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Neuro-Fuzzy Methods for Fault Diagnosis of Nonlinear Systems
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Abstract: The study presents a Fault Detection and Isolation (FDT) scheme with a particular emphasis placed
on sensor fault diagnosis i nonlinear dynamic systems. The non-analytical FDI scheme 13 based on a two-step
procedure. Two methods are proposed for the first step, called residual generation, one use fuzzy sets and the
second neuronal network. A fuzzy neural network performs the second step, called residual evaluation. Some
simulation results are given for efficiency assessment of this fault diagnosis approach.
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INTRODUCTION

The problem of Fault Detection and Isolation (FDI) 1s
a crucial 1ssue for the safety, reliability and performance
of industrial processes.

The FDI procedure consists basically of two main
steps: generation of residuals which should be useful
fault indicators and residual evaluation which mvolves
decision making.

The model-based FDI approach also referred to as the
analytical approach, which has received intensive
attention, use mainly state and parameter estimation
techniques!"”. The main drawback of the analytical
approach is the requirement of an accurate model for
reliable diagnostic decision (mimimum rate of missed
detections and false alarms).

A fundamental aspect in the design of model-based
methods 15 thus concemmed with the problem of
robustness with respect to model uncertainties arising in
the form of modelling errors and unknown external
disturbances. As far as linear systems are concerned, the
problem of robust residual generation may be considered
to be mature™**! whereas the FDI problem for nonlinear
dynamic systems has been investigated to a lesser
extent!”,

Alternately, FDI can be performed using qualitative
techniques such as expert systems, fuzzy logic, neural
networks™'".

In a fault diagnosis procedure for linear systems
used a combination of an analytical residual generator
(a Kalman filter) and a fuzzy neural network for
residual evaluation This study extends this work to
the nonlinear case. The main difference is the problem
of the identification of non-linear model. On the
other hand, we know now the capacity of fuzzy

(el network!”  to

systems and neural
nonlinear systems.

Once the model 1s obtamed, a neural network
performs the decision-making, which consists in detecting
and isolating a fault when it occurs. This neural network
coupled to a fuzzy inference block acts as an on-line fault

classifier.

identify

Residual generation: There are several different
approaches to modelling of complex nonlinear systems.
The main distinction can be made between global and
local methods.

In this study, we present the two approaches: neural
network in the global approach and fuzzy sets in
the local one.

The residual generation procedure i1s depicted

in Fig. 1.

Residual generation by fuzzy sets: The fuzzy sets
methods use partitioning of the process domains mto a
mumber of fuzzy regions. For each region in the input
space, a rule is defined that specifies the output of model.
The rules can be seen as local of submodels of the
systems. The rules used, here m this paper, are Takagi-
Sugeno (TS) rules that give as result locally nonlinear
submodels.

Takagi- Sugeno model. The affine Takagi-Sugeno
(TS) fuzzy model consists of rules R; with the following
structure:

Ri:If xis Ajthen vi=ax+b i=1,2,...,K {0

antecedent consequert

where xcXcRP is a crisp mput vector, A; is a
(multidimensional ) fuzzy set: p(x): X—[0, 1], v, € R is the
scalar output of the 1-th rule, a, £ R"1s a parameter vector
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Inputs

Fig. 1: General procedure of residual generation

and b, 1s a scalar offset K is the number of rules in
the rule base.

Given the outputs of the individual consequents vy,
the global output y of the TS model (1) 15 computed using
the weighted (fuzzy) mean formula

VEDNICHAD HLNEH @

Here [3(x) denotes the degree of fulfilment of the 1-th rule’s
antecedent, [}= p,(x).

For building fuzzy models from data, generated by
poorly understood dynamic systems, the input-output
representation 1s often applied. The most common
structure is the NARX (Nonlinear AutoRegressive with
eXogenous input) model.

