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Abstract: To increase the hit ratio on proxy and reduce the access latency of clients, different proxy caching
techniques are designed to predict clients' surfing behavior for fetching their request pages ahead. However,
these techniques have two deficiencies. First, the prediction 1s based on the history of clients' references, but
these historical data are not always credible due to the variability of clients' behavior. Second, although these
techniquszxes can achieve high hit ratios on proxy, their total traffic loads on network are high. In this study,
we propose a novel predictive caching method called ODBC (On-demand Domain-Behavior Classification). The
ODBC method first follows Pareto's 80/20 law to clean data. Tt applies the concepts of entropy and sliding
window to identify the exploratory requests and removes them when making predictions. Then, it tags popular

pages and let those pages stay in the proxy longer than the normal ones. Experiments on real traces show that
ODBC can improve not only the proxy hit ratio but also the networl traffic loads.
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INTRODUCTION

Due to the exponential growth of network traffic,
users bear the hassle of waiting for the requested Web
pages to come up. How to speed up Web surfing has
become one of the hottest topics in Internet research
(Wang, 1999, Barish and Obraczka, 2000). Presently, the
best known solution 1s to cache pages at proxy (Cao and
Irami, 1997, Aggarwal ef al., 1999, Shim et of., 1999) (or
other network nodes, 1.¢., client (Kim and Kim, 2003; Xu
and Tbrahim, 2004) and server (Padmanabhan and Mogul,
1996; Cuhna and Jaccoud, 1997; Markatos and Chronaki,
1998). An effective proxy needs to reduce not only the
server load, but also the network overhead for increasing
the system's availability and dependability. However,
conventional proxy caching methods usually capitalize
on temporal locality (Jin and Bestavros, 2000). They
cache pages which are just requested. As the trend
of client behavior is not considered, the benefits are
limited (Abrams et al., 1995; Kroeger et al, 1997). To
resolve this drawback, some proxy caching techniques
are investigated to capitalize the reference locality
(Almida et al., 1996). They predict clients' future behavior
for prefetching Web pages mto the cache before
requested (Nonopoulos et al., 2003). Generally, these
methods can be classified into two categories. The first
one is the informed approach which asks clients to

disclose their future requests for caching (Patterson ef al.,
1995). The other one is the predictive approach which
uses the history of clients' references to make predictions
(Padmanabhan and Mougul, 1996, Markatos and
Chronaki, 1998, Nanopoulos ef af., 2003). The informed
approach is inapplicable for normal clients as they will not
know their future request pages in advance. Therefore, we
focus on the predictive approach m this study (Our
proposed method can be easily extended to support the
informed approach if users can provide their future
requests ahead). As we know, users usually request
pages from their favorite domains (e.g., the Website or
domaim of CNN 15 usually bookmarked as the "favorites”
in browsing ). Based on this domain-favorite phenomenon,
Shin et al. (2000) proposed the domain-top method for
proxy caching. They first identify the popular domains
which are visited frequently in the historical traces of
clients' requests. In each popular domain, a constant
number of frequently-visited pages were determined as
the popular pages. Then, these popular domains and
corresponding popular pages are applied to make
predictions. If one of the popular pages is requested, all
the related popular pages in the same domain are gotten
into the cache before requested. Otherwise, a common
caching mechanism 1s applied. When the cache space 1s
full, the LRU/ (Least Recently Used) replacement policy is
applied to replace the cached pages.
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The domain-top method is based on the hypothesis
the surfing behavior is domain-preferential in the entire
trace. Results in Shin et al. (2000) show that this method
can raise the hit ratios with significant improvements in
their LAN environment. However, this assumption is not
always true as people may explore the Internet aimlessly.
In some time periods of the trace, there may have no
relation among the pages accessed. Since, the domain-top
method does not consider clients' exploratory behavior,
it may acquire wrong predictions. Moreover, although this
method can achieve a high hit ratio on proxy, the total
traffic load on network 1s also high. It may burst network
traffic and increase average queue sizes i network
switches (Kleinrock, 1975; Crovella and Barford, 1998).
These drawbacks motivate us to design a new proxy
caching methed to remove the incorrect mformation in
making predictions. Moreover, we will try to reduce not
only the server load, but also the network overhead for
increasing the system's availability and dependability.

