Medwen Asian Journal of Information Technology 6 (5): 618-621, 2007

Onlline

© Medwell Journals, 2007

Finding Hided Processes in Linux

Yuan Yuan and Dai Guanzhong
College of Automation, Northwestern Polytechnical University,
Xi’an Shaanxi 710072, People Republic China

Abstract: This research analyses the mechanism of using TLKMs baclkdoors to hide processes. According to
the flaw in backdoors’ design and the characteristics of/proc filesystem, a new method for finding lnded
processes is presented That is traversing all possible PID directories to find out each existent process in fact.
Through comparing them with the ordinary output, the hided processes would be discovered. At last the code
realized in Perl has been presented. The experiment shows that this method can find the processes hided by

LEKMs backdoors efficiently.

Key words: Linux, LKMs backdoors, system calls, hide processes, PID

INTRODUCTION

Linux OS (Operation System) has arrested more and
more attention because of its stability, security and open
source. Due to this mechamsm called Loadable Kernel
Modules (LKMSs), it is able to dynamically add code to the
kernel at runtime, which allows us to access very sensitive
parts of OS. Once LKMs are loaded m kemel, they can
change kernel variables, reload kernel functions, expand
or cut down some function of OS (Pragmatic, 1999).
Moreover, when modules are no longer needed, they can
be removed in security. All of these fit the development of
device drivers very much. So, new modules that support
the latest hardware are being developed continuously and
added to the default Linux kernel distribution. However,
because of its high privilege it also offers a chance to
hackers and leads many malicious code based on LKMs
appearing. Tt brings huge threat to Linux OS.

This study 1s divided mto three parts: At first, the
features of Lmux/proc filesystem are mtroduced.
Following, after analyzing the principle of LKMs
backdoors and the flaw in hiding progresses technique,
one method for finding hided progresses by exhaustion is
presented. At the end of this study we realize it in Perl
and show the experiment results.

PROC FILE SYSTEM AND PROCESSES

In Limux/proc 1s a virtual filesystem and used heavily.
It doesn’t reside on any physical or remotely mounted
disk. Tt only provides an interface for the communication
between kemnel and application programs. This makes
application programs get the current runtime state, data

mformation m kemel and modify some system

configuration (Zhao, 2004). Many commands in Linux,
such as ps, top and uptime, obtain their information from
/proc. Some device drivers also export messages via /proc.

Within/proc there are many mumerical directories
which correspond to the PID (Process Identification) of
processes running in the system currently. Each directory
containg both subdirectories and regular files. They
elaborate further on the rintime attributes of process. For
example, within directory/proc/1, the result of command 1s-
1 is shown in Fig. 1.

The three symbol link files are very important to next
analysis. File cwd links the current directory of thus
process; file exe links the complete path of this executable
file, file root links its root directory, it is/commonly.

PRINCIPLE OF LKMs BACKDOORS

This part only explains how LKMs backdoors are
implemented. To learn how to write your own LKMs, see
our reference list (Pragmatic, 1999, Yuan, 2005; Shi, 2003).

LKMs backdoors are called rootkits for short. When
these rootkits are loaded or mstalled on the aim machine,
they will run as a part of kernel. Then, hackers will own
the root privilege by them so that this system will be
controlled completely by mtruder (Steath, 2003).
Unfortunately, it 1s too difficult to find the hidden danger
for system managers.

The famous rootkits: Knark and Adore rootkits are
popular at the moment (Rob, 2003). Knark is based on
kernel 2.2 and it isn’t a stable version. Tts important
functions are hiding files, hiding progresses, redirecting
ELF files, luding information of network and so on.