In terms of rules, the model 1s given by

R Hyk)is A jand yl-1) is A, ...and
y(k-nA41) is A, and ulk) is B, and u(k-1)
15 B ;and ...and u(k-n,+1) 18 B, then 3)

Sk =Ya, yk i+ 1+ b ukjt i

j=1 j=1

where k denotes discrete time sample, n, and n, are
integers (fixed by the user) related to the system’s order
and a, b, ¢ are consequent parameters. The NARX model
can represent MISO systems directly and MIMO systems
in decomposed form of a set coupled MISO models.

By choosing the structure of the model, the
identification problem 1s transformed into static nonlmear
regression y=F(x). The model imput x 1s called the
regressor, the output y is called the regressand and the
product space of the regressor and the regressand, Z=(X
xY)c R"1s called he regression space, where n=p+1 1s the
dimension of this space. Recall that p 13 the dunension of
the regressor vector x. In this space, the equation y=F(x)
defines a hypersurface (subspace of the dimension R ),
wich 1s called regression surface. Geometrically, the
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consequents of the affine TS model (1) can be seen as
hyperplanes i the regression space. By means of the
antecedent fuzzy sets, the regression space is partitioned
into smaller regions, in which the regression surface can
be locally approximated by these hyperplanes. The
purpose of identification 1s to find the number, locations
and parameters of the hyperplanes, such that the
regression surface 15 accurately approximated. This 1s
achieved by applying a class of fuzzy clustering methods
called subspace clustering algorithms. In this study, the
Gustafson-Kessel(GK) algorithm’s is used.

Gustafson-kessel(GK) algorithm: First, we have to
construct a matrix 7, of data to be clustered. This is
achieved by concatenating a matrix containing the
regressions vectors m its columns and a vector
containing the regressands.

As an example, consider a SISO system for wich a set
of N measurement is available :

S={(yIuk)Nk=1,2, ..., N}

Postulating, for instance, a second order NARX structure,

y(let1)=Fiy(k),y(k-1)ulk),uk-1)), the data set for
clustering is constructed as:
¥y(2) y3) y(N-1)
y) y(2) y(N -2
Z=lu2) ul) u(N—1) (4
u(l) u(2) u(N —2)
y3) y) y(N)

The first four rows contain the regrssors and the last
row the regressand. The vector in the k-th column of the
matrix 7 will be dencted by z,.

The set of vectors z., k =1, 2,..., N will be partitioned
into ¢ clusters, represented by their prototypical vectors
v.=[Vi, ... vi, ] €R% =1, 0

Dencte V £ R**°the matrix having v, in it’s column. V
is called the prototype matrix. The fuzzy partitioning of the
data among the ¢ clusters 1s represented as the fuzzy
partition matrix UeR™" whose elements denoted p,; £[0,1]
are the membership degree of the data vector z, in i-th
cluster. A class of clustering algorithms search for the
partition matrix and the cluster prototypes such that the
following objective function 18 mmimized

HZV0) =3 () (2v,) )

i=l k=1

subject to the following constraints
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Yu, =Lk=1L..N (©)

1=1

N
0<Yu, <N=li=l.,c (7)

k=1

In (5), m=>1 is a parameter that control the fuzziness of the
clusters. The usual setting with m=2 is suitable for most
applications. The function d(z, v) is the distance of the
data vector =z from the cluster prototype wv. The
constraint™ avoids the trivial solution U=0 and the
constraint!” guarantees that clusters are neither empty
nor contain all the points to degree 1.

The optimizaticn problem defined by the functicnal

18,10]

subject to the constraints'*'" can be solved by different
nonlmear optimization techniques. The most popular one
is the so-called fuzzy ¢-means algorithm[6]. Gustafson and
Kessel extended the c-means algorithm for an mmer-

product metric norm
' (z.v) = (7, - v ) M,(7, -v.) ®

where M, 1a appositive defimte matrix adapted according
the actual shapes of the individual clusters, described
approximately by the cluster covariance matrices F,

Z(“ﬁ,k Yz, -V )7 -V, )T

) ©
PN (e
k=1

K

The distance inducing matrix M, is calculated as the
normalized inverse of the cluster covariance matrix

M, = det(E °E” 10

In the iterative optimization scheme of the GK
algorithm below, the subscript (1) denotes the value of a
variable at the |-th iteration.