In this study, we propose the ODBC (On-demand
Domain-Behavior Classification) method for proxy
caching. For improving the hit ratio, ODBC tries to make
the training data more reliable. Following Pareto's 80/20
law (Pareto, 1935), ODBC uses the concepts of entropy
and sliding window to identify and remove the exploratory
requests.  Additionally, ODBC reflects domains'
popularities to assign each domain a suitable number of
popular pages. To reduce the network overhead, ODBC
tags these popular pages and keeps them in proxy longer
than the normal ones for replacement. Experiments show
that ODBC can not only improve the hit ratio but also
reduce the network traffic effectively. We summarize the
main contributions of ODBC in the following:

Using the sliding window to model individual clients in
the entire trace: Conventional approaches use the
requests with the same TP address to model a client
(Shin et al., 2000). Tt is not proper for modern networks
with DHCP (Dynamic Host Configuration Protocol),
where an IP address 1s shared by different clients and a
client has more than one TP address. As requests in the
same time period with the same TP address usually belong
to the same client, we apply a time sliding window to
these requests to make a more accurate model of
individual clients.

Using the entropy to discriminate the domain mode
client behavior from the exploratory mode one:
Conventional approaches use the entire trace to make
predictions. However, some clients may explore the Web
pages aimlessly. Using these exploratory access patterns
n prediction may lead to wrong actions. In this study, we
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calculate the entropy value of requests in each time
window to identify the exploratory behavior. By removing
these unreliable access pattermns, we can make a more
accurate prediction.

Assigning the suitable number of popular pages to
reflect the popularity of each domain: Conventional
approaches assign a constant number of popular pages to
each popular domain for caching. However, different
domains usually have different popularities. In this study,
to reflect the popularities of different domains, suitable
no. of popular pages are assigned to improve the hit ratio.

Alleviating the network traffic by the on-demand method:
Conventional approaches are designed to increase the hit
ratio. They pay less attention to reduce the network
traffic. To avoid the unnecessary network access, we
apply the on-demand method in caching. Tt tags the
predicted popular pages but fetches them only when they
are on-demand. Then, the tagged pages can stay longer
in the proxy and thus improve not only the hit ratio but
also the network traffic.

Related works: The predictive caching problem (which
proactively preloads data from the server into the cache
to facilitate future requests) has been studied over many
years (Padmanabhan and Mougul, 1996, Cunha and
Taccoud, 1997, Markatos and Chronaki, 1998; Nanopoulos
et al., 2003; Shin et al., 2000; Chinen and Yamaguchi,
1997; Chen and Zhang, 2003; Xu et al., 2004). Based on a
predictive file caching method proposed m Grifficen and
Appleton (1994), Padmanabhan and Mogul (1996)
presented a Web predictive caching algorithm to reduce
the access latency. They represented clients' requests by
a weighted URL (Uniform Resource Locator) dependency
graph. In the graph, each edge illustrated a relationship
between a pair of URLs. The edge weight depicted the
transfer probability from one TJRL to the other. When a
request came, the graph was updated dynamically to
predict the future request.

As the graph structure complicated
implementation, Schechter et al. (1998) used a sequence
prefix tree mstead. The next request was predicted by the
longest MFS (most-frequent sequence) matched. On the
other hand, Sarukkai (2000) used the Markov chain to
propose a probabilistic sequence generation model by the
history of requests from the same client. When receiving
a client request, a probabilistic link prediction was made.
To further improve the accuracy of prediction, the data
structure was designed to be updated for each coming
request. Notably, as the above methods are all based on
complex probability theory and data structure, they need

was in
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large storage space and bgh com putation complexity to
maintan the access relation of each dient. They are
iffi cult it implerm entat on atad have never been applied in
atry real woeld proxy.

Generaly, a user usually access more pages in his
faworite website (cdled domain in this study). For
example, users who go to browse one page in the NEA
website always request more (popuar) pages of that
wehsite, This phenomenon is called domar-favorife. In
thiz case, if the procy has prefetched the popular pages
from that website, access latency will be extremely
redaced. Based on this idea, Datkatos and Chronakd
(1998) propose a simple top-10 techedoue in predictive
caching Differert from the presert proxy caching
methods, the top-10 method is server-ifiafed. [nputting
the histoey logs, each server (website) will meanwe its
access frequencies to maititan a list of the 10 most
popuar pages on the server. The servers need to
petiodically calowlate and push their popula pages to
procy. Unfortunately, modern websites are ot designed
to support the caleulation of army st for popolar pages.

