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Abstract: Traffic Engineering (TE) broadly relates to optimization of the performance of a network. The overlay
approach has been widely used by many service providers for Traffic Engineering (TE) in large Internet
backbones. In the overlay approach, logical commections are set up between edge nodes to form a full mesh
virtual network on top of the physical topelogy. TP routing is then run over the virtual network. Instead of
overlaying TP routing over the logical virtual network, the integrated approach runs shortest path TP routing
natively over the physical topology. Traffic engineering needs to determine the optimal routing of traffic over
the existing networl infrastructure by efficiently allocating resource in order to optimize traffic performance on
an TP network. Traffic engineering objectives are achieved through carefully routing logical connections over
the physical links. Common objectives of traffic engineering mclude balancing traffic distribution across the
network and avoiding congestion hot spots. This study proposes a new approach called the Bayesian
approach to avoid congestion hot spots without full mesh overlaying. This approach can be illustrated with
a simple network, and then present a formal analysis of the Bayesian networks and a method for finding the
congestion hot spots. Once, the congestion hot spots are identified then the traffic can be distributed, so that
no link in the network is either over utilized or under utilized. With this Bayesian approach the quality of the
routing can be improved and congestion can be avoided.
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INTRODUCTION

The unprecedented growth of the Internet has lead
to a growing challenge among the TSPs to provide a good
quality of service, achieve operational efficiencies and
differentiate their service offerings. ISPs are rapidly
deploying more network infrastructure and resources to
handle the emerging applications and growing number of
users. A routing specifies how to route the traffic between
each origin-destination pair across a network. TP routing
typically uses shortest-path computation with some
simple metrics such as hop-count or delay. Although the
simplicity of this approach allows TP routing to scale to
very large networks, it does not make the best use of
network resources (Awduche et al., 1998).

In this study, a new approach is considered and that
accomplishes traffic engineering objectives to find the
congestion hot spots, without full-mesh overlaymg
concept and for achieving traffic engineering in the
backbones. The formal analyses of the Bayesian networks
propose a systematic method for finding the congestion
likelihood in a network.

Enhancing the performance of an operational
network, at both the traffic and the resource levels are the
major objectives of traffic engineering (Awaduche et al.,

2002). The goal of performance optimization of operational
networks (Awaduche et af, 1998) 13 accomplished by
routing traffic n a way to utihze network resources
efficiently and reliably.

In large Internet backbones, service providers
typically have to explicitly manage the traffic flows in
order to optimize the use of network resources. This
process 1s often referred to as traffic engineering.

Overlay approach: Currently, most large Internet
backbones employ the so-called overlay approach for
traffic engineering. With this approach service providers
establish logical connections between the edge nodes of
backbones and then overlay these logical connections
onto the physical topology. Service providers can
control the distribution of traffic over physical topology
through carefully routing these logical connections over
physical links. The optimal mapping between the logical
connections and the physical links can be computed
using a linear programming formulation.

While the overlay approach has been widely
implemented on current Tnternet backbones, it suffers the
so-called “N-Square” problem. As the size of the
backbone network mcreases, the number of logical
connections to be established will rise drastically, adding
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considerable management complexity and messaging
overheads. Second, while TP routing runs over such a
fully meshed virtual network, each edge node has to
establish routing peering with (N-1) other nodes. Thus
poses a significant problem to current TP routers as most
of them can not support a large number of peers. Note
that multiple logical connections may go over the same
physical link. Thus, the breakdown of a single physical
link may cause multiple logical connections to fail and this
will exaggerate the routing update load.

Integrated approach: Wang er al. (2001) proposed a
new approach called Integrated approach that
accomplishes traffic engineering objectives without full
mesh overlaying. Instead of overlaying IP routing over
the logical virtual network, the new approach runs
shortest-path TP routing natively owver the physical
topology. Tt is theoretically proved that for any given
traffic demands 1t 1s possible to select a set of link
welghts such that the shortest paths based on the
selected link weights produce the same traffic
distribution as that of the overlay approach with the
assumption that traffic between the same source-
destination pair can be split across multiple equal cost
shortest paths, if exists.

Let us first illustrate with a simple example how the
mtegrated approach works. Figure 1 shows a simple
network topology, link capacities, and traffic demands.
Each link has a capacity of 5 units and each demand
needs bandwidth of 4 units. Although link capacities and
traffic demands are umidirectional i IP networks, we
assume they are bidirectional here for simplicity.

To meet the traffic engineering objectives, we need
to place the demands over the links in a way that the
traffic distribution 1s balanced and there 1s no congestion
or hot spot mn the network. The optimal routes can be
calculated using a linear programming formulation (Yufei
and Zheng, 1999).

Fig. 1: Topology and capacity
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This TIntegrated approach has a number of
advantages. First, it retains the simplicity of TP routing
and requires little changes to the basic Internet
architecture. Once the weights are calculated and set, the
shortest-path routing protocol such as OSPF (Moy, 1998)
can calculate the paths in the normal way, and packets are
forwarded along the shortest paths. Second, it elimmnates
the “N-Square” problem all together and reduces
managing overheads in setting up logical connections.

