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Abstract: Tn this study, we are proposing a new cryptographic public-key encryption protocol based on

Mandelbrot and Julia fractal sets. The fractal based public-key encryption protocol 18 possible because of the
strong connection between the Mandelbrot and Julia fractal sets. In the proposed protocol, Mandelbrot fractal
function takes the chosen private key as the input parameter and generates the corresponding public-key. Julia
fractal function is used to cipher the plaintext with receiver's public key and decipher the ciphertext based on

the receiver's private key. The proposed protocol 1s designed to be resistant against attacks, utilize small key
size and perform comparatively faster than the existing RSA public-key encryption protocol. The proposed
fractal public-key encryption protocol is, therefore, an attractive alternative to the traditional number theory

based public-key encryption protocol.

Key words: Fractals cryptography, public-key encryption protocol, Mandelbrot fractal set and Julia fractal set

INTRODUCTION

Encryption based cryptography algorithms are
divided into two categories: Secret-key (symmetric)
algorithm and public-key (asymmetric) algorithm. In
general, a security protocol uses public-key cryptosystem
to exchange the secret key between communicating nodes
and then uses secret-key cryptosystems with the agreed
secret key as the password to ensure confidentiality on
the data transferred (Branovic et al., 2003; Menezes et af.,
1996). Symmetric algorithms are used to encrypt and
decrypt messages by usmng the same secret key.
Public-key encryption algorithms work 1n a different way.
In these algorithms, there is a pair of keys, one of whuch 1s
known to the public and used to encrypt the plaintext.
The corresponding ciphertext is then send to the receiver
who owns the corresponding decryption key, also known
as the private key.

RSA (Rivest et al., 1978) was the first public-key
encryption protocol published based on the public-key
characteristic proposed earlier by Diffie-Hellman (1976).
RSA public-key encryption is based on the difficulty of
factoring a number, resulted from a multiplication of two
prime numbers (Stallings, 2003). This study proposed a
new fractal (based on Mandelbrot and Julia fractal sets)
public-key encryption protocol as a secured method to
encrypt and decrypt information. The working of the
proposed protocol depends on the strong connection
between the Mandelbrot and Julia sets in their special

functions, Mandelfn and Juliafn functions (Giffin, 2006)
which generate the comresponding private and the
public keys.

FRACTALS

A complex number consists of a real and imaginary
number components (Fig. 1). It contains 1, the imaginary
unit, where i* = -1 (Patrzalek, 2006). Every complex
numbers therefore can be represented in the form of atbi,
where a and b are real numbers. For example, Fig. 1 shows
a point in a complex plane with coordinate 3 on real axis
and 2 on the imaginary axis. The sum and product of two
complex numbers are formulated as shown by Eq. 1 and 2.

r

3i T Imaginary
2 (3+29)
i
Real
4 3 2 4 1 2 3 4
-
2
3i

Fig. 1: Complex numbers planes

Corresponding Author: Azman Bin Samstudin, School of Computer Sciences, Universiti Sains Malaysia, 11800 Penang, Malaysia



Astan J. Mform. Tech., G(5):

(a+bi) + (ct+di) = (a+c) + (b+d)i,a, b, d, € Z; *=-1 (1)
(at+bi)x(ctdi) = (ac-bd) + (bctad)i, a, b, d, € Z;i°=-1 ()

One of the interesting applications of the complex
plane is fractal. Fractal was mode famous by Mandelbrot.
In fact, the word fractal was derived from the Latin word
fractuz by Benoit Mandelbrot in 1960. As defined by
Benoit, fractal iz a fragment of geometric shape, created
interactively from almost similar but smaller components
(some changes in scale). From another perspective,
fractals are irregular in shape (Jampala, 1992) and they are
not cohering to the typical mathematical dimensions.
Fractals can be characterized as having a non-integer
dimension and generally they can be classified into two
types; fractal curves, which the dimension of the fractal
curves fall between the first and second dimensions (1-D
and 2-D) and fractal surface, which shapes have a
dimension between the second and third dimension (2-D
and 3-D). There is another kind of fractals that is called
fractal dimensions that can fall between 0.64th to 1.58th
dimensions of the non-integer dimension (Mandelbrot,
1982). There are many applications of fractal. One
prominent example iz the use fractal to create a realistic
image of nature such as the image of clouds, snow flakes,
fungi and bacteria, mountains, river networks, systems of
blood vessels and others (Patrzalek, 2006; Mandelbrot,
1982).