Corresponding Author: Yuan Yuan, College of Automation, Northwestern Polytechnical University, Xi’an Shaamxa 710072,

People Republic China

618

Asian J. Inform. Tech., 6 (5): 618-621, 2007

-I'-r-T-- 1 root root 08231 15:43 emdline
| rwrstrwsarws 1 root root 08231 1543 cwd-=/
[mmmmes 1 root root 08231 15:43 environ
| rwrstrwsarws 1 root root 08231 15:43exe-=/sbhin/Init
dr= xx------- 2 root root 08231 15:43fd
-r---T-- 1 root root 08231 15:43 maps
“TW=--mm-- 1 root root 08331 15:43 mem
-r---T-- 1 root root 08231 15:43 mounts

| rwrstrwsarws 1 root root 08231 1543 root-=/
-r---T-- 1 root root 082331 15:43stat
-r---T-- 1 root root 082331 15:43statm
-r---T-- 1 root root 082331 15:43status

Fig. 1: Structure of process init

Adore resembles Knark for functions, but it supplies
uninstall (need be validated by password) function and 1s
used on kernel 2.2 and 2.4. Tt is easily to configure and use
Adore.

Moreover, hackers have exploited many rootkits
according to their needs. Such as Vlogger is especial for
recording the knock of keyboard and Rkit is used just for
setting the defined UID to zero to get the manager
privilege.

Technigque of rootkits: Fach OS has some functions build
into its kernel, which are used for every operation on that
08, These functions are system calls. They represent a
transition from user space to kernel space. Most library
functions rely on system calls. System calls are
implemented through a given maskable interrupt. Tn Linux,
the interrupt is int 0x80. When the int 0x80 instruction is
executed, control is given to the kernel.

Command 1s is used to list directory contents. Tt
needs sys open(), sys getdents64(), sys write() system
calls etc... Especially, the result of command “1s™ is shown
on screen by sys_ write(). So, if we capture sys_write() in
kernel and modify its display, the output of 1s would be
not the real directory information. The primary
characteristic of TLKMs backdoors is capturing and
modifying many system calls at the same time. As a result,
the system response will be changed entirely. Let’s see an
example of hacking sys getdents64() system call to hide
appointed progress.

Command ps-A is used to report process status and
it gives a snapshot of the current processes. Tts output
before sys getdents64() being captured is shown as
Fig. 2.

There are thousands of processes in system, but we
only show part of them simply. Our purpose is hiding a
progress named server whose PID is 3257. But none of
system calls could be used to get a list of current
processes directly in Linux. Command ps-A is realized
only by querying numerically directories within /proc. Tt
just does 1s on /proc. Every number it finds stands for a
runtime process’s PTD. Now we can hide processes by the
technique of hiding file, because /proc is realized as
an interface of filesystem by previous introduction.

619

PIDTTY Time aVD

1?2 00: 00: M Tnit

27 00: 00: 00 kevent d

32 00: 00: 00 kammd

42 00: 00: 00 ksoft T rqd OPUD
3206 7 00: 00: 00 smbd
32157 00: 00: 00 smbd
3220pt s/ 5 00: 00: 00 vul ner abl e
3257 pt s/ 5 00: 00: 00 server
325872 00: 00: 00 in. Telnet d
32597 00: 00: 00 login
3260 pt s/ 3 00: 00: 00 bash
3289pt s/ 3 00: 00: 00 su
3200 pts/ 3 00: 00: 00 bash

Fig. 2: Qutput before hacking sys getdents64 ()

PIDTTY Time CMD

17 00:00: 00Init

27 00: 00: 00 kevent d

37 00: 00: 00 kapmd

42 00: 00: 00 ksoft T qd OPUO
3206 7 00: 00: 00 smbd
32157 00: 00: 00 smbd
3220pt s/ 5 00: 00: 00 vul ner abl e
325872 00: 00: 00 in. Telnet d
32597 00: 00: 00 login
3260 pt s/ 3 00: 00: 00 bash
3289pt s/ 3 00: 00: 00 su
3200 pts/ 3 00: 00: 00 bash

Fig. 3: Output after hacking sys_getdents64 ()

The system call for querying file information is
sys_getdents 64(). When querying the related information
of files, Linux kernel calls sys getdents64() to execute
checking and sends the result to the program runmng in
user space. At this moment, we could capture the system
call and cut off that nformation relative to the appointed
file, this relative mformation wouldn’t be send to user
space. In this example, what we need to do is not to send
the information containing server.