Wong and YVeung (20017 propose the site-based
mechanism to deal withthe domain-favorite phenom enon
on clients. A= a cliemt-Niwfiafed method, the site-hased
mecharism collects cients requests by vsing a modified
browser to periodically calodate a list of the most
frequently requested websites (called hot-sites). Based
oty this list, browsers forward the requests in hot-sites
to the proey for caching, Other recuests will be bypassed
the proxy and be directly sent to the corresponding
websites Wotably, different from the Top-10 method, orly
the hot-sites will use the proxy and there is no poplar
pages caloulated The site-based mechardsm doest't need
to redesign the website or the procy Howewer, till now,
there iz no existing twowser has supported this
mechatism.

Fecently, a proxyindtiated predictive caching method
(Shity ef e, 20000 called DT (domain-top) is indrodoced.
The method bazes on the doman-favorite concept to
iderdifiy the moost poplar dotmains (caled top-dom ans).
Thety, a constant menber of popular pages (called top-
pages) are assigned to each top-domain It makes a
prediction table. When a client recuest is received, the
proxy will simply check whether the request iz in the
prediction table or not. If the answer iz yes DT will
identify the top-domain related to this request and fetch
all top-prazes in this top- dom ain into the oy Othenwd se,
the common proxy caching mechatism is applied

Motably, previous  approaches  usually  make
prediction based o the ertire trace without data deaning,
Moreorvet, they usually focus on increasing the kit ratio,
bt pay less attenti on to reduce the network traffic. This
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may cause burst traffic on networks. We need a more
acow ate method to model dients behavors Inthis stady,
a novel proxy caching method is proposed to resclwe
these problems The proposed method can not only
improve the kit ratio gt also alleviate the traffic load
effectively.

MATERIALS AND METHOD 5

The ODBC predictive caching method consists of 2
phaszes prediction and cacking. The prediction phase is
an off-line process that takes place during the offipeak
titme of the proxy server. On the other hand, the caching
phase iz an on-line process that works when a request
cotmes. Figore 1 shows the system architectare of the
proposed method. A log file contains a sequence of
historical traces of clierts requests. They ate frequenty
ugedto predict the future behavors of the clients.

Preprocessing: Typically, a proxy server log cotitains
millictis of records. Before making predictions a
preprocessing module will filter out the vrmece ssary data
of the log file. Table 1| shows an example of the log file,
where each record refers to a visit by auser to request a
certain web page served by a web server. Generally, the
tecquests can be divided into two categories: static pages
atid dytatnic pages. Dynanic pages ate created by Weh
servers when the related cottents are tequestedie g, .og,
casp and phgp seripts). They are changed with tim e and
not sutable to be cached Therefore, az previous
approaches, we filter out logs for this lind of requests
before modeling the prediction In the following steps,
otdy the static pages are focused. Other cached objects
will apply the common proxy mecharism in caching

Fig 1: Gwpdtem architectwre of the proposed ODBC (On-
detmatnd dotn sin behaveior classifi cation) methods
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Table 1: A simple example of the text data recorded in a proxy log file

1076121059.897 724 61.70.236.89 TCP_MISS8/204 257 GET http:/fwww.google.com. tw/url? - DIRECT/66.102.11.99 text/html. ..
1075967079162 12 203.6842.33 TCP M8 HIT/304 253 GET http://www.chiark.greenend. org. uk/~sgtatham/putty/ sitestyle.css - NONE/- text/css

W,

|‘abcdefgl:| w.

ety [f BT ] KT m 0]

—tp[m n o p 4 15 {

Fig. 2: The shding window method applied to model
individual clients

Table 2: An example of clients' clickstreams

Client Clickstreams

o C8y1, C8y3, €83, €814, C8y5, C8y5
1 CS8a1, CSgg, CS3

U C831, C8s, C8a3, €814, C8ss

User clickstream segmentation: Notably, a proxy server
may serve different clients. We want to model individual
users in the mput log file to make a more precise
prediction. There are several ways to identify individual
users (Eirinaki, 2005). The most obvious solution is to
assume that each IP address identifies a single user.
However, in current networks, a user may access the Web
from different TP addresses, or many users may use the
same TP address. Conventional approaches that consider
only the IP address i user identification are not
msufficient.

Our idea is based on an observation that, during a
certain time interval, consecutive requests from the same
IP address are usually from the same user. This time
mterval 1s called a time window (or window for short) in
this study. After preprocessing, we first arrange the input
data chronologically according to IP addresses. Then, a
sliding window technique 15 applied to segment the
consecutive requests mto small clickstreams. As shown
inFig. 2, sliding window with size W, and sliding step T
(1 « L < W,,) is applied to segment the requests. Our
experiments found that W,,,= 8 and L = 0.8 x W, work
well for a wide range of problems. It can improve the hit
ratio under adequate computation cost.