Julia and Mandelbrot sets: Other than imitating the image
of nature, fractal geometry has also permeated many area
of science, such as astronomy, physics and biological
gciences. Fractal geometry has also been classified as one
of the most important techniques in computer graphics
(Patrzalek, 2006). Julia fractal set (Fig. 2), developed by

Fig. 2: Julia fractal image
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Fig. 3: Mandelbrot fractal image

Gaston Julia (Mandelbrot, 1982) is the set of points on a
complex plane. Julia fractal image can be created by
iterating the recursive Julia function Eq. 3.

In 1982, B enoit Mandelbrot began his refinement on
Julia fractal set. He was looking for the connection on the
value ¢ from the Julia fractal equation (Lazareck ef al.,
2001). As the result, Mandelbrot fractal was defined and
it was defined as the set of points on a complex plane by
applying Eq. 4 iteratively (Fig. 3). Although Mandelbrot
fractal set iterates z*+c with z starting at 0 and Julia set
iterates Z+c starting with varying non-zero z which is a
slight difference from Mandelbrot equation, but actually
they are both using the same baszic fractal equation as we
can see from Eq 3 and 4. The connection between
Mandelbrot fractal set and Julia fractal set iz that, each
point ¢ in the Mandelbrot is actually specifies the
geometric structure of a corregsponding Julia set (Alia and
Samsudin, 2007).
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PUBLIC KEY

As menfioned earlier, the concept of public-key
cryptosystem was developed by Diffie-Hellman (1976) and
the first encryption protocol based on the public-key
concept is the RSA algorithm which was published by
Revist ef al. (1978), Al-Tuwaijry and Barton (1991). In
RSA, one key is known to public and is used to encrypt
the information by the sender. The other key iz known as
a private key and is used to decrypt the encrypted data
received by the receiver. There are many other public-key
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Asymmetric public-key crytosystem
RSA public-key crytosystem for encryption/decryption
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Fig. 4 RSA public-key protocol

encryption algorithms published since RSA. Among them
are FlGamal (1985), Elliptic Curve (Koblitz, 1987; Rabin and
Micheal, 1979) etc.

RSA public-key encryption: The RSA scheme is the most
widely used public-key encryption algorithm. It can be
used to provide both secrecy and digital signatures. The
RSA security 13 based on the mtractability of the integer
factorization problem. As shown in Fig. 4, there are three
integers e, d and n used in the encryption and decryption
algorithm, where n = pxq, with p and q are large primes.
Below are the details of the RSA algorithm.

The RSA algorithms

Algorithm for key generation (generated by receiver,
Bob): Bob must do the following (referring to Step 1 to 5
on Fig. 4):

1. Choose two prime numbers (p, ) randomly, secretly
and roughly of the same size.

2. Compute the modulus n as follows: n=pxq.

3. Compute the @ (n), as follows: @ (n) = (p-1)=(g-1).

4. Choose the public key e, such that 1<e<® (n) and
GCD (e, D(n)) =1.

5. Compute the decryption key d, where d = ¢~ mod @
(n).

*  Determine the public keys (e, n) and determine the
private keys (@(n), d).

Algorithms for encryption and decryption
Encryption (sender-Alice): Alice must do the following
(referring to Steps 6 to 9 on Fig. 4):

Table 1: Working example of the RSA public-key encryption protocol
Keys generation (Bob generates the keys)

1 p=5; 4 B (n)=24;
2 q=T7 5 e=5;
3 n=35. 6 d=>5.
Encryption (Alice encrypts the plaintext) Decryption (Bob decrypts)
7 m=4; 9 c=9
8 ¢ =4" mod 10 m=9%
35=0, mod 35, m= 4

6. Obtain the public keys (e, n).

7. Determine the message m to be encrypt such that
O<m<n.

8. Encrypt the message as follows, ¢ = m°mod n.

9. Send ¢ to Bob (receiver).

Decryption (receiver-Bob): Bob must do the following
(referring to Step 10 and 11 on Fig. 4):

10. Obtain ¢ from Alice.
11. Recover the message as follows, m = ¢*mod n.

Table 1 shows the working example of RSA public-key
algorithm. Tn this example, the receiver must generate the
public and private keys, which p is imtialized to 5
(Table 1, Step 1) and q is initialized to 7 (Table 1, Step 2).
p and g are prime numbers and used to compute the value
n = 5x7 and the secret value ®(n) = (5-1)x(7-1) (Table 1,
Steps 3 and 4). Also the receiver must choose e which 1s
initialized to 5 as the public key (Table 1, Step 5). Then the
recelver has to calculate lus own decryption key d as
shown by Table 1, Step 6. Sender will choose his message
and produces the cipher value, ¢, after executes ¢ = m°
mod n, as shown by Table 1, Steps 7 and 8. Table 1, Steps
9, 10 and 11, show the deciphering of m, after executing
the equation, m = ¢’ med n (m = % mod 3 = 4).
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PUBLIC-KEY ENCRYPTION BASED ON THE
MANDELBROT AND JULTA FRACTALS SETS

Mandelbrot and Julia fractal shapes contain complex
mumber points, computed by the recursive functions
(Eq. 3 and 4). In this study we are using Mandelbrot and
Julia properties to design a new public-key encryption
protocol. In thus study, with the aids of Fig. 5, we briefly
explain the propose idea of the fractal encryption
protocol.

