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Abstract: A new heuristic search technique based on binary successive approximation method 1s applied to
the problem of determining the optimal schedule of power generation in a hydro thermal power system The main
objective for hydrothermal operation is not only to minimize the total system operating cost, represented by
the fuel cost required for system’s thermal generation subject to the operating constraints of hydro and thermal
plants, over the optimization mterval but also to consider the environmental and system security objectives.
Normally, the decision making input system data were assumed to be well behaved and deterministic. But in
practical situations the input system data cannot be predicted and estimated with hundred percent certainties.
It 15 bound to vary depending upon the uncertainties, load changes, load forecasting errors, ageing of
equipment etc. It 1s worthwhile to assume the system data as variable and uncertain for more realistic approach.
In this study an attempt has been made to solve fixed head short-term hydro-thermal generation scheduling
problem in the multi objective framework by taking into account the statistical variation of various system
parameters such as variance of cost and emission coefficients of generators, variance of power, generation

mismatch etc.
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INTRODUCTION

Economic operation and control of interconnected
power systems solution of difficult
optimization problems that require good computational

mvolves the

tools. A new heuristic search techmque based on binary
successive approximation method is one such tool that
has shown its ability in solving complex problems.
Because of insignificant marginal cost of hydroelectric
power, the problem of mimmizing the operational cost of
a hydro-thermal system essentially reduces to that of
minimizing the fuel cost for thermal plants under the
constramnts of the water available for hydro generation in
a given period of time. Mostly, hydrothermal optimal
scheduling is achieved (Aggarwal and Nagrath, 1972;
Rao et al, 1974, Edgardo and Jao, 2004) with the
assumption, that the water mflows to the reservoirs and
the load demands are known with complete uncertainty.
However it is not true. The availability of limited amount

of hydroelectric energy, as stored water in the system
reservoirs, makes the optimal operation complex, because
it creates a link between an operating decision in a given
stage and the future consequences of this decision.
Further, it is impossible to have perfect forecasts of the
future inflow sequence and the load variation during a
given periad. Therefore, for long-term storage regulation,
it becomes necessary to account for the random nature of
the load and the river mflow and a stochastic
representation of these must be used.

Most of the methods that have been used to solve
the hydrothermal co-ordination problem malce a number of
sunplifying assumptions m order to make the optimization
problem more tractable. The study by Hara and Suzuki
(1967) is one of the earliest which considers the stochastic
nature of the system load fluctuations and river inflows.
Arvantidis and Rosing (1970) did not deal with the
optimal integrated operation of hydrothermal system as
such and they considered water inflow as random
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zvariables. Booth (1972) presented the method of
simulation based on probability distributions with
dynamic programming. Aggarwal (1973) used the gradient
method to solve the optimal scheduling of hydrothermal
system  considering  deterministic water inflow.
Dhillon et al. (1980) developed a model of hydrothermal
system suitable for long term regulation using stochastic
representation of the inflows to the individual reservoirs,
the load and unit availability. Kothari and Nagrath (1980)
in another attempt obtained the optimal stochastic
scheduling of hydrothermal system using the Discrete
Maximum Principle. The stochastic dual programming
algorithm  has been successfully applied to the
stochastic scheduling of multi-reservoir systems, without
transmission limitations by Pereira (1989). In another
study, the methodology has been extended to handle the
transmission network, represented by a linearised flow
model by Pereira et al. (1992). A long-term, large scale
hydrothermal production scheduling method has been
proposed by Yu et al (1998). They used both composite
hydro and composite thermal representations, based on
the monthly or weekly energy requirement. The study
selected a probabilistic representation of the water inflow.
A major source of uncertainty in optimal dispatch is that
associated with cost coefficients (Dhillon et al., 1985).
However with the increasing concem recently given to
the environmental considerations (Dhillon et al., 1985,
2000) a revised generation scheduling for hydrothermal
power system is required that meets the constraints of
available water at hydro plants and load demands for
power while accounting for both cost and emission.
Therefore, in this study the authors have formulated
stochastic multi objective hydrothermal generation
scheduling problem as a multi objective problem with
explicit recognition of uncertainties in the system
production cost coefficients, emission coefficient and
system load, which are treated as random variables. The
objectives are clubbed in a single objective with the help
of the weighting method. The weighting pattern is
simulated by selecting suitable step size to generate the
non-inferior solution surface. Fuzzy methodology has
been exploited for solving a decision making problem
involving multiplicity of objectives and selection criterion
for best compromised solution. The objectives are
quantified by eliciting the corresponding membership
function. The shape of fuzzy membership function is
decided by the Decision Maker (DM) and depends upon
the type of the problem. The effectiveness of the
proposed method is demonstrated on a sample system.