After sys getdents64() 13 hacked, the output of
command ps-A is shown in Fig. 3. Contrasting to Fig. 2,
we could find that the server progress doesn’t be
displayed. Even if using 1s on /proc, we can’t see the
numerically directory 3257. Hiding process succeeds.

Tt is fatal for system manager if other system calls are
captured and modified further. This OS can’t be trusted
any more. Such as, capturing sys write() to hide
appointed screen output, capturing sys kill() to make
manager not kill Trojan progress, capturing sys_getuid()
to configure a user get the root shell.

Further more, we can hack sys query module() to
hide the LKMs self. So, even system manager find
some questions, he can’t use command lsmod find the
backdoor easily.

Asian J. Inform. Tech., 6 (5): 618-621, 2007

FIND THE HIDED PROGRESSES

Principle: Although LKMs backdoors are strong and
hard to find, there 1s a flaw for these rootkits. That is they
only alter the display of output, those hided files still exist
and are available. In the previous example, the process
whose PID is equal to 3257 has been hided, but we can
use cd /proc/3257 to enter this directory and use ls-1 to
read all subdirectories and regular files just like Fig. 4.

It should be explammed that why using ps we couldn’t
find process server, but using Is-1 we could see
/en server, /en_server/server. The link file’s content 1s
the path of linked file and sys_read() is used to read it. If
only this system call hasn’t been modified, we could get
the right information of process.

In this way, if we hide a LKMSs named module.o by
hacking sys query module(), we can still use rmmod
module delete this module successfully. Although in fact,
except this one who loads the LKMs, nobody knows what
this name of module would be. So, don’t expect that
system manager could delete hided TLKMs by method of
exhaustion. As we all known, this name of module maybe
consists of 1 to 255 random number, letters and some
especial characters. This course 1s unpredictable.

However, we can use method of exhaustion to obtain
the list of all processes because each process’s PID 1s just
a number. We could get all actually existing progresses
information by orderly checking each digital directory
from 1 to a very big number such as 100,000 within /proc.
For current processor it spends less than one second, so
this course is predictable and controllable completely.
Some digital directory has been come to, but its PID
isn’t displayed by command ps-A. We could draw a
conclusion that there must be hided process runming.
This 15 the principle of locking for hided progresses.
Actually, because the number of processes may be very
large, it will take system manager many time and energy to
finish this work by hand. We should use some computer
language to finish it.

Perl is a powerful script language, which could do
any things almost. Perl 1s used for dealing with WEB,
database, XML and systems manage (Edward et al., 1998).
Tt is fast, simple and especially fit for dealing with
character string. So we use Perl to realize this function.
The basic worl flow chart is shown in Fig. 5.

Test: We test this program on Red Hat 9, kernel version
2.4.20-8, Perl version 5.8.0.

Before loading LKMs we run this perl program, the
result 1s shown 1 Fig. 6. The first column 1s the PID from
traversing 1 to 20000 digital directories within /proc; the
second column shows the current directory of process;
the third column shows the complete executable path of

620

-T---1-- lroot rtoot 0932 10:43 cdl Tne
Irwxrwxrwx lroot root 0902 10:43 cwd ->/cn_server
“[=m-mem lroot rtoot 0932 10: 43 environ
Irwxrwxrwx lroot root 0902 10:43 exe -> / cn_server/server
dr-x------ 2root root 0902 10:43fd

-T--T--I- lroot root 0902 10:43 maps

-TW=-=---- lroot root 0902 10:43 mem

-T--T--T-- lroot root 0902 10:43 mounts
Irwxrwxrwx lroor root 0902 10:43 root ==/