In the proposed protocol, sender and receiver must
agree and use a public domain value, ¢. The receiver, Bob,
will generate e and n as the private keys, while the sender,
Alice, generates k and d as her private keys. Sender and
receiver use their private values as well as the value ¢ as
mputs to the Mandelbrot function to produce the public-
keys z,d and ze. Then Bob and Alice must exchange the
public keys. Alice will obtain Bob’s public key, z,d and
uses this value together with her private key and the
plaintext, as wnputs to the Julia function to produce the
ciphertext V, which will then send to Bob. Bob must
obtain Alice’s public-key, ze and the ciphertext V from
Alice which will be used as mput values together with his
own private key to Julia function, to decipher the
ciphertext V.
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Fig. 5: Fractal public-key encryption protocol

Mandelfn and Juliafn function of the Mandelbrot and
Julia fractal sets: In this study, we use a specific
Mandelbrot function, Mandelfn and similarly, a specific
Julia function, Juliafn (Ala, 2007). An example of image
generated from the Mandelfn and the Juliafn is shown
m Fig. 6. In Mandelfn and Juliafn functions, we can
substitute the function f( ) in Eq. 5 and Eq.6 with well
known equations such as sm( ), cos( ), exp( ), etc.
However, the value which is generated by Mandelfin must
reside within the Mandelbrot set and similarly, the value
generated by Juligfn must reside within Julia set
(Giffin, 2006). In our protocol we set f{ ) as shown by
Eq. 7 for Mandelfn function and Eq. & for Juliatn function.

z (nt+1) = exf (z(n)) (3
flz(n)) =z, ,%cxe,z,c.e eCine. (6)

In this study we will describe fractal public-key
encryption m details (Fig. 7). The fust step of the
proposed protocol is to generate the private key and
public-key by usmg Mandelbrot function Mandelfn
Eq. 7 and Julia function JTuliafn Eq. 8.
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Fig. 6: Mandelfn and Tuliafn image (Giffin, 2006)

Choose ¢ from mandelbrot set

-k x are random integers, where x<n and k is a private values. | :
-¢ is a complex number eMandelbrot set and e is Alice,s .

Fn, X are random integers, where x<k and n is a private values,
-1 is a complex numbere Mandelbrot set and d is Bob,s

s
_
2,= oxf (7,) :

> f(2.,) = n.xcxe, z,= zd

private value private value
Sender {Alice) Receiver (Bob)
[ 1 I I ™ I I I I -
ER|ER KN La [ 1] el
4 0 0 0 o o0 o 4 o
= = cxf (z,.)
z—l)fu(xzi,()z:)zﬂxcxe,zﬂ=c ~ o z;f(fm)z;hlxcx‘i,zn=ﬂ ~

M ?4 ¢x (7,d) ke by Tuliafn |}
(pleintext) |
s

V=% @K +M |]I>
(ciphertext) @ ;

-[I.
I
z,=cxf (3,)) '
> f(z.)=z.xd,2=2e ?'O
v A 4 i
[ w=c"x(ue)dbysuliak | -
-y
M K
(plaintext) I
V=¢"x(zd)kK'+M .i

(ciphertext)

Fig. 7: Fractal public-key encryption algorithm
zin+1)=cxfzm), z0=v, v.ezeCnel (8)

As shown in Fig. 5 earlier, fractal public-key
encryption protocol involves sender and receiver. The
recelver must generate the public key from the chosen

private key and then send the public key to the sender.
The sender will then generates his public key by using
Mandelin function and send 1t to the receiver.
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z,d is the generated public-key, generated by the
receiver by executing Eq. 9 (Step 1 of Fig. 7). The
recewver’s private key 1s the value (d, n). Similarly for the
sender, with the private value of (e, k), the sender will
produce the corresponding public key, ze (Step 3
from Fig. 7) generated by using Mandelfn as shown by
Eq. 10

Ze=7, %c*xe; zcee CkeZ (10

In step 5 and 6 (Fig. 7), executing Juliafn by the
sender will encrypt the plaintext to produce the ciphertext
V. The ciphertext V, will then send to the receiver.
Similarly (Fig. 7, Step 7), the receiver will execute Juliafnto
produce W which then is used to recover back the
plaintext M (Fig. 7, Step ).

