3

'Well

onllne © Medwell Journals, 2007

Asian Journal of Information Technology 6 (4): 502-505, 2007

Implementation of an Intelligent Interpretative Software System

0.V. Viktorov and Afif Mghawish
P.O. Box 130, Amman 11733, Jordan

Abstract: An intelligent interpretative software system has been developed and tested. A hierarchical algorithm
is used to implement indirect access to operations and data. The resulting system allows choice of suitable
procedure of search with specific emphasis on heuristic algorithm variations.

Key words: Intelligence, decision making, logical, heuristic, search, operations

INTRODUCTION

A large amount of research on the most efficient
techniques to store and retrieve data has been done and
the associated problems now have satisfactory solutions.
However, the problem of mterpreting this large amount of
mformation remams. A framework in which this problem
may be attacked is given by the field of deductive
databases. Deductive databases not only store explicit
mnformation m the mammer of a relaticnal database, but
they also store rules that enable inferences based on the
stored data to be made. Deductive systems, given via
axioms and rules of inference, are a common conceptual
tool m mathematical logic and computer science. They are
used to specify many varieties of logics and logical
theories as well as aspects of programming languages
such as type systems or operational semantics (Lutz,
2003a, b, 2002; Lars and Peter, 1991; Robert, 1990).

BACKGROUND

By applying the inference rules deeply, logical
expressions can be manipulated starting from thewr sub-
expressions. This way, we can simulate analytic proofs in
traditional deductive formalisms. Furthermore, we can also
construct much shorter analytic proofs than in these other
formalisms. However, deep applicability of mference
rules causes much greater non-determimism in proof
construction.

By redesigmng the deep mference deductive
systems, some redundant applications of the inference
rules are prevented. By introducing a new technique
which reduces non-determinism, it becomes possible to
obtain a more immediate access to shorter proofs, without
breaking certain proof theoretical properties such as cute
limitation. Different implementations presented in this
thesis allow performing experiments on the techniques
that we developed and observe the performance

improvements. Within a computation-as-proof-search
perspective, we use deep mference deductive systems to
develop a common proof-theoretic language to the 2 fields
of planning and concurrency.

Open deductive system generalized logical structure:
The block-diagram of generalized logic structure of open
deductive system is shown in Fig. 1.

This structure is based on the following main
principles:

¢ Program modules combine in blocks according to
generality of tasks, which they solve.

» The hierarchical orgamzation of modules in each
block.

¢ Indirect access to internal disjunction of

propositions representation, by means of the block

which carries out a set of given operations

(functions).

Let us discuss the basic functions of deductive
system and relate them to the suggested logic structure.

Heuristics

]
Main block
Operation difined on intemal
digjunction of prepoditions
representaiton
Internal disjunction
of prepositions
entation

Coordination

Ju

Mam mechanisms:
Unifiction;
Resolution;

Pasting

Fig. 1: Generalized logical structure of open deductive
system

Corresponding Author: O.V. Viktorov, P.O. Box 130, Amman 11733, Jordan

Asian J. Inform. Tech., 6 (4): 502-503, 2007

struct node /* internal clause representation */

{

char litf PWRLY]; /* pointer arvay */
struct node *branch (Lutz, 2003);

k

Fig. 2: Structure node

The main block of this system combines the internal
disjunction of propositions representation and the
operations set defined on it, hence it determines flexibility
of all system. For satisfaction of various requirements,
each disjunction of propositions set is represented as a
linked list. Each unit of the list contains one disjunction of
propositions and is defined by structure node (Fig. 2).

The unit consists of an array of pointers to the
character string where each string contains one letter from
given disjunction of propositions and also it contains the
pointer to the following element of the list together with
the pointer to the following allocated block of memory.
The block of memory is dynamically allocated by system
for each umt and the string linked to it. The basic
operations set defined on internal disjunction of
propositions representation 1s the following:

To add a new disjunction of propositions
to the given disjunction of propositions
set;

i

append -

cpy clause- To copy specified disjunction of
propositions;

conc_clause- To concatenate given disjunction of
propositions;

To remove from given disjunction of
propositions all predicates which are
matched to the certain pattern;

rmv_dlit- To remove multiple copies
predicate;

rmv_lit-

of one

cmp_queune- To compare two lists and to return an
attribute of comparison;

separate- To mark one of terms from specified
predicate;

d_clsuse- To remove specified disjunction of
propositions;

free all- To release the allocated memory.

The block of the basic mechanisms carries out the

following functions:

To implement a strategy ; if it is proved that
given disjunction of propositions subset 1s
non-contradictive the function returns back
BOX and in opposite case it returns NULL;

(Fig. 3).

prove-

int prove(m, p, sn, md)
structn_node **u, **sn, **md;
struct p_node **p;
{
int rlsv()} , risv_ord(}, crmp_gqueue();
int j;
structp node *pir
struct n_node *n_ptr
sructn_node **ptrl, *ptrd, **ptr3;
pir="*p
while(TRUE)
{
ptr2 =md: ptrl =sn
while(*pir] I= NULL)
{

*pir2 = NUL,
ifirsiv ord(, 1, pirl, ptr2) == BOX} retion BOX;
pir3 =pirl; pirl = pir2; pir2 = pird

}
=2+ 1) =*p+);
iffemp_gueue(*p, prt} == TRUE retiom NULL;
pir ="*p; *sn = NULL;
iftrsiv(p, 0, n, sm) == BOX return BOX;
}
}