-T--T--T-- lroot root 0902 10:43stat

-r=---I- lroot root 0902 10:43statm

-T--T--I- lroot root 0902 10:43status

Fig. 4: Structure of process server

Begin

Save all pid from command ps ax into array PID |

[Read exc and cwd files within/procii |

pid = pop @ PID

PID cwd exe pid T nf
1 ! fsbin/Init 1

2 ! exe 2

3 ! exe 3

4 ! exe 4

5 ! exe 5
3215 /homefzhout ao /usr/local’samba/sbi n/smbd 3215
3257 /onoserver /en_server/server 3257
3258 / fusr/sbi n/i n. tel net d 3258
3259/ /bi n/login 3259
3260 /home/ cn /bi n/ bash 3260
3289 /home/ cn /bin/ su 3289
3200 /homefyuan /bi n/ bash 3290

Fig. 6: Output before loading LKMs

Asian J. Inform. Tech., 6 (5): 618-621, 2007

PID ced exe pid 1nf
[/ Jsbi n/i i t 1

2 / exe 2

3 / exe 3

4 / exe 4

5 / exe 5

3215 /home/zhoutao fusr/local/sambalsbi n/smbd 3215

3257 /fen_ server fen_server/server warmning
3258/ Jusr/sbi n/i n. tel net d 3258

3259/ /bi n/login 3259

3260 /homefcn /bi n/bash 3260

3289 /home/cn /binfsu 3289

3290 /homefyuan /bi n/bash 3200

Fig. 7: Output after loading LEKMs

program; the forth column is the PTD number coming from
command ps ax; the last column shows the warning
message. The two methods get same result in this time, so
there is not warning message.

After loading LKMs, process server has been hidden.
But the Perl program comes into /3257 directory and gets
relative information successfully. By contrasting to
output of ps ax, it finds there 1s no process whose PID 1s
equal to 3257, so the warning message is printed. The
result is shown in Fig. 7.

From the above figure, system manager could get
enough mformation: there is a luded process rurming in
system, its name is server; the source code is located in
Jen_server/. According to this information the manager
can find and analyze the code to confirm the attributes of
program.

CONCLUSION
Now, there are many tools used to check LKMs

backdoors like KSTAT, Chkroot and so on. Among them
KSTAT 13 more excellent. By comparing the address of

621

current system call with the original one, it could find
whether the system has been loaded rootkits or not. It
offers many parameters and supports lots of functions.
But the existent question 1s that it has to be complied on
a newly complied and secure kernel for obtaining the
original address of system calls. If KSTAT is used after
the system having been intruded in, it does nothing.
However, the method presented m this article utilizes the
flaw that the hided files and directories could be accessed
and the processes directories are number. By comparing
the processes list got from exhaustion method to that one
from command ps ax, the hided process would be found.
And it could be used after the system having been loaded
LKMs. The test shows that the result 1s correct.
Moreover, by printing the existing directory and the
complete rumming path of every process, it 13 helpful for
system manager to locate quickly and analyze the program
with threat.

REFERENCES

Edward, S. Peschko, 1998. Michele DeWolfe. Perl 5
Complete. McGraw-Hill, pp: 35-36.

Pragmatic, 1999. Complete Linux Loadable Kernel
Modules versionl.0. http:/ www. xfocus. net/
articles/200008/47 html.

Rob Flickenger, 2003. Linux Server Hacks. O'Reilly, pp:
104-106.

Shi Jingiae, 2003, Limux System Call Hijacking: Technical
Principles, Application and Detection. The Computer
Engineering and Applications, pp: 167-170.

Stealth, 2003. Kemel Rootkit Experiences.
http://www.xfocus net/articles.

YuanYuan, 2005, Design and Implementation of Linux's
Security Monitor Base on LKM. Application Res.
Computers, pp: 131-133.

Zhao Jong, 2004. The Complete Remark of Linux Kernel.
China Machine Press, pp: 56-62.

