241.

Bhatt, P., K. Williams, G. Shroff and A. Misra, 2006.
Influencing factors in outsourced software
maintenance. ACM SIGSOFT Software Eng. Notes,
31:1-6.

Eckel, B., 2006. Thinking in Java. Prentice Hall, USA.

Heitlager, I., T. Kuipers and J. Visser, 2007. A practical
model for measuring maintainability. Proceedings of
6th International Conference on the Quality of
Information and Commumcations Teclmology, Sept.
12-14, Lisbon, Portugal, pp: 30-39.

Horstmann, C. and G. Comell, 2004. Core Java 2. Prentice
Hall, USA.

Sierra, K. and B. Bates, 2003. Sun Certified Programmer
and Developer for Java 2 Study Guide. McGraw-Hill,
USA.

100