PROBLEM FORMULATION

Consider an electric power system network having N
thermal generating units and M-N hydro plants, where M
is the total number of generating plants. The basic
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problem is to find the active power generation of each
plant in the system as a function of time over a time
period from O to T.

Stochastic thermal model: The objectives to be minimized
in electrical thermal power system are economy and
environmental impacts because of No,, SO, and CO,
II11SS10MS.

The cost objective can be defined as

T N _
L={ Y +bp+o)dt Reh™ ()
o i=1
No, emission objective can be defined as
T M _1
=] 3@ +b,P+c,dkeh (1b)
o 1=l
CO, emission objective can be defined as
T oy »
L=[ Y@pP+bP+e,)dt keh (Ie)
0 1=l
SO, emission objective can be defined as
T .
L=[ J@pF +bpreyakeh” (1)
o

1=1
where
a,,, by, and ¢;, are cost coefficients of ith unit
a;. by, and ¢, are NO, emission coefficients of ith unit
a3, b;; and ¢;; are SO, emission coefficients of ith umt
a,, b, and ¢, are CO,_ emission coefficients of ith umt
P15 real power generation of ith unit.
N 1s the number of thermal generators

The stochastic model of multi-objective problem 1s
formulated by considering cost coefficients, emission
coefficients and load demand as random variables. Then
the generator output automatically becomes random.
Random variables are considered as normally distributed
and statistically dependent to each other. By taking
expectations, the stochastic model can be converted into
its deterministic equivalent. The expected value of a
function can be obtained by expanding the function,
employing Taylor’s series, about the mean. Deterministic
equivalent of stochastic thermal model is stated as;
Expected cost
+BF 4G+
E)+cov(b, P)

ﬁz

a’ll’

1l

var(P)+ 2P cov} g (2a)
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Expected NO, emission

_ :i ZN: a,D'+b,P+c,+a,var(P)+ 2P cov 4 (25
: 0 i=l ( R)+Cov(b12,P1)
Expected CO, emission
:} i aﬂP +b,P+¢,+a,var(P)+ 2P cov a (20)
o o=l 13’ 1)+COV(b13 1)
Expected SO, emission
,_].%E ‘+b,P+c,+a,var(P)+2P cov gt (2d
o =l ( 14’ 1)+Cov(b14 1)

where, g are the expected cost coefficients of
ith unit.
b and ¢, are the expected NO,emission coefficients

12 bll a'nd 011

12’

of ith umit.

a,. b and ¢, are the expected SO, emission coefficients

of ith umit.

a,, b and , are the expected CO, emission coefficients

of ith unit.

Stochastic hydro model: Tn short range hydrothermal
scheduling problem, an insignificant fuel cost is incurred
in the operation of hydro-units (Booth, 1972; Aggarwal,
1973). The input-output characteristic of a hydro-
generator is expressed by the variation of water discharge,
q, as a function of power output, P, and net head, h
(Booth, 1972). According to Glimn- Kirchmayer model, the
discharge 1s

i=N+12,., (3a)

q, = Ke(h)e(P,), M

where ¢ T are functions of head and hydro-generations,
respectively.

