Asian Journal of Information Technology 5(7): 767-771, 2006

© Medwell Online, 2006

Hot Swapping in Component-Based Software Systems State of the Art

Saleh Alhazbi and 'Aman Jantan
Department of Computer Science, Qatar University, Doha-Qatar
'School of Computer Science, Universiti Sains Malaysia

Abstract: This study presents a review of the most recent approaches for replacing a component in com ponent-
based software systems at runtime. It mvestigates common problems with updating software dynamically :
system consistency, state transfer, type of updating and safety

Key words: Survey, component-based systems, dynamic updating

INTRODUCTION

As computer systems are applied to more and more
aspects of our life, the complexity of software systems is
mereasing significantly. Tradittonal methodology of
software development does not cope with such
complexity. On the other hand, Component-Based
Development (CBD) is being increasingly adopted as a
mainstream approach to software systems development.
In CBD, the software 1s built by mtegrating prefabricated
components rather than developing everything from
scratch. Different definitions of software components
were formed; Szyperski™! defines a software component
from a structural perspective as a unit of composition with
contractually specified interfaces and explicitly context
dependencies only. A software component can be
deployed independently and 1s subject to composition by
third parties. Brown™ defines a component as an
independently deliverable piece of functionality providing
access to the services through mterfaces.

As 1its software nature, component-based software
systems like conventional systems need to be updated
over time for different reasons such as fixing bugs,
upgrading its components, or adapting the system in
response to its environment's changes. Traditionally,
software modifications require shutting down the system,
update the system and restarting it. This approach is not
suitable for systems that require 24/7 availability such as
banking or telecommunications systems, or critical
systems such as air-traffic controllers. As a result of that,
such systems require dynamic updating, which means
swapping between different
components without having to terminate the execution of
the whole application. Basically, hot swapping with
component-based systems means disconnecting a
component at run-time and connection a new version of
that component. Hot swapping is a subset of dynamic

versions of system

runtime software evolution, which includes runtime
reconfiguration, dynamically adding/deleting/replacing a
component. Hot swapping is limited to replacing a
component with a new version and it has the same
meaning with on-line software replacement.

MOTIVATIONS

In CBD, the emphasis 15 on modular architecture so
the component-based systems seem to have highly
modularity. As a result of that , they are relatively well
suited for dynamic updating by replacing a component
with a new version. This section presents some of
motivations for building hot swappable systems:

¢ Updating high availability systems is a fundamental
challenge because stopping the system and installing
the new version then restarting it- 1s not acceptable
as it might have extreme consequence. Telephony
systems, financial transaction systems and air traffic
Control systems are few examples of software
systems that require high availability.

+ Banks can lose as much as 1JS32.6 million per hour
and brokerages as much as 1S $4.5 million pre hour
from down time'. In a survey about the cost of
downtime in the year 2001™, 549 of all participating
companies stated that each hour of downtime would
cost the company more than $50K and 8% said that
each hour would cost over $1M. Of all the
compares, 4% estimated that the swrvival of the
company would be at risk if the downtime lasted less
than one hr and 39% suspected that downtime
lasting up to one day would put the survival of the
company at risk.

¢ In the area of fault tolerance, updating component-
based system dynamically let the system continues
work despite the presence of a fault. When a fault is

Corresponding Author: Saleh Alhazbi, Department of Computer Science, Qatar University, Doha-Qatar

Asian J. Inform. Tech., 5(7): 767-771, 2006

detected; dynamic updating is used to mask a component
failure by swapping to error-free one, so the whole system
would not fail.

* For best performance, hot swapping feature can be
used to build autonomic, self-diagnosing systems
which can improve their performance by using
different algorithms m different situations and
switching from one algorithm to another according to
environmental conditions. Significant variations in
resource availability should trigger architectural
reconfigurations, component replacements™.

Background: Updating software system while it is
running is not a new area of research, it can be tracked
back according to the umt of replacement (procedure,
class, component). The first research in this area was
conducted by Fabry in 1976 who described a system in
which implementations of abstract data types can be
replaced on the fly™™.