Common objectives of traffic engineering include
balancing traffic distribution across the network and
avolding congestion hot spots. Shortest path chosen by
IP routing does not always produce good network
utilization. Poor utilization of network resources can be
llustrated with the so-called fish problem. This leads to
congestion hotspots m the network. The Bayesian
approach is proposed here for finding the likelihood of
congestion in the TP routing. Based upon the likelihood
the traffic can be diverted through under utilized path or
path having minimum likelihoed for congestion. There by
it is possible to improve the quality of the routing.

BAYESIAN NETWORKS

Graphical models are nothing but fusion of
probability theory and graph theory. They provide a
natural tool for dealing with two problems that occur
throughout applied mathematics and engmmeering-
uncertainty and complexity-and in particular they are
playing an increasingly important role in the design and
analysis of machine learning algorithms.

Representation: Probabilistic graphical models (Russell
and Norving, 1995; Kevin, 2000) are graphs in which
nodes represent random variables, and the arcs represent
conditional independence assumptions. Hence, they
provide a compact representation of joint probability
distributions. Undirected graphical models, also called as
Markov Random Fields (MRFs) or Markov networks,
have a simple defimtion of independence: Two (set of)
nodes A and B are conditionally independent given a
third set, C, if all paths between the nodes in A and B are
separated by a node in C. By contrast, directed graphical
models also called Bayesian Networks or Belief Networks
(BNs), have a more complicated notion of independence,
which takes into account the directionality of the arcs.

For a directed model, we must specify the Conditional
Probability Distribution (CPD) at each node. If the
variables are discrete, this can be represented as a table
(CPT), which lists the probability that the child node takes
on each of its different values for each combination of
values of its parents.
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Table 1: CPD for the node “Cloudy”

P(C=F) P(C=T)
0.5 0.5
Table 2: CPD for the node “Sprinkler”

c PSS =5 PE=T)
F 0.5 0.5

T 0.9 0.1
Table 3: CPD for the node “Rain”

c PR =F) PR=T)
F 0.8 0.2

T 0.2 0.8
Table 4. CPD for the node “WetGrass”

C R PW=F) PW=T)
F F 1.0 0.0

T F 0.1 0.9

F T 0.1 0.9

T T 0.01 0.99

Likelihood calculation: Let us consider the following
example, in which all nodes are binary, i.e. have two
possible values, which will be denoted by T (true) or F
(false).

We see that the event “grass 1s wet” (W = true) has
two possible causes: Fither the water sprinkler is on
(S = true) or 1t 18 raining (R = true). The strength of this
relationship is shown in the Table 1-4. For example, we

see that
Pr(W=true | S=true, R=false) = 0.9
(second row) and hence,
Pr{W=false | S=true, R=false) =1 - 09 =01,

since each row must sum to one. Since the C node has no
parents, its CPT specifies the prior probability that it is
cloudy (in this case, 0.5). (Think of C as representing the
season: 1if 1t 15 a cloudy season, it 1s less likely that the
sprinkler 1s on and more likely that the ram is on.)

The simplest conditional independence relationship
encoded in a Bayesian network can be stated as follows:
a node 1s independent of its ancestors given its parent,
where the ancestor/parent relationship is with respect to
some fixed topological ordering of the nodes.

By the chain rule of probability, the joint probability
of all the nodes m the graph above 1s

P(C,S.R,W) =P(C)* P(S| C) * P(R | C,S) * P(W | C,S.R)

By using the conditional mdependence relationships,
we can rewrite this as

P(C,S.RW)=P(C)* P(S | C)* P(R | C) * P(W | C,SR)
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Fig. 2: Belief Network for event “grass is wet”

Where we were allowed to simplify the third term because
R is independent of s given its parent C, and the last term
because W is independent of C given its parents S and R.
The most common task to be solved using Bayesian
networks is probabilistic inference. For example, suppose
one observes the fact that the grass is wet. There are two
possible causes for this: Either it is raining, or the
sprinkler is on. Which is more likely? Then use Baye’s
rule (Aji and McEliece, 2000, Kevin, 2000) to compute the
posterior probability of each explanation (where 0 = false
and 1 = true).
Likehood * prior
Marginallikehood

Posterior =

or, in symbols,

Ple|]R=1)P(R=r1)
P(e)

P(R=r1|e)=

Where P(R = r | ) denotes the probability that random
variable R has value r given evidence e. The denominator
1s just a normalizing constant that ensures the posterior
adds up to 1, it can be computed by summing up the
numerator over all possible values of R, 1e.,

Ple) =P(R=0,e)+P(R=1e)+.......
=sum_r P(e| R=r) P (R=1)

This 18 called the margmal likelihood (since we
marginalize out over R) and gives the prior probability of
the evidence.