For a large capacity reservoir, it is practical to assume
that the effective head is constant over the optimization
mterval. Therefore, @(h) becomes constant and (3a) 1s
written as

=K't(P), (3b)

=N+12,...M

where K is a constant. Each hydro plant is constrained
by the amount of water available for the optimization
mnterval.
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T
jqjdt: R, j=N+L2..M

1]

(3¢)

where R, is predefined volume of water available for jth
hydro-plant.

The performance of g is represented by
=N+1,2,...M

q,=xP +yp, +z )] (3d)

where x, y, and z are the discharge coefficients of jth
hydro-plant.

Since the thermal generations and load demand are
random, the hydro-generations also become random. A
stochastic model of function g is obtained deeming the
hydro-generation and discharge coefficients to be random
variables.
normally distributed and dependent, so the expected
value of discharge becomes

The random variables are assumed to be

q :if}z-s-if’] +7Z + X, var(P )+ 21_3J cov(x,,P) (3e)
+cov(yJ’PJ), j=N+1.2.. .M

Equality and inequality constraints:

* The expected load demand equality constramt 1s

expressed as

M — — —
SB=F, +h (4a)
i=1
¢ The expected limits are imposed as
P'<P =P, i=12..M (4b)

mrnanan

where, P, is the expected power demand,

P, is the expected transmission loss,

P" and P are the expected lower and upper limits of real

power, respectively.

Expected transmission losses: A common approach to
model transmission losses m the system 1s to use Kron's
loss formula through B- coefficients.

(5a)

With normally distributed random variables, the expected

transmission losses, ﬁL are
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+Z ZZOB cov(P, P)

i=1  j=i+l

Il
ZZOP cov(P,B,)

1
1

(3b)

Expected deviation: The generator outputs are treated as
random variables and the stochastic model 1s converted
mto its determimistic equivalent by taking its expected
value. So, the selution will provide only the expected
values of power generation. By virtue of the above
consideration, there will be a mismatch in load demand.
The variance of a random variable quantifies the degree of
uncertamnties associated with the mean value of the
random variable. The active power loss, the system fuel
cost and emission curves are quadratic fimctions of
decision variable, P; and there variances quantify the
degree of uncertainties associated with the expected
values. So, the expected mismatch can be estimated
through minimization of the squared emror of the
unsatisfied power demand.

EKPMPLiplﬂ

P, 15 the actual power generation required to meet the load,
which 1s considered to be random. Using (4a), (6a) can be
rewritten as

(6a)

1 1 z
d(%e $2)
1 1=1
T M M-1 M
= j[Zvar(P) > > 2cov(P, J)J dt (6c)
o 1=1 1=1 j=1-1
Multi-objective stochastic optimization problem

formulation: In this study, variance and covariance are
replaced by the coefficients of varnation and correlation

coefficient, respectively. In general variance and
covariance are defined as:

var(x) = C? (x)X’ (7a)

cov(x,y) = R(X,y)CXIC(YIXY (7b)

where C(x) and C(y) are the coefficients of variation and
xand y are the expected values of variables x and v,

respectively. R (%, y) is correlation coefficient and varies
from -1 to 1.
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The zero value of coefficient of variation implies no
randomness, in other words, the complete certainty about
the value of random variables Using Eq. 7a and 7b, the
stochastic hydrothermal optimization problem defined by
Eq. 2-6 can be rewritten as;

[T
Minimize (Ba)
M
Subject to P= (8b)
; 1
T
[qdt=R, j=N+12..M (8e)
o
P' <P <P’ i=12,.,M (8d)
N P - p—
where L=3"AP +BP+C,) j=1234
1=1
with
A, =[1+C*(P)+2R(a,,B)C(a,)C(B)a, -
B, =[1+R(b,, R)C(b, )C(P)]b,
1 :611
_ M M
L=2 2 PLR (8e)
=1 1
with T, =C*(B)and T, =R(E,,P)CE)CP,) ;1 # ]
_ MM oM _
P,=3 YMPUP+YBP+ (8f)
1=1 =1 1=1
with
U, =1.0+C(P)* + 2.0R({P,B,)C(P)C(B,)
U" =1 O+R( iz ])C(P)C(P)+20R( i IJ)C(P)
C(B,MEB.P ii#]
SOLUTION APPROACH