Tt is impossible to mount a ciphertext attack on the
proposed protocol because of the iteration, k and the
variation constant e, which are unknown to the public.
Hence, we can identify that the hard problem for the
proposed fractal public-key encryption is through the
chaos property of the fractal function which in this case
depends on the key selection This 1s true since the
generated complex value (zd and ze) produced by
Mandelfn depends on the number of iterations, n, as well
as the variation constant, d and e which makes the
Mandelfn values jump path chaotically. This will prevent
attack on the private values, given that d and e are being
represented appropriately. We are suggesting the value of
d and e to be represented by a 128-bit value which should
give 2128 possibilities for every value of n that is being
brute force.

After exchanging the public keys (Step 2 and 4 from
Fig. 7) and executing the Juliafn function (Step 5 and 7
from Fig. 7), sender Alice and receiver Bob had completed

the proposed secured encryption and decryption

Table 2: Example of fractals based public-key encryption protocol

protocol. The process from Fig. 7, Step 5 is also being
illustrated by Eq. 11. The corresponding decryption
process, which is Step 7 of Fig. 7 18 further illustrated by
Eq. 12

V=" x (an)ke + M; (1 1)
VieedeC nxkeZ,MeR

W= ¢c¢""x (z,e).d,; (12)
WoeedeC nxkeZ

Table 2 shows a working example of the
proposed protocol. In this example each complex
number 1s being represented by a 64-bit value. We
use GMP (http://swox.com/gmp/, 2006) to sunulate
the 64-bit complex numbers. In this example, the
public information, ¢, is initialized to a complex value
(-0.022134) + (-0.044)1 and variable x is initialized to 3
(The wvalue of x is used to reduce the final calculation,
Eq. 13 and 14, The value x can be set to 0, if desired).
At the beginning, receiver and sender need to
choose thew private keys (Table 2). Then they have
to calculate the corresponding public keys by using
the Mandelbrot function, Mandelfn, as shown by
Table 2. These values are =zd (receiver’s public
key) and ze (sender’s public key). Table 2, shows
both parties exchanging their public keys. Following
this process is the calculation of the ciphertext by
using Julia function, Tuliafn. Sender will produce the
cipher value, V, after executes the Tuliafn with input
parameters k and d (sender’s private key) as shown by
Table 2. Table 2 shows the decrypted value M, after the
Tuliafn is executed with parameters n and e (receiver’s
private key).

No.  Description Reciever Sender
1 Choose ¢ = -0.022134+-0.044 from Mandelbrot set
Generate the private keys n=4 k=06
d =0.0134078079299425970 - e = 0.013407807 +- 0.04340780792994
0.013407807929942597 m = 0.0098765+0.00134078
3 Generate the public zd= 7e=
keys z,d and z,e by 0.0231483882363480530143 + 0.00000000321672413221113239634
using Mandelfh 0.00465248587376768622462 +
0.00000000228353112880313296451
4 Exchange the zZe = z.d = 0.0231483882363480530143 +
public keys z,d and 0.00000000321672413221113239634 0.00465248587376767622462
z.e between sender +
and reciever 0.00000000228353112880313296451
5 Sender must find V = 0.00845943459173841256126+

v = cipher text by
Juliafn and then send V to the reciever.
6 Reciever must
calculates W by executing Juliafi to decrypt V

V =10.0020456732507880084 58726

M = 0.0098765 + 0.00124078
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Table 3: Key spce comparison between fractal based public-key encryption and RSA

Key size Fractals key space SA (primes) key space

8-bit. 256 54

16-bit 65536 6542

32-bit 4294967296 193635250

64-bit 18446744073709551616 415828533893661771

128-bit 3.402823669209384634633e+38 3.835341275963952040425+36
192-bit 6.277101735386680763835e+57 9.0477596284213696494797e+52
256-bit 1.157920892373161954235e+77 6.5254950440278514658199e+74
512-bit 1.34078079299425970995e+154 3.77800352227868776256e+151

Fractal and RAS key spaces

1.50E+03
1.00E+03

5.00E +02

& 4

RAS
1765744481

0.00E+00 Fractals

[mKey space average] 1.25E+03

Fig. 8: Key space comparison between fractal key and
RSA encryption implementation

KEY SIZE

The chaotic nature of the fractal functions ensures
the security of the proposed protocol. However, to
prevent a brute force attack, the choice of the key size
becomes crucial. The key space in fractal public-key
encryption depends on the size of the key. For example in
128 buts key, there are 2128 possible key values. RSA keys
are fundamentally different from fractal keys. The RSA
protocol depends on large prime numbers (Fig. 8). The
128-bit RSA key space 1s limited by how many primes exist
in the finite field of Z,, where p is the largest prime that
can be represented by a 128-bit value. Therefore, RSA key
space 18 considerably smaller than the fractal key space
for a given fimte field (Diffie, 1976). Table 3 shows the key
space for both RSA and the proposed fractal public-key
encryption algorithms for a given key size. The key space
for RSA was calculated based on the number of primes
existed for particular key sizes. The calculation was based
on Eq. 13 (Caldwell, 2006).