With moving to producers-based development, Segal
and Frieder” developed Procedure-Oriented Dynamic
Update System (POUDS) that allows incremental update
of procedures m a runmng program. In POUDS, many
versions of a procedure can coexist in separate segments
and inter-procedures are used to map calls from one
segment to another. Gupta' established a theoretical base
for program dynamic updating. According to that, he bult
a formal framework for modeling changes to runmng
programs and developed a system for online version
changes based on the notation of process and process
states. His model was developed for on-line changes to
programs written in sequential procedural language. In his
approach, the function in a program was the unit of
updating; when a new version to be nstalled, a new
process 1s created with the new software. When the time
15 suitable, the system transfers the state of the old
process to the new process and kills the old one. For the
suitable time of state transfer, Gupta defines a formal
model for validating transferring states between an old
and a new version. Hicks™ presented a dynamic
updating approach for a C-like language with much focus
on type-safe updating using patches that contain both
updated code and code for state transfer between old and
new version. Those patches are generated automatically.
Lately withobject-oriented programs, hot swapping means
replacing some of the classes that composed the
application dynamically while 1t is rmmng. We can
classify approaches for building dynamic classes into
two types:

* Proxy pattern approaches. Those approaches require
no support from runtime system. The dynamic

768

classes are wrapped by a proxy using language
features in order to be able to redirect any referencing
when there class updating. Examples on this kind:
Hjalmtysson's approach for building dynamic classes
in C+H", Also approach proposed in!'"! which used
java interface features to build dynamic classes.
Runtime-dependent approaches. Such approaches
require special support from the runtime. For example
1219 describe techniques to update java applications
by modifying Java Virtual Machine (JVM) in order to
fully support dynamic class.

Problems with software hot swapping

System consistency: Updating an application dynamically
means replacing some of its components at run-time, but
the problem 1s what to do if that component 13 involved in
some operations when updating request is fired. For that
reason, replacing a component in the system can not be
done arbitrarily. This requires that component should be
deactivated before start updating process. Other
components that depend on that one also need to be
deactivated in order not to request for service while it is
out of order. Therefore, architecture of the system should
be presented in some way in order to track dependency
between components. Another solution for that is to
queue all requests to that components. When
updating process 13 finished, the new version
handles those requests.

State transfer: Any approach for replacing a component
of the system dynamically should preserve the sate of the
system, so when a new version of a component takes
place at the system, it should start from the state that old
version stopped at. This requires a suitable representation
of internal state of a component and a transfer function to
map state of old version to the new one. It 1s clear that
finding the relation between the old version and new one
can not be fully automated. For example if the old class
represents the triangle by three pomts and the new one
represents 1t as two lines and an angle, one can never
expect a software tool to find this relationship fully
automatically™

Type of updating: When updating a component, the type
of updating can be categorized into two categories based
on the difference between old version and new one: a)
Implementation updating:
compoenent has exactly the same mterfaces as the old one,
but one or more of implementation of its services have

the new version of the

changed. Usually such updating is for performance
reasons. b) Interface updating: in thus case, the updating
1s not only with service implementation. Rather, the new

Asian J. Inform. Tech., 5(7): 767-771, 2006

component has different interfaces compared to the old
This adding, deleting interface or
modifying the structure of previous mterface. With this
type of updating, compatibility between client component
(component that requests a service) and the provider one
might be broken. One solution is to build a third
component acting as an adapter which implements the
wnterface required by the client and performs a translation
to the interface the provider implement¥” .

ones. includes

Performance: Currently, there 13 no programming
language that fully supports features related to dynamic
updating. It is a problem of type-safety of programming
languages. Tt is clear that the more flexible the type
system, the more power 1s available to carry out actual
changes. On the other hand, these powers come at a cost
of reduced security!"”. As aresult of that, developing hot
swappable systems with current programming languages
1s achieved by using a wrapper and reflective approach.
This indirection causes an overhead and drops off
system performance.

Safety and fault tolerance: Originally, the goal of hot
swapping of software components 1s to keep the system
running continuously. Therefore, it is not acceptable at all
that the new version of a component crashes the whole
system. The problem with updating runmng system is that
no test phase to verify the changes to the system. In
order to benefit of any approach for dynamic updating, it
should support a way of fault tolerance or rollback
recovery to restore the original system.

Recent approaches: Although there are different
approaches to build dynamic updatable software system,
only review here most recent approaches based on
component-oriented paradigm.

DCUP: In this approach!"™, an application is a tree-like
hierarchy of nested components. A compoenent 1s divided
mto a permaenent part and a replaceable part. The
permanent part contains a Component Manager(CM) and
wrappers of the component. The replaceable part contains
a Component Builder (CB), functional objects and
subcomponents of the component. Orthogonally, with
respect to the nature of the operation provided, the
component is divided into its functional part and control
part. Updating a component means replacing its
replaceable part by a new version of this part at run time.
When there is a dynamic update process, the CM using
wrappers to lock their targets and sends an update
request to the CB; the CB stops the execution of
all functional objects, save their states to the disk and

destroys the replaceable part; the CM downloads and
instantiates the new version of the CB, the new CB builds
the component (functional objects and sub-components)
and retrieves state. The disadvantage of this approach 1s
using wrappers to create indirect link between objects
which decrease the application performance. Furthermore,
because the application 15 a tree-like model of
components, so 1if there 13 an update for a component in
the top level, it requires all the application to be
redeployed.