To generate the non-nferior solutions of the multi-
objective problem, the weighting method 1s used. In this
method, the multi-objective optimization problem is
converted into a scalar optimization problem as:

L >

1mmize T
2 W,
K-l

(%a)

ubject to (8b-8d) and iwk 1 (9b)

To solve the scalar optimization problem, the
Lagrangian function is defined as:
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where A is the Lagrangian multiplier and v; are the water
conversion factors.

The necessary conditions to mimmize the
unconstrained Lagrangian function are obtained by taking
the first order partial derivatives of the Lagrangian
function with respect to the decision variables as follows:

aL &, 4l &P
==Y w, | E-1=0 i=12,.,N (10a)
P OGP P
aq. T 5
G—E: Jéersa—iS A 6—%71 =0-
ap, &P, &P, ep
J=N+HL 2. M (10b)
oL } =N+L2..M (10
—=|gqdt-R, =0:17 N+ 2., (10c)
61) ] ]
1 i}
oL = = J-
a_:PD+PL_ZR:0 (10d)
1=1
DECISION MAKING

Considering the imprecise nature of the DM’s
Judgment, it 1s natural to assume that the DM may have
fuzzy or imprecise goals for each objective function. The
fuzzy sets are defined by equations called membership
functions. These functions represent the degree of
membership in certain fuzzy sets using values from O to 1.
The membership value 0 indicates incompatibility with the
sets, while 1 means full compatibility. By taking account
of the minimum and maximum values of each objective
function together with the rate of increase of membership
satisfaction, the DM must determine the membership
function p (I) in a subjective mamner. Tt is assumed that
1 (J) is a strictly monotonic linear decreasing and
continuous function and 1s defined as:

.7 o Tmin
L1 <1

where J™ and J™* are the minimum and maximum

values of ith objective function in which the solution is
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expected. The value of membership function suggests
how far (in the scale from O to 1) a non-inferior solution
has satisfied the J, objective. The decision regarding the

best solution is made by the selection of minimax of
membership function as defined below (Tapia and
Murtagh, 1991):

Min {u(J )1 j=12...,L};
k=12..,2"+1

p.}; = Max (12)

The function p¥ in (12) can be treated as a

membership function for non-dominated solutions. The
solution which attains highest membership ¥ in the

fuzzy set so obtained can be chosen as best solution or
the one having highest cardinal priority ranking.

ALGORITHM FOR BINARY SEARCH OF
INCREMENTAL COST

The of the
approximation method 1s shown in Fig. 1. It has been
shown in the diagram that all the possibilities from 1 to 15

operation  diagram successive

have been included when four binary bits are used to
represent either the incremental cost or the weights. In the
proposed method the number of binary bits to represent
the incremental cost has been selected as twenty four to
get accurate results. The successive approximation
strategy to search the incremental cost, & 13 elaborated
here for combinations of four binary digit. (NB-1) =2,
mumber of comparisons is required to arrive at the
solution.
The stepwise procedure is outlined below:

Read NB, number of binary digits to represent, A.
Set bmary digit counter, 1 = 1

N — 2NB-1

Increment 1; 1 = 1+1

If (12 NB)thengoto 10

Determine N, and N,as

N, = N+2"™*

N, = N-2"e+

Determine A, and A, as

N (Ame )

