M Asian Journal of Information Technology 6 (8): 902-906, 2007
(T 15516823015

Online

© Medwell Journals, 2007

Software Process Improvement Through Secured Development Lifecycle

'S. Chitra and *M. Rajaram
M. Kumarasamy College of Engineering, Karur-639 113, India
*Department of EEE, Thanthai Periyar Government Institute of Technology, Vellore, India

Abstract: This study discusses the software process improvement through Secured Development Lifecycle
(or SDL), a process adopted for the development of software that needs to withstand malicious attack. The
process encompasses the addition of a series of security-focused activities and deliverables to each of the
phases of software development process. These activities and deliverables include the development of threat
models during software design, the use of static analysis code-scanning tools during implementation and the
conduct of code reviews and security testing during a focused "security push”.

Key words: SDL., TSP, deployment, verification, KSL

INTRODUCTION

This study assumes that there 13 a central group
within the company (or software development
organization) that drives the development and evolution
of security best practices and process improvements,
serves as a source of expertise for the organization as a
whole and performs a review (the Final Security Review or
FSR) before software 1s released. The existence of such an
organization is critical to successful implementation of the
SDL as well as to improving software security. While,
some orgamzations might consider having the "central
security team” role performed by a contractor or
consultant. This study describes the integration of a set
of steps mtended to improve software security into the
software development process that 1s typically used by
large software development orgamzations. These steps
have been designed and implemented by Microsoft as
part of its Computing Initiative. The goal of these process
unprovements 1s to reduce the quantity and severity of
security vulnerabilities i software used by customers. In
this document, the modified software development
process, which 1s cumrently being implemented at
Microsoft, 1s referred to as the Computing Software
Development Lifecycle (or simply the SDL).

TEAM SOFTWARE PROCESS AND SECURITY

In this study, the design principles of Security Team
Software Process can be categorized mto 4 phases
(Humphery, 2000):

* Secure design process.
¢ Secure implementation process.

s Secure review and inspection process.
s Secure verification process.

The goal of this effort 1s to develop a process that:

* Supports secure systems development practices.

» Predicts the likelihood of latent security defects.

» Can be dynamically tailored to respond to new
threats.

Design principles for secure applications: The principles
for producing secure application are also well known and
easy to understand:

» Authorize and authenticate all users.

» Mistrust all user mput.

* Encrypt sensitive data from login to logout.
s Protect persistent data.

PROBLEMS

Stakeholder’s issues: A number of ways users can
inhibit requirements gathering (Humphery, 1994):

¢ Users don’t understand what they want.

¢ Users wont commit to a set of written requirements

» Users msist on new requirements after the cost and
schedule have been fixed.

» Communication with users is slow.

» Users often do not participate m reviews or are
mcapable of doing so.

» Users are technically unsoplusticated.

¢ Users don’t understand the development process.

Corresponding Author: S. Chitra, M. Kumarasamy College of Engineering, Karur-639 113, India

Asian J. Inform. Tech., 6 (8): 902-906, 2007

This may lead to the situation where user
requirements keep changing even when system or

product development has been started.

Engineer/developer issues: Possible problems caused by
engineers and developers during requirements analysis
are (Bazier, 1990).

Techmical personnel and end users may have
different vocabularies. Consequently, they can believe
they are in perfect agreements until the finished product
1s supplied.

Engineers and developers may try to make the
requirements fit an existing system or model, rather than
develop a system specific to the needs of the client.

Engineers or programmers, rather than personnel
may often carry out analysis with the people and the
domain knowledge to understand a client’s needs

properly.
ATTEMPTED SOLUTIONS

One attempted solution to communications problems
has been to employ specialists in business or system
analysis.

Techniques such as (Humphery, 2002):

* Prototyping.

Unified Modeling Language (UML).
Use cases.

MAIN TECHNIQUES

Conceptual requirements analysis includes 3 types
of activity:

Eliciting requirements: The task of communicating with
customers and users to determine what their requirements
are.

Analyzing requirements: Determiming whether the stated
requirements are unclear, incomplete, ambiguous, or
contradictory and resolving these issues.

Recording requirements: Requirements may be
documented in various forms, such as natural language,
use cases, or process specifications.

Requirements analysis can be a long and arduous
process during which many delicate psychological skills
are involved New system change the environment and
relationships between people, so it is important to identify
all the stakeholders, take mto account all their needs and
ensure they understand the implication of the new

903

systems. Analysts can employ several techniques to elicit
the requirements from the customer. Historically,

This has included such things as holding interviews,
or holding focus groups and creating requirement list.
More modern techniques include prototyping and use
cases. Where necessary, the analyst will employ a
combination of these methods to establish the exact
requirements of the stakeholders, so that a system that
meets the business needs is produced.