Applying Baye’s rule (Aj and McEliece, 2000; Kevin,
2000)to Fig. 2

P(s:1|W:1):7Pr(S:LW:D
Pr{W =1)
T PrC=cS=LR=r,W=1)
N Pr{W =1)
_o0ms
0.6471
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P(R:I\Wzl):ipr(Rzl’W:D
Pr{W=1)
_Z. PiC=cS=s,R=1LW=1
- Pr{(W =1)
_ 04581 _ o
0.6471
Where,

PR=1)=%.,,Pi(C=cS=s,R=,W=1)
=0.6491

is a normalizing constant, equal to the probability
(likelihood) of the data. So, we see that it 1s more likely
that the grass is wet because it is raining: The likelihood
ratio 1s 0.7079/0.4298 = 1.647.

The relationship between graphical models and bayes'
rule: For complicated probabilistic models, computing the
normalizing constant P(e) 18 computationally mtractable,
either because there are an exponential number of
(discrete) values of R to sum over, or because the ntegral
over R camnot be solved in closed form (e.g., if R is a high-
dimensional vector). Graphical models can help because
they represent the joint probability distribution as a
product of local terms, which can sometimes be exploited
computationally (e.g., using dynamic programming or
Gibbs sampling). Bayes nets (directed graphical models)
are a natural way to represent many hierarchical Bayesian
models.

To meet the traffic engineering objectives, demands
have to be placed over the links mn order to aclueve
balanced traffic distribution and to avoid congestion hot
spots in the network. The Bayesian network method for
finding likelihood can be applied for identifying the
congestion hot spots. In the study, new DBayesian
network method is proposed to measure the congestion
likelthood m the integrated approach.

IDENTIFYING CONGESTION HOT SPOTS
USING BAYESIAN NETWORKS

One approach to overcome the “traffic distribution
problem”™ 1s to identify the congestion hot spots in the
network. Optimal routes having minimum congestion
likelihood can then be calculated. Instead of routing the
demands over the congested routes we can select the
routes that swit the current traffic demand and capacity of
the network.

Let us first illustrate with a simple example how to
calculate the congestion likelihood. Figure 3 shows a
sinple network topology and link capacities.
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Fig. 3: Bayesian network for finding congestion likelihood

Table 5: CPD for the node “A”

PA=0) PA=1)
0 1

Table 6: CPD for the node “D”

A POD=0) PO=1)
0 1 0

1 0.01 0.99
Table 7: CPD for the node “G™

D PG=0) P(G=1)
0 1 0

1 0.9 0.1
Table 8: CPD for the node “C”

D P(C=0) P(C=1)
0 1 0

1 0.1 0.9
Table 9: CPD for the node “E”

G C PE=0) P(E=1)
00 1.0 0.0
01 0.01 0.99

1 0 02 0.8
11 0.01 0.99

Let us consider the following example, m which all
nodes are binary, i.e. have two possible values, which will
be denoted by 1 (true) or 0 (false).

Event “A 18 the source and E 1s the destmation”
(E = 1) has two possible causes: either the demand i1s
routed through node G (G = 1) or through node C (C =1).
The strength of this relationship is shown in the
Table 5-8. By applying the Baye’s rule to Fig. 3, the
calculation of the congestion likelihood from source A to
destination E through two different routes ADGE and
ADCE as follows.

In the Table 5, probability of the node present is
1(ie A=1). The CPD of node D,G,C and E presented in
Table 6-9, respectively.
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For example, from Table 9, we see that,
Pr(E-1|G=0,C=1)=099

(second row), and hence,
Where,

PrE=0|G=0,C=1)=1-0.99=0.01,

since, each row must sum to one.
Congestion likelihood of the route ADCE,

pC=1|E=1y=HEZLE=D
Pr(E = 1)
 ZapoPrlA=aD=4d,C=1G=g.E=1)
B Pr(E=1)
- 0.9911

Congestion likelihood of the route ADGE,

PG=1/E=1)= Pr{G=1LE=1)
Pr(E=1)
%, ,cPA=aD=dC=1G=1LE=1)
B PE=1)
=0.10801
Where,

PE=1)=3,,..PA=a,D=d,c,G=gE=1)
=0.89001

the route ADCE 1s
more congested when compared to that of the other route
ADGE. So, by calculating the likelihood, the congestion
hot spots can be identified in a network.

From the above calculations,

CONCLUSION

The new Bayesian approach is proposed for
achieving traffic engineering in the backbones. Instead
of relying on the mappmg of logical comnections of
physical links to manage traffic flows in the network, we
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run TP routing natively over the physical topology and
control the distribution of traffic flows through setting
appropriate link weights for shortest path routing.

Commeon objectives of traffic engineering include
balancing traffic distribution across the network and
avolding congestion hot spots. Shortest path chosen by
IP routing does not always produce good network
utilization. Poor utilization of network resources can be
illustrated with the so-called fish problem. This leads to
congestion hotspots in the network. We proposed a
Bayesian approach for finding the Ilikelihood of
congestion in the TP routing. Based upon the likelihood
traffic can be diverted through the load of the under
utilized path or path having mimmum likelihood for
congestion. For any set of feasible routes, the congestion
likelihood can be calculated with the help of the Bayesian
network approach. So, it 1s possible to improve the quality
of the routing.
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