2NB

O s W b —

A=A
-1
Determine Pi1 :1=1,2, ... N from (10a) using Gauss
Elimination method

M
P,+P -3 P

i=1

7.1.2 Determine AP,
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2" =g (1000)

22 |

+2
| !
4(0100) 12 (1100}
2 +2! a2 I 42
[ |
2 (0010) 6(0110) 10 (1010) 14 (1110
2 | 4 2 | 42 2| 42 2 |
[ |1 I | |
1 3 5 9 11 13 15
(0001) (0011) (0101) (111) (00l)  (1011) (1101) (1111}
Fig. 1: Operation diagram of the successive approximation method
Table 1: Weight set corresponding to the best solution and the objectives
W, W, W, W, W, CostRsh™)  NOu(ke ™) $O, kel COqkel™)  Risk(MWP
0.1 0.2 0.1 0.1 0.5 16837.39 825.69 27023.97 32032.52 13485.20
79 min N2 - sin Table 2: Power demand, error in demand, incremental cost and water
: A=A — (7\. —A ) discharges
27 -1 Demand  Error A q Q@
7.2.1 Determine p? ;i=1,2, ... N from (10a) using Gauss IT _ (MW) (MW (Rs/MWh)  (m*h™) (m* h™')
o ) ' 1 455.0 -0.000035 4.137995 2.433098 1.763288
Elimination method 2 425.0 0.000044 5.649754 2312947 1.593472
. N 3 415.0 -0.000002 5487859 2.273238 1.537282
7.2.2 Determine AP =P, +P, - Y'P’ 4 4070 0000088 5358646 2241504  1.492477
i-1 5 400.0 -0.000089 5.245810 2.21399% 1.453382
1 3 _ _ 1 6 420.0 0.000063 5.568753 2.293071 1.565351
8  TF(AR, { AP; ) thenset N=N,andAP, = AP, 7 4870 0.000098 6663045 2562060 1946480
clse set N _ A2 8 6040  -0.000092 8621158  3.052851  2.634487
N=N,andAP, = AR, 9 665.0 -0.000004 9.666658  3.317748  3.004623
9  If( AP, =€) then continue else go to 4 10 6750 0.000042 9.839703  3.36179%  3.066035
11 695.0 0.000021 10.187210 3.450433 3.189555
10 Stop. 12 7050  -0.000105 10361670  3.495016  3.251626
13 580.0 -0.000080 8.214495 2.950419 2.491016
P + 14 605.0 -0.000025 8.638158 3.057141 2.640491
Algorlﬂ}m for sho'rt-term fixed head hydrOther_nlal 15 616.0 0.000027 8.825472 3104445 2.706678
generation scheduling: To perform the short-term fixed 15 6530  -0.000015 9450622 3265119 2931187
head hyd’[‘othen’na] generatjon scheduhng’ the stepwise 17 721.0 0.000000 10.641800 3.500717 3.351382
rocedure is outlined below: 18 740.0 0.000048 10.976050 3.052456 3.470554
P ; 19 700.0 0.000055 10.274380 3472702 3.220563
20 4678.0 0.000063 9.891707 3375049 3.084525
1 Inputthe data. 21 6300 0.000074 9.064675 3164057 2791286
e 0T _ 22 585.0 0.000024 8.298999 2.971676 2.520805
2 Cfn’mpute nﬂl_e mitial guess values of Py [ =1.2,..M, 55 500 g 000ss 7542499 2781931 2.254588
A and v 1=1,2,... . M-N. 24 503.0 0.000053 6927239 2628553 2.038876
3 Consider v,=v";j=1,2,... M-N.
4 Set iteration counter, r =1 range hydrothermal load scheduling problem of 24 h
5 Set hourly count, r =1. duration has been undertaken. The optimization period
6  Compute Py, A, using algorithm presented in  has been divided into 24 intervals of 1 h each. The
section 5. economy, environmental impacts because of No,, SO, and
7 Check if k = T, then go to &, else k = k+t" and go to CO, emussions and variance of power are the five
6 and repeat. objectives considered which have weights w, w,, w,, w,
8 Compute water withdrawals, v;; j = 1,2,...,m-n. and w., respectively. The cost and emission coefficients
9 Check |v-v/] =° then go to 10, are treated as random variables. The non-inferior
else v = v+ a (v-vON5 =12, M-N solutions for 130 different weight combmations are
vi-vhj=12,.. . MN generated for the following wvalues of coefficients of
r = r+] and go to 5 and repeat. variation and correlation coefficients:
10 Compute cost, loss etc. and stop.