Stakeholder interviews: Stakeholder mterviews are a
common method used n requirement analysis. Some
selection is usually necessary, cost being one factor in
deciding whom to interview. These interviews may reveal
requirements not previously envisaged as being with in
the scope of the project and requirements may be
contradictory. However, stalceholder shall have an idea of
his expectation or shall have visualized his requirements.

Requirement workshops: In some cases it may be useful
to gather stakeholders together in “requirement
workshop”. These workshops are more properly termed
Jomt Requirement Development (JRD) sessions, where
requirements are jointly identified and defined by
stakeholders. Tt may be useful to carry out such workshop
in a controlled environment, so that the stakeholders are
not distracted. A facilitator can be used to keep the
process focused and these sessions will often benefit
from a dedicated scribe to document the discussion.
Facilitators may make use of a projector and diagramming
software or may use props as simple as paper and
markers. One role of the facilitator may be to ensure that
the weight attached to proposed requirements is not
overly dependent on the personalities of those mvolved
1n the process.

Contract-stylerequirement lists: One traditional way of
documenting requirements has been contract style
requirement lists. In a complex system such requirement
list can run to hundreds of pages.

Measurable goals: Best practices take the composed lists
of requirements merely as clues and ask why, repeatedly,
until actual business purposes are discovered. Then
stakeholders and developers can devise tests to measure
what level of each goal has been achieved so far. These
goals change more slowly than the long list of specific but
unmeasured requirement. Once the small set of critical,
measured goals has been established, rapid prototyping
and short iterative development phases may proceed to
deliver actual stakeholder value long before the project 1s
half over.

Asian J. Inform. Tech., 6 (8): 902-906, 2007

Prototypes: Prototypes are mockups of the screens of an
application, which allow users to visualize the application
that isn’t yet constructed. Prototypes help users get an
1dea of what the system will look like and make it 15 a for
users to make design decisions without waiting for the
system to be build. Major improvement in commurmcation
between the users and developers were often seen with a
mtroduction of prototypes. Early views of the screen led
to fewer changes later and hence reduced over all cost
considerably.

However, over the next decade, while proving a
useful techmque, it did not solve the requirement problem:

* Managers once they see the prototype have a hard
time understanding that the finished design will not
be produced for some time.

¢ Designers often feel compelled to use the patched
together prototype code in the real system, because
they are afraid to *waste time’ starting again.

* Prototype principally helps with design decisions
and user interface design. However, they can’t tell
you what the requirements were originally.

¢ Designers and end users can focus too much on user
mterface design and too little on producing a system
that serves the business process.

Prototypes can be flat diagrams or working
application using synthesized functionality. Prototype are
made in a variety of graphic design document and often
remove all colors from the software design m instances
where the final software is expected to have graphic
design applied to it. This helps to prevent confusion over
the final visual look and feel of the application.

Use cases: Use cases are a technique for documenting the
potential requirements of a new system or software
change. Each use case provides one or more scenarios
that convey how the system should interact with the end
user or another system to achieve a specific business
goal. Use cases typically avoid techmcal jargen,
preferring instead the language of the end user or domain
expert. Use cases are often co-authored by software
developers and end users.

Use cases are deceptively simple tools for describing
the behavior of the software. A use case contains a
textual description of all of the ways, which the mtended
users could work with software through its interface. Use
cases do not describe any mtermnal workings of the
software, nor do they explain how that software will be
implemented. They simply show the steps that the user
follows to use the software to do his work. All of the ways
that the user interacts with the software can be described
in this manner.

Each use case focuses on describing how to achieve
a single busimess goal or task. From a traditional software
engineering perspective, a use case describes just one
feature of the system. For most software projects, thus
means that perhaps tens or sometimes hundreds of use
cases are needed to fully specify the new system. The
degree of formality of a particular software project and the
stage of the project will influence the level of detailed
required in each use case. A use case defines the
interactions between external actors and the system under
consideration to accomplish a business goal. Actors are
parties outside the system that mteract with the systems;
an actor can be a class of users, a role users can play, or
another system.

Use cases treat the system as a “black box™ and the
interactions with the system, including system responses,
are as perceived from outside the system. This is
deliberate policy, because it simplifies the description of
requirements and avoids the trap of making assumption
about how this functionality will be accomplished.

A use case should (Humphery, 2002):

¢ Describe a business task to serve a business goal.

» Be at an appropriate level of detail

¢+ Be short enough to implement by one software
developer in a single release.

Use cases can be very good for establishing
functional requirements, but they are not suited to
capturing Non-functional — requirements. However,4
performance engineering specifies that each critical use
case should have associated performance oriented non-
functional requirements. Software requirements
specification.