Gustafson-kessel fuzzy clustering algorithm: Given the
data matrix 7, choose the number of clusters 1 < ¢ <N, the
weighting exponent m=>1 and the termination tolerance
£ >0, Initialize the fuzzy partition matrix U™ randomly, such
that is satisfies the conditions!®!".

Repeat for 1=1.2,. ..

Stepl: Compute the cluster prototypes (means):

N
1-1
E(“‘i(,k ))m Zy
Vl _ k=1

b=kl JA<i<e (1)
D
=

Step2: Compute the cluster covariance matrices

N
Wz vz, vy
_ k=l

g Jd<i<e (12)
AT
k=1

E

Step3: Compute the distances:

1
&, =(z, —v)[det(E)*E ' (2, —vP), (13)
1<i<¢l1<k=N

Stepd: Update the fuzzy partition matrix:

uh =1/¥d,, /d )"0 1<i<el <k <N (14)
1=

1f d; =0 for some 1=s, set =1 and p; =0v1i#s

until Jove4] < ¢

This algorithm simply loops through the estimates of
the cluster centres V, the covariance matrices F and the
fuzzy partition matrix UJ. We explamn, now, how to derive
fuzzy models from these matrices.

Estimation of consequent parameters: There are several
methods to obtain the consequent parameters. Since the
model should serve as numerical predictor, we use the
global least square approach, which gives the least
prediction error.

In order to obtain an optimal global predictor, the
aggregation of the rules should be taken into account.
When using the fuzzy mean defuzzification', which is a
convex linear combination, a global least squares problem
can be solved to obtam the consequent parameter
estimates.

The membership degrees B3, = n.(x,), representing
the degree of fulfilment of the i-th rule of each data point,
can be obtained from the fuzzy partition matrix 1. Recall
that each row of U contams a point-wise defimition of the
membership function for the data in the product space X
x Y. In order to obtain the membership fimction A, mn the
regressor space X, the i-throw of U, denoted U, must be
projected onto regressor space
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B =proj " (Ug) (13)

where proj(.) is the point-wise projection operator| .

The result of the projection step 1s that a set of data
vectors with repeated regressors x, are assigned the
maximum membership degree from this set. in order to
write!! in a matrix form for all data (x,, y,), 1 <k<N, denote
B; a diagonal matrix i R™ having the normalized
membership degree v, as its k-th diagonal element. Finally
denote X’ the matrix in R™" composed from matrices
produces of B, and X, as:

X=[(B X (BXo. (BXIT (16)
Denote 6° the vector in R***" given by
e’ =[61T: eZT:---aecT] (17)

where 6= [a7, bT] for 1 <i<c.
The resulting global least square problem X°[0°] = y
has the solution

6 = [X)X XYy (18)
From (17) the parameters a and b, are obtained by

a, =68 15046,

1410
b1 = [eq+p+l]=q = (1 71)(P 71)

(19)

Deriving antecedent membership functions: The fuzzy
partition matrix u projected onto the antecedent space
defines the membership functions point-wise, for the
available data. In order to obtain a prediction model, the
antecedent membership functions need to be expressed in
a form that allows one to compute the membership
degrees for any mput data. This can be achieved by
using an inverse of the distance function of the clustering
algorithm 1n the antecedent product space.

The degrees of fulfilment of the rules are computed
by evaluating the distance function, see!!, only for the
regressor x and the regressor part of the cluster prototype,
using the comresponding partition of the cluster
covariance matrix

F=[f] 1<, j< p (20)

The imner product norm then measures the distance
of the antecedent vector from the projection of the cluster
center to the antecedent space. Then the inner product
norm can be evaluated as

d(x,,v5) = (x-v*1)T F% (x-v%) 2n

Y, el)

Y, knp

Y, )

Y; kny)

T, &)

¥y, (ki)

Ui kd

U, (k-dm,)
Um(k'd)

U, k-d-m,) |

Fig. 2: Two-layer neural network

and transformed into the membership degree (degree of
fulfilment), using some kind of mversion. One possible
choice 13 to use the same formula as in the clustering
algorithm

1
Bi(xk) -
N dix,, v )/ dix,, v (22)

=1

which takes into account all the rules and computes the
degree of fulfilment of one rule relative to the other rules.
the sum of the membership degrees also equals one as
with clustering, hence v, = P,

Summary of the identification procedure: The
identification procedure can be summarized in the
following steps:

s Stepl: Design identification experiments and collect
a set of representative measurements.
Step2: Choose the model structure, see!”
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¢ Step3: Cluster data by using GK algorithm.