Dbeanbox: DbeanBox™ defines a framework for dynamic
updating in component-based system by associating an
updateable component to one or more other components
that may replace it at runtime. This relation between
updateable component and its replaceable ones 1s
expressed in an XML format which also includes :

» Constramts that should be satisfied to replace new
component with old version.

s Script that describe the mapping between old and
new components, as well as the mapping between
their methods.

» Comstraints or actions to be performed after updating
the component.

This framework allows for example to replace a
component by another one, either having the same
interface or not (interface mapping facilities are
supported), also to change the system
architecture by changing the connections between
components, by adding or removing components, it
guarantees some consistency of the reconfigured system
by assuring the state transfer between the old and the
new component, passivating and activating components
as necessary. When the adaptor 13 passivated, the
received events are stored in a waiting list. The stored
events are stamped, A stamp is a number (the current
time) that specifies the order of the stored event.
Passivate a Bean can be performed by passivating all its
source adaptors. When the Bean is activated, the stamp
allows to fire the stored events in the correct order™. The
shortcoming of tlus approach is that the replacing
components and their relation to the replaced one should
be defined in advance which limits the dynamic updating
feature to those predefined components.

it allows

21]

S-Module appreach: Gang Ao and Ning Feng™have
proposed a proxy-pattern-based approach for dynamic
updating applications written in Java. In their approach,
a program 1s composed of swappable and non-swappable
modules. Swappable modules are those they can be

769

Table 1: Comparison of hot swapping approaches in component-based sy stems

Asian J. Inform. Tech., 5(7): 767-771, 2006

Consistency State transfer Type of updating Safety Performance

DCUP Before updating, all During updating Implementation No Indirect access
methods executions process, the comp onent through wrappers
are ended and during saves its state to the decrease the
updating, the wrapper disk and when the new performance
blocks any access to version takes action, it
the component. initializes its state from

the disk

DhbeanBox Components are KMI-based description BRoth No Using adapters to
connected via of state transfer implementation and control
adapters that passivate function. interface. communication
and activate the among
components. Events components causes
are queued during performance
updating. overhead

S-Module The hot swapping can This approach does not Both No Using prosxy and
only occur when the explicitty provide a implementation and reflection suffers a
old S-Module is in explicitly provide a interface performance penalty.
idle state. states between versions.

SEESCOA When there is an A new version has Implementation No SEESCOA is

update request,
controller component
sends freezing message
to the specific
component to ensure
consistency of

the system

necessary code to
interpret and transform
the state of the older
version

special run-time
systen and there
is no study
regarding its
performance

replaced dynamically. A swappable module consists of an

S-Proxy and an S-Module. The S-Proxy represents a
wrapper around an S-Module so any method invocation
to the S-Module must go through the corresponding
S-Proxy. Java reflection 1s used to invoke the methods
provided at the new S-Module. This indirection link
facilitates the ability of S-Module to be replaced at
runtime. The swappable application has a swap manager
take care of the hot swapping transaction. The hot
swapping can only occur when the old S-Module 15 in idle
state. The new S-Module could have a different interface
to the old S-Module.

The weakness of S-Module approach is using Java
reflection to mvoke the new methods at the new S-
Module which makes the application suffers a
performance penalty. Also, the programmer has to code
the S-Proxy. Moreover , this approach can only support
mcremental functional modification and extension. The
technique used to handle interface change cannot
support decremental functional modification. This
means that a new S-Module has to keep all the
mterfaces its corresponding old S-Module has provided.

SEESCOA: The SEESCOA project™, Software
Engineermg for Embedded Systems using a
Component-COriented Approach, has developed a
modeling methodology for building embedded

applications, supported by a composition tool and a
run-time component system. Components exchange
messages m SEESCOA via comnectors and every

770

messages 13 sent asynchronously. The imnteraction
between two components is made through protocols that
specified syntactic level, semantic level, synchromzation
level and QoS level. Such interaction dose not support
updating the interface of a component. In SEESCOA,
there is a controller component, always present in the
environment. When there is an update request, Controller
component sends freezing message to the specific
component to ensure consistency of the system,
instantiates a new version of the component, then
transfers the state from old version to the new cne. After
transferring the state, the new version i1s relinked to the
system and the old version can be safely removed from
the system. In SEESCOA, the new version is responsible
for mterpreting and importing state of old version

CONCLUSION

In this overview of the state-of-art in hot swapping of
component-oriented systems, we discussed the most
recent approaches. Those approaches are reviewed in
relevant to four important aspects of any dynamic
updating techniques : consistency, state transfer, type of
updating and safety. Although the main goal of hot
swapping 1s to let systems run continuously, None of the
existing approaches give much attention to system safety
after swapping of a component is achieved. Table 1
describes those those

approaches according to

four critena.