A Software Requirement Specification (SRS) is a
complete description of the behavior of the system to be
developed. Tt includes a set of use cases that describes all
of the mteraction that the users will have with the
software. Use cases are also known as functional
requirement. In addition to use cases, the SRS also
containg non functional requirements. Non-functional
requirements are requirements which imposed constrains
on the design or implem entation.

Stakeholderidentification: Tt is increasingly recognized
that stakeholders are not limited to the orgamzation
employing the analyst (Jones, 2004). Other stakeholders
will include:

» Those orgamzations that mtegrate horizontally with
organization the analyst is designing the system for

» Any back office system or orgamzations.

+ Senior management.

Asian J. Inform. Tech., 6 (8): 902-906, 2007

SECURE BY DEFAULT

In the real world, software will not achieve perfect
security, so designers should assume that security flaws
would be present. To minimize the harm that cccurs when
attackers target these remaining flaws, software's default
state should promote security. For example, software
should run with the least necessary privilege and services
and features that are not widely needed should be
disabled by default or accessible only to a small
population of users.

SECURE IN DEPLOYMENT

Tools and guidance should accompany software to
help end users and/or admimstrators use it securely.
Additionally, updates should be easy to deploy.

COMMUNICATIONS

Software developers should be prepared for the
discovery of product should
commumnicate openly and responsibly with end users
and/or admimstrators to help them take protective action
(such as patching or deploying workarounds).

The first two elements secure by design and secure
by default provide the most security benefit. Secure by
design mandates processes intended to prevent the
introduction of vulnerabilities in the first place, while
secure by default requires that the default exposure of the
software its "attack surface” be mimmized.

vulnerabilities and

RESULT ANALYSIS

Windows Server (2003) was the first operating
system release at Microsoft that implemented large
portions of the SDL. Figure 1 shows the number of
security bulletins issued within the year after release for
the two most recent Microsoft server operating systems:
Windows (2000) and Windows Server (2003). When
Windows (2000) was released, Microsoft did not have a
formal security bulletin severity rating system. Microsoft
has evaluated each security bulletin that applies to
Windows (2000) against its current severity rating
system.) As has been discussed earlier in this study,
Windows Server (2003) was developed with most (but not
all) the SDL processes.

The security of a software-mtensive system 1s
directly related to the quality of its software.

s Over 90% of software security attackers exploiting
known software defects cause incidents.

905

01

60-

501

40—

304

20+

104

L] T 1
Pre-sdl sdl

Fig. 1. Windows pre- and post-SDL critical and
umportant security bulletins

Experienced and capable software engineers

Inject, on average, one defect every mne lines of
code.

A one million line of code systems typically containg
1,000-5,000 defects when shipped.

TSP fosters good practices based on engineering
principles.
With TSP, software teams

Build detailed, accurate plans
Manage and track their commitments
Produce nearly defect-free
defects/KSLOC)

software (<0.1

Software produced with TSP has one or two orders of
magnitude fewer defects than current practice.

0.02 defects/KSLOC vs 2 defects/KSLOC
20 defects per MSLOC wvs. 2000 defects per
MSLOC

If 5% of the defects are potential security holes, with
TSP there would be 1 vulnerability per million SLOC.

CONCLUSION

The secured development lifecycle is effective at
reducing the incidence of security vulnerabilities. Initial
implementation of the SDL (Windows Server 2003; SQL
Server, 2000, Service Pack 3 and Exchange, 2000, Server
Service Pack 3) resulted in significant improvements in
software security and subsequent software versions,
reflecting enhancements to SDL, appear to be showing

further improvements in software security. The

Asian J. Inform. Tech., 6 (8): 902-906, 2007

development and implementation of the Secured
development lifecycle represent a major investment for
Microsoft and a major change m the way that
software 13 designed, developed and tested. The
increasing importance of software to society emphasizes
the need for Microsoft and the industry as whole to

contimue to improve software security.
REFERENCES

Bors, B., 1990. Software Testing Techniques. (2nd Edn.),
pp: 78-143.

Humphery, W.S., 2000. Introduction to Team Software
Process. Pearson Edu. Singapore, pp: 27-196.

Humphrey, W.S., 1994. Process Feedback and Learmng.
The Sth Int. Software Process Workshop, Arlington,
pp: 232-250.

Humphrey, W.S., 2002. Managing the Software Process,
Pearson Education, Singapore, pp: 300-323.

Jones, 2000. Capers. Software Assessments. Benchmarks
and Best Practices, Addison-Wesley, pp: 165-189.

Viega, Jones and McGraw, Gary, 2001. Building Secure
Software Building Secure Software. Addison Wesley,
pp: 124-168.

906