¢+ Stepd: Generate the rules by computing the
consequent parameters and the antecedent

membership functions.

*  Step5: Validate the model.

Residual generation by neural network: It 1s relevant to
use the hugh potential of neural networks for nonlinear
system modelling in the context of fault diagnosis of
nonlmear dynamic systems. The most commonly used
neural network architecture is the Multilayer Perceptron
(MLP) network!'™.

Its implementation goes through the following
steps:

¢ Off-line construction of a database using expert
lmowledge of the process characteristics under
different operating conditions.

*  Selection of the neural network structure: the
NNARX model is recommended™™” when the system
under consideration is deterministic or weakly noisy.
The NNARX model may be represented by the
general form:

§k) = glok)) (23)

the regression vector and the nonlinear function

@7 (k) = (y(k - D..y(k - n)u(k - d)..uk ~d-my 15 the
regression vector and the nonlinear fimetion g can be
realized by a suitable MLP network.

A multivariable NNARX model can be adequately
implemented as a feedforward two-layer perceptron
network having one hidden layer and an output layer as
shown in Fig. 2.

The vector @(k) of delayed outputs and inputs of the
system is applied to the network inputs. (ny,...,n,
m,,...,m.d) are the structural indices also referred to as
the lag space of the neural model. The mput delay d 1s
generally taken as one.

The hidden layer includes a sufficient number nh of
sigmoid umits (nh must be specified experimentally) and
the output layer contains linear units.

W = (W1 W2) is the weight matrix relating the inputs
to the hidden layer units and 7 1s the weight matrix
relating the hidden layer units to the output umits.

The neural network outputs are given by:

909 =, (32,1 10+ 2,,) =1 e

h, (k) = ¢J<n2wwﬂ<pl(k) W )i=1n, (25)

where @] are sigmoid type activation functions and , are
linear type activation function and (w,, z, ) are the biases.

Network training: The network weights and iases
(randomly 1mtalized) are adjusted using a suitable
minimisation algorithm of the following mean square error
criterion:

Ey :§E(y<k>f9(k)f<y(k)ffz(k)) (26)

where N 1s the length of the tramming data set. The
Levenberg-Marquardt algorithm is recommended to use
as peinted out in'™.

Network validation: Tn this stage the resulting neural

model 13 evaluated to decide for its adequate
representation of the system. This is done by testing the
trained network using a data set different from the one
used for training. If the trained network iz judged
unsatisfactory after the wvalidation tests then 1t 1s
necessary to go backwards m the procedure by retraming
the network with different weight initializations, or by
generating additional training data, or by modifying the
network structure (by redefining the regression vector
and the number of hidden units).

As in the case of residual generation by fuzzy sets, all
these steps are accomplished off-line. When the neural
network 1s validated, it may be utilized for online residual

generation.

Residual evaluation: The task of residual evaluation can
[8.9]

be achieved by a fuzzy neural decision scheme™” as
represented in Fig. 3.
Positi Fault
) Fault 2
Residual Zéro R
N
N
Négat Fanlt
Residual fuzzyfication
Decisions
Residual evanlation

Fig. 3: Neural fuzzy decision scheme
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A fuzzy neural network is based on the association of
fuzzy logic inference and the learning ability of neural
networks. The fuzzy neural approach is a powerful tool for
solving important problems encountered in the design of
fuzzy systems such as: determining and learning
membership functions, determining fuzzy rules, adapting
to the system environment. The main points of the
residual evaluation procedure are described below:

Residual fuzzyfication: It consists in converting the
numerical values of residuals into linguistic variables.
Each input (residual) may be described by three linguistic
variables (Negative, Zero, Positive). Each linguistic
variable is represented by a membership function, which
has generally a triangular or trapezoidal shape. The
linguistic variable Zero defines the range where the
residual may be considered to be unaffected by a fault.
The linguistic variables Negative and Positive define the
residual amplitude ranges indicating the presence of a
fault. The corresponding membership functions give the
extent to which a residual is or is not affected by a fault.