Table 2 presents an example of clickstreams where CS,
indicates the jth clickstream of the client with IP address
U;. CS; contains a sequence of requests <R, (1), R; (2), ...,
R; (W,)>. The k, request R, () = (T, (k), D, (k) P, (k)
where T; (k) is the request time, D; (k) is the request
domain and P, (k) is the request page. Notably, when the
next request occurred about a minute later, we may
conclude that it is from the same user. However, when the
time interval 18 over 60 min, it's hard to believe that the
request 1s from the same user (Silverstorn, 2002). In this
study, we set the value of ITI (inactivity-time-mterval)
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between two consecutive requests as 30 min. in log
analysis (http:/Avww.abacre.com/ala/manual/visits  hits
req.htm.). Additionally, if a clickstream contains fewer
than W ., requests, 1t will be dropped for the simplification
of computation.

Client behavior classification: As reported m Cunha and
Jaccoud (1997), there are usually two different kinds of
client behaviors. One is the surfing behavior where the
client 15 interested n exploring different pages and
domains. The other is the conservative behavior where
the client gets used to browsing certain pages and
domains. Usually, proxy's hit ratio is improved if its future
requests are predictable. According to Pareto's 80/20 law,
20% of the customers will account for 80% of the
purchases (Schmittlein et al, 1993). Therefore,
conservatory requests are more favorable for caching. In
this study, we try to identify and remove surfing
clickstreams by the concept of entropy (Shannon, 1948) -
a thermodynamic quantity describing the amount of
disorder in the clickstream.

Assume that n is the number of domains in
clickstream j. Let p; be the probability to request pages on
domam 1. For each clickstream, we can calculate its
normalized entropy (Anishchenko et al., 2001) as follows.

EG)=-Tp, * log(p,)log(n) 0

E (j) can be viewed as the degree of wncertainty in the
clickstream j regarding its domain-favorite behavior.
Therefore, if E (j) is smaller than the assigned threshold
value E, . the clickstream j 13 a domain-mode clickstream.
Otherwise, we believe the clickstream is in the exploratory
mode and should be ignored while constructing the
prediction table. A more detailed algorithm that applies
behavior classification to clickstream segmentation 1s
shown as follows:

procedure clickstream segmentation (R)

/f Let R be the set of requests with a certain IP in the log
file.

// IR 13 the number of requests

/I W .18 the sliding window size

// B, 4 18 the threshold of entropy

// R (j).time is the time of the /* request of R

/f recordList 1s a clickstream <R (1), ..., R (j)>

/f candidatel.ist is a list of consecutive requests

{
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for(i=1;1<=RJ;it++) {
overlapFlag = 1; // overlapFlag control the sliding step
recordlList = <R (i)>;
forG=1+1; ) <1+W,, && <= R|;7+0) {
if (R (j).time - R (j-1).time > ITT) exitinner for loop;

add R (J) to recordLast;
H
if 5 <1+W,,.) overlapFlag = 0,
else §
csEntropy = calculate_entropy (recordList), 7/
see Eq. (1)
if (csEntropy <= E,,) add recordList to
candidatelist;
}
i=j-1;

if (overlapFlag == 1)
i=1-(W,, -L) //sliding . requests for the
next window

H
} /fend procedure

Notably, previous methods can be regarded as a
special case of our classification method with a large E,,...
They would not filter out the exploratory clickstreams.

Prediction table construction: Given a set of domain-
mode clickstreams, we cumulate the number of requests m,
for each domain 1 as its popularity. The most popular dn,,,
domains are then selected as Top-Domains. For each Top-
Domain 1, a suitable number of popular pages (called Top-
Pages) are picked Notably, in the previous approaches,
the number of Top-Pages 1s a constant where pg (1) = pg,..
for all Top-Domains i. However, domains may have
different popularities. Different numbers of Top-Pages
should be assigned to reflect their popularities. As shown
i Fig. 3, the prediction table 1s a two-dimension list called
Top-List.