10.

11.

12.

13.

Asian J. Inform. Tech., 5(7): 767-771, 2006

REFERENCES

Szyperski, C., 1999. Component software: Beyond
object-oriented programming, Addison-Wesley.
Alan. W. Brwan, 1997. Background information on
CBD”, SIGPC.

Group, Y., 2002. How much 1s an hour of downtime
worth to you? Must-Know Business Continuity
Strategies, pp: 178-187.

Eagle Rock Alliance, Ltd., 2001 Cost of downtime
online survey results, Fetched.

Fabio Kon, 2000. Automatic Configuration of
component-based distributed systems. PhD> Thesis -
Department of Computer Science, Umniversity of
Ilimois at Urbana-Champaign.

Fabry, R., 1976. How to Desing A System in Which
Modules an be Changed on the Fly, in proceedings
of International Conference on Software Engin,
IEEE-CS Press, pp: 470-476.

Mark, E.8. and O. Frieder, 1993. On-the-fly program
modification: Systems for dynamic updating. TEEE
Software, pp: 53-65.

Gupta, D., 1994. On-line software version change.
PhD thesis, Department of Computer Science and
Engineering, Indian Institute of Technology, Kanpur.

Michael Hicks, 2001. Dynamic software updating.

PhD thesis, Department of Computer and Information
Science, University of Pennsylvania.

Hjalmtysson, G. and R. Gray, 1998. Dynamic C++
classes-A Lightweight mechanism to update code m
a running program, In Proceedings of the USENIX
Anmual Technical Conference, pp: 65-76.

Orso, A., A. Rao and M. Harrold, 2002. A techmique
for dynamic updating of Java software. Proceedings
of the IEEE International Conference on Software
Maintenance (ICSM 2002), Montreal, Canada,
pp: 649-658.

Malabarba, S., R. Pandey, J. Gragg, E. Barr and
. Barnes, 2000. Runtime support for type-safe dyamic
java classes. In the Proceedings of the European
Conference on Object-Oriented Programming.
Ritzau, T. and J. Andersson, 2000. Dynamic
deployment of Java applications. Presented at the
Java for Embedded Systems Workshop, London,
United Kingdom.

771

14.

15.

16.

17.

18.

19.

20.

21.

22,

23.

Vandewoude, Y. and Y. Berbers, 2005. Component
state mapping for runtime evolution, In Proceedings
of International on Programming
Languages and Compilers, pp: 230-236.

Eskelin, P., 1999. Component interaction patterns, On

Conference

line Proc,6th Anmual Conference on the pattern
languages of programs.

Ebraert, P. and Y. Vandewoude, 2005. Influence of
type systems on dynamic software evolution, In the

electromic proceedings of the International
Conference on Software Maintenance (ICSM'05)
Badapest Hungary.

Plasil, F., D. Balek and R. Janecek, 1997. DCUP:
Dynamic compoenent updating m Java/CORBA
enviromment. Ech. Report No. 97/10, Dep. Of SW
Engineering, Charles University, Prague.

Plasil, F., D. Balek and R. Tanecek, 1998.
SOFA/DCUP: Architecture for Component Trading
and Dynamic Updating, in the proceedings of
ICCDS'98, Amnapolis, Maryland, USA, TEEE CS
Press.

Ketfi, N.B. and P.Y. Cunin, 2002. Dynamic updating
of component-based applications, SERP'02, Las
Vegas, Nevada, UUSA.

Ketfi, A. and N. Belkhatir, 2004. Open framework for
the dynamic reconfiguration of component-based
software. The International Conference on Software
Engineering Research and Practice, Track on Team-
based Software Engineering (TBSE 04), Monte Carlo
Resort, Las Vegas, Nevada, USA.

Ao, G., 2000. Software hot-swapping techniques for
upgrading mission critical applications On the fly,
masters thesis, System and Computer Engineering
Department, Carleton University.

Feng, N., 1999. 3-Module Design for Software Hot
Swapping, Master Thesis, System and Computer
Engineering Department, Carleton University.
Vandewoude, Y. and Y. Berbers, 2004. Supporting
runtime evolution in SEESCOA. J. Integrated Design
and Process Sci., Transactions of the SDPS, 8: 77-89.