Neural network structure: For fault diagnosis, it is
desirable to use a neural network to model the nonlinear
relationship between the fuzzyfied residuals and the fault
decision functions. A multilayer perceptron network is
therefore a good candidate. Moreover, to account for
memory in the decision process it is necessary to use a
Recurrent Neural Network (RNN). The RNN may be
implemented as a NNARX model described by:

D, (f,) =g (9(k)) @7

D,(f) i=1...n, are the fault decision functions also referred
to as fault indicators and fi are the faults acting on the
process. The regression vector @(k) contains the fuzzy
residuals Rj(k) j=1..n, and the delayed decisions D, (f))
i=1...nf. Because of the feedback introduced, the recurrent
NNARX model may be realized by a three-layer MLP. This
is illustrated by the example given in Fig. 4, which
shows a residual evaluation scheme processing three

residuals (rl1, r2, r3) to diagnose three faults (f1, f2, 3 ).

Fig. 4: Example of RNN used for residual evaluation
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The corresponding neural network has the following
architecture: an input layer with 12 units representing all
possible states of the fuzzy residuals together with the
past decisions, a hidden layer having 4 units and an
output layer with 3 units each assigned to a decision
function. The use of this RNN architecture ensures
reliable dynamic decision-making!™'*",

Training: Prior to on-line use, network training is
performed for all possible fault scenarios. During training
a residual pattern corresponding e.g. to fault f, is applied
to the network input and a one is assigned to the
corresponding output. The network weights are then
adjusted by an appropriate algorithm thus enabling the
neural network to learn the imposed input-output pattern.
The wuse of the back propagation algorithm is
recommended"'!. The ultimate goal of the training is to
achieve the extraction and selection of the necessary
parameters defining the «if-then» inference rules.

RESULTS

Simulation results are next presented to assess the
capacity of this diagnosis approach based on neural and
fuzzy techniques to detect and isolate sensor faults in a
nonlinear process. The nonlinear process considered here
is composed of three identical tanks having section Q,
connected in series by a pipe of section q, with outlet at
height H. The system outputs are the three tank levels y,
= h, i=1...3 satisfying the condition h,>h,>h;>H>0.

This system is governed by the following nonlinear
differential Eq:

h, =—b-/h,—h, +(%))-u
h,=b-y/h,—h, =b-,/h, —h,

h,=b-y/h,—h, —b-/h,—H

(28)

b=g/Q.¥2g, q=0.196 m?, Q= 78.54 m*, H=3 m.

g is the gravity constant and u=1.222m3/sec is the
constant input flow. This simulation study is carried out
with a sampling time Ts = 10 sec and with initial
conditions: h;;=6.9 m, h,,)=5.5m, h;=4.3 m.

Method using fuzzy sets

Residual generation: The structure of the fuzzy model is
selected by using the insight in the physical structure of
the system as follows:

Output 1: n,, = 1, n,,= 1, n,; =0, u, =1
Output 2: n,, = 1, n,,= 1, ny =1, u,=0
Output 3: n;, =0, n;,= 1, n =1, u;=0
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Fig. 6: Membership functions (output2)

As example, the degrees selected for the output 1
state that the level h, depends on hl, h2, u, but not on h3.