No. of prime in [0,n)=n/logn; ne Z. (13)
PERFORMANCE EVALUATION BASED ON
EQUIVALENT KEY SIZES FOR FRACTAL AND
PUBLIC-KEY ENCRYPTION PROTOCOL

We compare the performance of the fractal based
public-key encryption protocol against the well known

573

Table4: Performance evaluation between fractal based public-key
encryption and RSA encryption protocols

Fractal encryption RSA
Key Time Key Time
Description size (Milliseconds)  Size (Milliseconds)
Key generation 35 580
Encryption 64-bit 5 512-bit 7
Decryption 5 10
Key generation 144 3575
Encryption 128-bit 50 2304-bit 20
Decryption 40 630
Key generation 8763 10465
Encryption 192-bit 3565 7680-bit 79
Decryption 3485 15462
Key generation 60187 36442
Encryption 256-bit 39507 15360-bit 300
Decryption 36933 108386
Overall time comperision: Fractal and RSA
200000
E 1500004
.= 100000
§ 500001 - Fractals
= RSA
1 eass12bit 128/2304 bit | 192/7680 bit | 256/15360 bit
-+~ Fracials 45 234 15813 136627
=RSA I 597 4225 26006 145128

Fig. 9: Overall time comparison between fractal and RSA
public-key encryption algorithm time

RSA public-key encryption protocol. Table 4 shows the
performance for both approaches. Both protocols were
coded m Turbo C with GMP library and run on a computer
with 1.6 GHz Intel® M Pentium processor and 256MB
RAM. Also, we used Miller-Rabin algorithm (MediaWiki,
2006) for primality test which was coded using C and GMP
as well.

The comparison between fractal and RSA public-key
encryption protocels shows that fractal key encryption
protocol performs better than RSA 1n general. Note that,
in our implementation we increased the number of
iterations k and n (Fig. 7) proportionate with the key size
to get suitable comparisons as shown by Fig. 9-12. As
those Figures indicate, the fractal based public-key
encryptionidecryption protocol provides higher level of
security at a much lower cost, both in term of key size and
execution time.
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8000+

Keys generation
6000 —e— Fractal
—=— RSA
§ 4000
2000 |
=
0| 64/512bit | 128/2304 bit | 192/680 bit [256/15360 bit
—e—Fractal 35 144 8763 650187
——RSA 580 580 10465 36442
Fig. 10: Fractal and RSA keys generation time
50000+ i
P ~+ Fractals Encrypfion
g 4000 = RSA
8 30000
n
= 20000
ﬂ 1000
1
~o-Fractals 5 50 3565 39507
== RSA 7 20 79 300

Fig. 11: Fractal and RSA encryption time

1500009 _o Practals Decryption
= RSA
gmooou-
a
g
O 6an12br | 12872304 bis | 1927680 bt | Z56/15360 bit
4+ Fractals| 5 40 3485 36933
RSA | 10 630 15462 108386

Fig. 12 Fractal and RSA decryption time

THE SECURITY OF FRACTALS PUBLIC-KEY
ENCRYPTION PROTOCOL

The strength of the algorithm and the size of the key
used, play the main role in the security of public-key
encryption protocol. Both fractal and RSA protocols can
provide equal strength in security, both m terms of the
algorithm complexity and the key size used. Nevertheless,
fractal public-key encryption algorithm is more efficient
than RSA simce the algorithm used small key size and
executes faster.

CONCLUSION
This study has shown the possibility of establishing

a fractal based public-key encryption, emanating from
the logical comection between the Mandelbrot and Julia
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fractal sets. The security of the proposed fractal public-
key encryption depends on the number of iterations
which convert the initial value ¢ in the Mandelbrot fractal
equation to the starting value of z in Julia fractal equation.
Adding the key e and d during the iteration of
Mandelbrot and Julia functions introduces the needed
complexity of the proposed protocol. As the result, the
proposed public-key encryption protocol requires small
key size and performs faster when compared to RSA.
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