Fig. 3: Function prove () for positive hyperresolution
rsly- Generates resolvent set (the letters contained
the most significant predicate symbols are
resolved); 1if 1t 1s proved that given
disjunction of propositions subset 1s non-
contradictive the function returns back BOX
and in opposite case it returns NULL;
rlsv_ord- Generates ordered resolvent set (the letters
contamed the most significant predicate
symbols are resolved); if it 1s proved that
given disjunction of propositions subset 1s
non-contradictive the function returns back
BOX and in opposite case 1t returns NULL;
Resolve 2 disjunction of propositions and
checks the empty disjunction of
propositions or the predicate-answer
(returns back BOX if the result of check is
positive and otherwise it returns NULL;

extract-

unify- Search most the general unifier of two given
letters (returns TRUE if the unifier is found,
otherwise returns NULL),

Carries out a composition of an unifier with
set single-element substitution (returns
TRUE if operation is executed successfully,
otherwise 1t returns NULL),

substn_all- Carries out replacement of arguments of all
predicates i given disjunction of
propositions according to most general
unifier;
Carries

compose-

substn_p- out replacement of the given
predicate according to most general unifier;
Carries out the certain substitution in the

given term.

stbstn_t-

Asian J. Inform. Tech., 6 (4): 502-503, 2007

prove ()

rl.w(') and risv ord() Regolution

mechanism

lm,ﬁi()

compose ()
Uonifiction
mechaniam

Wb-!M_P 0

e;riracf ()

/L

.mb.rm all ()

substn t()

Fig. 4: Functional level and links in main mechamsm block

The functional level hierarchy of the basic
mechamsms block 1s shown m Fig 4. At the lughest level
there 1s a function prove ().

The only prove() function depends strongly on the
chosen strategy. Hence, experiments show that strategy
change does not cause big overhead. Other functions can
be grouped depending on mechanisms they employs, so
any changes in mechanism, does not affect functions of
other group. Function dependence on the certain
mechamsm decreases with reduction of its level that 1s
direct consequence of the hierarchical approach.

The interface block provides information interchange
with external devices. Depending on given requirements,
it 1s possible to increase interactive opportumties of
system. If necessary, some its parts can be described,
using logic programming languages, for example, Prolog
or LISP.

The openness of system allows to investigate and to
The structure of system
allows finding suitable heuristic procedures easily.

compare various heuristics.

At last, the coordination block includes internal
language sources that control computation process.

Example: Let us present an example that shows how the
sinplest deductive system works. In one room there 1s the
monkey, a chair and a banana attached to the ceiling. The
monkey can move n the room, transfer a chair and clime
up it. The monkey would like to get a banana very much,
but she can satisfy her wish, if she a chair in the certain
place (Fig. 5). What strategy of the monkey’s behavior
should be?

The following predicates are in use:

P (X, Y, Z, S): In state S the monkey 18 in pomt X, a
banana - in pomt Y and a chair is in pomt Z;

504

Input sequence:

~PXYZS), P(ZYZw(XZS))
~PXYZS), P(YYYc(XZS))
~ P(bbbS), R{u(S))

P{abcs)

~R(8), Z(5)

Resolvents:
Pfcbew(acs))
P{bbbe(cbw(acs)))
R(u)c)cbw(acs}))
Z(ufc(cbwiacs)))

Fig. 5: Monkey-banana deductive system
R (8): in state 3 the monkey can get a banana;
Z (S): it is an answer.

Functions: W (Y, 7, 3): generates the state that comes
after state S when the monkey has moved from pomt Y to
point 7.

¢ (Y, Z, S): Generates the state that comes after the state
S and the monkey has moved from point Y to point 7,
having takes the chair;

u (S): Generates state that comes after state 8 when the
monkey climes up the chair.

First three disjunctions of propositions describe rules
of monkey behavior in here world (room), the fourth
disjunction of propositions is a description of an initial
situation and the fifth corresponds to the presented
question. The last disjunction of propositions contains
the answer for it.

RESULTS

Authors have developed the base variant of
deductive system that is characterized by a high degree of
opermess:

A new module can be added easily;

Mmodule replacement does not cause essential
change of all system.

The openness of system allows to investigate
The structure of
heuristic procedures
easily. The most suitable strategy can be chosen

and to compare various heuristics.
system allows finding suitable

depending on presented
a efficiency

system requirements and

tentative estimation of various

strategies.

Asian J. Inform. Tech., 6 (4): 502-503, 2007

CONCLUSION

Application of the suggested principles of system
design will allow time reducing of a logic conclusion and
to make deductive systems more flexible m the respect to
strategy changes and module replacement, so it provides
their efficient practical usage.

REFERENCES
Lars Hallnas and Peter Schroeder-Heister, 1991. A Proot-

theoretic Approach to Logic Programming, J. Logic
and Computation, 1: 635-660.

Lutz Stralburger, 2002. A Tocal System for Linear Logic,
Logic for Programming, Artificial Intelligence and
Reasonimng, LPAR (Matthias Baaz and Andrei

Voronkov, Eds.) Lecture Notes in Artificial
Intelligence, 2514 388-402.
Lutz Straflburger, 2003. Linear Logic and

Noncommutativity in the Calculus of Structures,
PhD. Thesis, Techmsche Umiversit at Dresden.

Lutz Straf3burger, 2003. MELL in the Calculus of Struc-
tures, Theoretical Computer Sci., 309: 213-285.
Robert Harper, 1990, Systems of Polymorphic Type
Assignment in LF. Technical Report CMU-CS-90-
144, Camegie Mellon University, Pittsburgh,

Pemmsylvama.

505