To make a far comparison, we assign a constant
PG = dn,,. *pg... of pages in different methods. For each
Top-Domain 1, the number of Top-Pages pg (1) can be
calculated using the following equation.

drsize
pe ()= pg,,* (Itdn, < (m/ X m)) @

The minimum number of Top-Pages is defined as
PEuin = Pz’ 2. When the Top-List 1s produced, it can be
stored in the memory with a hash table to search Top-
Pages in O (1) (Baboescu, 2001). In this study, the time
period to rebuild the Top-List is 24 h (one day) as
suggested by Shin ef al. (2000) and Chen Zhang (2003).
The procedure will be scheduled at 5:00 AM in the
morning as there are few requests to the server.
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| Top-list |

Page 11 Page 21 Page X1
Pape 12 Page 22 Page X2
Page 13 Page 23 Page X3
Page 14 Page 24 Page X4
Page 15 Page X5
Page 16 Page X6
Page 17 Page X7
Page 18

Fig. 3: The structure of top-list where the index X = dn,,,
(the mumber of top-domain)

Caching: Different from previous approaches, for each
coming request, ODBC would not mmpetuously fetch
corresponding Top-Pages. On the other hand, the pages
are tagged and fetched only when they are demanded.
When the proxy receives a request, the proposed caching
method first checks whether the page is in the cache or
not. If the page 1s cached (no matter if 1t 1s 1n the Top-List
or not), we will assign a new access time to it. If the
requested page 1s not in the cache, ODBC will fetch the
page, store a copy of the page mto the cache and then
examine whether the page is in the Top-List or not. If the
page 1s in the Top-List, a large cache life time (denoted by
RefCount) will be assigned. Otherwise, the default cache
life time 18 assigned. The detailed ODBC algorithm 1s listed
as follows:

procedure ODBC_caching (p)
/f p is the requested page
{
if (p is in the cache) {
reply p;
refresh the access time of p;
H
else {
fetch p from the original server;
if (p 13 in the Top-List)
assign a larger RefCount value to p;
else
assign a normal RefCount value (e.g., 1) to p;
store a copy of p into cache;
reply p:
H
} /end procedure
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When the disk space is full, the original LRI cache
replacement policy 1s adopted. The least recently used
page in the cache 1s selected to subtract its RefCount by
1. When the RefCount of page equals zero, it will be
purged. If the page 1s a Top-Page and the RefCount 1s not
equal to zero, ODBC will refresh its access time. Therefore,
the hot pages in the Top-Domains will be cached in proxy
longer than the normal ones with the LRU policy.

RESULTS AND DISCUSSION

In this study, we use the trace-drive simulation with
a real dataset to examine the performance obtained by
different algorithms. The traces (log files) are gathered
from a proxy server (http://proxy.ncu.edu.tw:3128) in the
computer center of National Central University, Taiwar,
from May 10 to May 29. In these log files, each record
refers to a request from a client to a server. It provides the
time, the URL and the request's Web server and the user's
TP address. Table 3 shows the number of clients and the
mumber of requests for each date in the traces. In this
study, we use two different metrics Chit ratio and traffic
load) to evaluate caching performances. These metrics
can be formally computed by the following Equations
(Markatos and Chronaki, 1998; Chen and Zhang, 2003;
Hu et al., 2003).

Hit Ratio = Hitgzo / Requestror 3)

Traffic Load = Size; (4)

The variable Hitgey is the hit numbers of request
pages in the cache. Regquestsy,, and Size,,, are the total
request number and the total request size, respectively.
Usually, the client latency is low if the hit ratio of proxy is
high.

Before comparing our proposed ODBC with other
proxy caching schemes, we use several log files to analyze
the problem parameters. For fair comparisons, we set the

number of Top-Domains as 20 and keep the cache size
equal to 100 MB i all experiments. The number of Top-
Pages 15 160. Figure 4 shows the hit ratio obtained by
ODBC due to different threshold values of normalized
entropy. In this study, the normalized entropy 1s applied
to mdicate the messy degree of user navigations for
filtering out the exploratory requests. A lower threshold
may eliminate creditable requests. On the other hand, a
higher threshold may leave the exploratory requests. As
shown in Fig. 4, a steep rise of hit ratio happens at
beginning and the hit ratio slowly drops after the
threshold 0.6. We set the threshold value as 0.6 in our
experiments because it 1s a reasonable middle value and
can yield the highest hit ratio.