The number of clusters is ¢=2, then the number
of rules are also 2. The fuzzy TS models obtained
are:

Qutput 1:

R If yik-1)Is A And y(k-1)Is A, And uls A,
Then y,(k) = 0.96 y,(k-1)+0.05 v,(k-1)4+0.13u -0.07

Ry Ify, (k-1)Ts A, And v, (k-1)Ts Ay, Anduls Ay,
Then y1(k) = 0.97 y,(k-1)+0.04 v,(k-1)+ 0.12 u- 0.08

The cluster centers are regrouped in the Table 1.
The antecedent membership functions obtained are
represented by the Fig. 5.
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I

48
ya(k'l)

43 44 46 47

Fig. 7: Membership functions (output3)

Output 2:

Ry If y(k-1) Is A, Andy,(k-1) Is A And yvi(k-1) Is A,
Then v,(k) =0.035 y, (k-1) +0.922 y,(I-1) + 0.05 y,(k-1) -
0.002

R, If y(k-1)Is A, And y,(k-1) Is A And yi(k-1) Is A,
Then y,(k) = 0.037 y,(k-1)+0.926 v,(k-1)+ 0.036 y,(k-1)
+0.006

Output 3:

Ry Iy, (k-10Ts A And vi(k-1)Ts A,
Then y4(k) = 0.05 y,(k-1)+0.907 y,(k-1)+0.144

Ry Ify,(k-1)Is Ay And v,(k-1) Is A,
Then y;(k) = 0.04 y,(k-1+0.920 y,(k-1)+0.121

After validation, this NNARX fuzzy model 1s used to
generate the residuals: ri(k)=y(k)-y.(k) =1...3. In normal
operation, the residuals are near zero as shown in Fig. 8.

Residual evaluation. The linguistic variables describing
the fuzzyfied residuals are defined by the following
membership functions (MF):

» N negative residual with trapezoidal ME»,
7. zero residual with triangular MF»,

P : positive residual with trapezoidal MF ».

The membership functions for each residual are
given below:
s  Résidul: N, =[-0.5-04 -1e-3 -8e-4],
Z,=[-1e-301e-3], P, =[0.5¢-3 5¢-32.52.5]
Résidu 2: N, = [-1 -0.6 -9e-3 -3e-3],
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Fig. 8: Residuals by fuzzy sets ( normal operation)

Z,=[-5¢-3 0 5¢-3], P,=[le-3 4e-311]
Résidu 3: N;=[-1-0.5 -1e-3 -6e-4],
Z,=[-8¢-4 0 le-2], P,= [.5¢-21e-21.52]

Table 1: Cluster centers (output 1)

rule vilk-1) vak-1) u

1 7.87 6.12 1.23
2 8.91 6.93 1.22
Antecedent membership functions

Table 2: Cluster centers (output 2)

rule vitk-1) va(k-1) va(k-1)
1 8.18 6.36 4.66

2 891 6.94 4.97
Antecedent membership functions

Table 3: Cluster centers (output 3)

rule va(k-1) va(k-1
1 5.99 4.46

2 6.92 4.96

The RNN used in this simulation study is shown in
Fig. 4. Its training is based on the rules summarized in
Table 1, which have been obtained after many
simulation tests.

The learning operation realized by the back
propagation algorithm converged after 3266 iterations
with a mean square error E=0.001.

Sensor fault diagnosis of the three-tank process: Various
simulation tests have been performed in order to validate
the efficiency of this diagnosis scheme and the results are
quite conclusive. For illustrative purposes only two fault
scenarios summarized in Table 2 and 3 are discussed.

Case 1: Bias type faults are injected in sensors 1 and 2 as
described in Table 5. The corresponding residuals are
shown in Fig. 9.
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Fig. 9: Residuals by fuzzy sets (casel)
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Fig. 10: Decision functions (case1)

The fault f, on sensor 1 affects positively the residual
r, and negatively the residuals r, and r; at time t=12000s,

whereas the fault f2 on sensor 2 affects positively the
residual r, and negatively the residuals r, and r; at time
9000s.

The obtained decision functions allow to well detect
the faults f, and f, as shown in figure 10. It was possible
by use of fuzzyfied residuals and the training network
operation.

Case 2: This fault scenario in sensors 2 and 3 is described
in Table 6. The corresponding residuals are shown
in Fig. 11.