TEST SYSTEM AND RESULTS

The system under study comprise of two thermal
plants and two hydro plants (Dhillon ef af., 2002). A short
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C(a,)=C(b,)=C(P)=001;1=1.2.....6
R{a,P

1° 1

)=R(b,,P)=R(P,P)=02:1% 1,2,....6:

i=12,...617]
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Table 3: Generation schedule

Demand P, P, P P,

IT  MW) (MW) (MW) (MW) (MW)

1 455.0 67.12674 68.67648 234.0927 94.72745
2 425.0 61.26991 62.55711 223.7146 85.90372
3 415.0 59.32160 60.52567 220.2585 82.96497
4 407.0 57.76433 5890346 217.4947 80.61480
5 400.0 56.40280 57.48626 215.0774 78.55911
6 420.0 60.29550 61.54086 221.9863 84.43418
7 487.0 73.39362 75.24535 245.1789 104.15160
8 604.0 96.48135 99.63536 285.8570 138.71590
9 665.0 108.62850 112.58870 307.1554 156.80370
10 675.0 110.62710  114.72800 310.6528 159.77330
11 695.0 114.63050 119.02010 317.6529 165.71620
12 705.0 116.63530 121.17300 321.1555 168.68960
13 580.0 91.72292 94.58397 277.4943 131.61200
14 605.0 96.67987 99.84637 286.2056 139.01200
15 616.0 98.86494  102.17050 290.0418 142.27050
16 653.0 106.23290  110.02740 302.9606 153.24180
17 721.0 119.84730 124.62700 326.7630 173.44950
18 740.0 123.66840 128.74380 333.4276 179.10600
19 700.0 115.63260  120.09600 319.4039 167.20270
20 678.0 111.22710 11537070 311.7024 160.66440
21 630.0 101.64950  105.13620 294.9273 146.41980
22 585.0 92.71327 95.63424 279.2357 133.09140
23 540.0 83.81808 86.22071 263.5777 119.78800
24 503.0 76.53470 78.54602 250.7284 108.86830

The non-inferior solution i1s chosen as the best
solution that attains maximum membership by applying
fuzzy decision making The results are shown in Table 1-3
corresponding to the best solution. Table 1 gives the
weight set corresponding to the best solution and the
objectives. Table 2 the error in demand,
incremental cost and water discharges in each interval of

shows

one hour. Table 3 gives the generation schedule of 24 h
duration.

CONCLUSION

Thus study presents a new approach for the economic
operation of hydrothermal power systems. The
conventional short-term fixed head hydro-thermal
generation dispatch method allocates a generation
schedule to the generating umits based on deterministic
cost function and load demand. ignoring inaccuracies and
uncertainties. Such generation schedules result in the
lowest expected total cost, but this cost 1s also associated
with a relatively large variance that can be mterpreted as
a risk measure. Moreover, in power system operation
planning, there are multiple objectives which need to be
attained, which conflict with each other and are subjected
to a mutual mnterface. Thus any objective can only be
improved at the expense of other objectives. In the multi-
objective frameworl, the analysis of hydrothermal short-
range fixed-head 13 undertaken with explicit recogmtion
of uncertamties in production cost, No,, SO, and CO,
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emissions and load demand. The analysis allows the
facilities to consider: The maccuracies and uncertainties
n the hydro-thermal schedule, 1t allows an explicit trade-
off between total operating cost, No,, 30, and CO,
emissionn pollutants and risk levels with the given
welghtage or importance and it provides the DM with the
most efficient solution from the non-inferier set, with the
help of fuzzy set theory. The practical utility of the
stochastic formulation is illustrated through numerical
example. The algorithm requires small computing
resources. It is fast and efficient and has the potential for
application to online economic load dispatch in hydro
thermal power systems.
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