Figure 5 shows the Iut ratio obtamned by ODBC with
different shiding window sizes. The hit ratio rises radically
when the window size 1s less than 3. It rises gently when
the window size 1s mcreased from 3-8. However, the nt
ratio decreases as the window size exceeds 8 The
possible reason is that a window with less than 3 requests
would not provide enough information to classify user
behavior. Additionally, a user usually browses one
domain with averagely 8 consecutive requests. Therefore,
based on the pattern of user behaviors, our let the sliding
window size be 8.

In ODBC, RefCount 1s a key value as regards to the
effect. Figure 6 plots the hit ratio and the traffic load due
to different RefCount. In general, the Iut ratio mcreases
with RefCount, whereas the traffic load decreases. If the
RefCount 1s assigned to 1, the Top-Pages are treated as
general pages. ODBC 1s equal to the LRU replacement
policy. Tt has the minimum cache hit ratio and the
maximum traffic load. When the value of RefCount 1s
equal to 15, it attans the maximum hit ratio and the
minimum traffic load. Our choice in terms of RefCount
is15.

Since, the cache size is limited, it is impossible to
store all the requested pages. By the way, as many
studies have found, the popularity of requests follows the

Table 3: The statistic information of proxy traces obtained from May 10 to May 29

Date 05/10 (Mon.) 05/11 (Tue.) 05/12 (Wed.) 05/13 (Thu.) 05/14 (Fri.)
Clients 2468 2406 2429 2317 2101
Requests 2181588 2009001 1740685 1959941 1625226
Date 05/15 (Sat.) 05/16 (Sur.) 05/17 (Meon.) 05/18 (Tue.) 05/19 (Wed.)
Clients 1250 1383 2210 2234 2260
Requests 1182322 1020683 1885906 1862264 2034726
Date 05/20 (Thu.) 05/21 (Fri.) 05/22 (Sat.) 05/23 (Sun.) 05/24 (Mon.)
Clients 2201 2072 1179 1007 1531
Requests 1940840 1159441 350383 721406 624886
Date 05/25 (Tue.) 05/26 (Wed.) 05/27 (Thu.) 05/28 (Fri.) 05129 (Sat.)
Clients 1363 1505 1609 1579 046
Requests §75900 1203659 1201234 1116384 625507
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Fig. 4: The hit ratio obtamed by ODBC due to different
threshold values of normalized entropy
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Fig. 5: The hit ratio obtamed by ODBC due to different
window size
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Fig. 6: The change of hit ratio and traffic load as the
RefCount varies

Zipf distribution (Cunha et al., 1995; Lee et al., 1999). To
satisfy a large fraction of users' requests, the cache need
only store the pages those will be requested most-
frequently m the future. In our experiments, we evaluate
the benefits of the ODBC method and compare 1t with DT
and LR (the default cache replacement policy of Squid).
Figure 7 presents the hit ratio obtained by different cache
sizes. As ODBC has taken the clients' domam behavior
mto consideration and can remove exploratory requests
in making prediction, its hit ratio outperforms those of
LRU and DT for all cache sizes.

Notably, when using prefetching for unproving
performance, all previous approaches need multiple
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Fig. 7: The hit ratio obtained by different proxy caching
methods due to different cache sizes
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Fig. 8 The network traffic load required by different
proxy caching methods due to different cache
sizes

requests to the server. Tt causes the network traffic to
increase. In DT, popular pages are prefetched in advance.
It may raise the hit ratio but leads to additional bandwidth
due to errors in prediction. Figure 8 depicts that DT
causes higher traffic load than ODBC for all different
cache sizes. It 1s important to note that the traffic load of
ODBC 1s also lower than the LRU policy. The results
demonstrate that ODBC is evidently more effective.
Notably, when the cache size 1s large, more pages are
cached and more future requests may be satisfied by the
proxy. For a very large cache size, the performance of all
methods converges since almost all the pages are cached.

CONCLUSION

In this study, we propose the ODBC method that
takes client's domain-favorite behavior into account and
uses the normalized entropy of sliding window to remove
incredible requests. Moreover, we address the on-demand
concept to further reduce the traffic load. Experiments
show that ODBC can not only improve the hit ratio, but
also alleviate the network traffic. As the proposed
algorithms are very simple i mmplementation, we have
developed an optional ODBC module in the Squid proxy
server (Wu et al., 2004). We plan to explore more on the
relationship between caching prediction and clients'
behavior m our future works. For example, patterns of
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users' behavior may be deeply and meticulously
segmented by the data mining technique. We also intend
to extend our method from isolation to cooperation. The
requests from homogeneous users can be conducted to

the same proxy server by clustering techmques.
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