The fault f, on sensor 2 affects positively the residual
r, and negatively the residuals r, and r; at time t=13000,
whereas the fault f; on sensor 3 affects positively the
residual r; and negatively the residuals r, and r, at time
t=10000.
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Fig. 12: Decision functions (case2)

As shown in Fig. 12, the fault indicators detect and
isolate successfully the faulty sensors.

METHOD USING NEURAL NETWORK

Residual generation by neural network: A NNARX
model having the architecture shown in Fig. 2 has been
used with the following parameters:

n,=n,=n,=m,=1, d=1, n=4, n,=4. Training of this network
was done by the Levenberg-Marquardt algorithm and the

Table 4: Inference table
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Fig. 11: Residuals by fuzzy sets (case2) 13: Residuals by neural network in normal operation
17 Decisionl 1- Decision2 Table 5: casel
Sensor N° Fault time Fault magnitude
051 051 1 12000 0.7
2 9000 0.6
0
0 Table 6: case 2
05 0.5 Sensor N° Fault time Fault magnitude
0 05 1 70 0S5 1 1s 2 2 13000 0.3
Temps  x1o° 3 10000 05
Decision3 x 10*
- €C1S10N. . . . .
1 mean square error reached at 500 iterations is E=2.36510™.
05 After validation, this NNARX model is used to generate
’ the residuals:
0 r(k)=y(k)-y{k) i=l1...3. In normal operation, the residuals
are near zero as shown in Fig. 13.
0.5 '
6 o5 1 15 2 . . S . .
Temps 1qt Residual evaluation: The linguistic variables describing

the fuzzyfied residuals. In this case, the membership
functions are given as follow:

e RésiduI:N1=[-1 -1 -0.09 -0.085],
Z1=1-0.15 0 0.15], =[0.05 0.06 1 1]
e Résidu2: N2=[-1 -1 -0.05 -0.040],
72=[-0.08 0 0.08], = [0.045 0.055 1 1]
e Résidu3: N3=[-1 -1 -0.04 -0.030],

=[-0.08 0 0.25], P3 =10.15 02 1 1]
We use the same RNN shown in Fig. 4. Its

training is based on the rules summarized in Table 4.

We notice that is the same logic decision for both

methods.

N° NI Z1 P1 N2 72 P2 N3 73 P3 DI D2 D3 . .

L o 1 0 0 1 0 o 1 0 0 0 0 Sensor fault diagnosis of the three-tank process: The
2 0 0 1 1 0 0 1 0 0 1 0 0 same scenario of faults.

3 1 00 0 0 1 1 0 0 0 1 0

4 1 0 0 1 0 0 0 O 1 0 0 1 . .. .

5 0 0 1 1 0o o0 o0 o0 1 1 0 1 Case 1: Bias type faults are injected in sensors 1 and 2 as
6 1 0 0 0 0O 1 ©0 0 1 0 1 1 described in Table 2. The corresponding residuals are
7 0 0 1 0 0 1 1 0 0 1 1 0

758

shown in Fig. 14.
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Fig. 14: Residuals by neural network (casel)
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Fig. 15: Residuals by neural network (case2)

We notice that effects of faults on this residuals are
similar with those on the residuals obtained by the
method of fuzzy sets.
also with this method, the decision functions isolate the
two faults and we obtain the same function decision
shown in Fig. 7.

Case 2: This fault scenario is the same as that described
in Table 3. The corresponding residuals are shown
in Fig. 15.

With this method, the faulty sensors are also isolated
successfully and we obtain the same decision functions
shown in Fig. 12.

CONCLUSION

A fuzzy neural scheme for on-line fault diagnosis was
presented. A NNARX model is used for residual
generation. This NNARX model can be obtained either
by fuzzy sets or neural network. A recurrent fuzzy neural

network performs the residual evaluation task. Fault
diagnosis is achieved by training the network to recognize
the pattern of the fault signatures. Preliminary simulation
results show the efficiency of the developed scheme for
detecting and isolating sensor faults in a nonlinear
system. The applicability of this qualitative diagnostic
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approach to the case of system actuator and component
faults is currently under study.
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