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Abstract: Traditional Portfolio Tnsurance (PT) strategy, such as CPPI, only considers the floor constraint but
not the goal aspect. This paper proposes a Goal-Directed (GD) strategy to express an investor's goal-directed
trading behavior and combines this floor-less GD strategy with the goal-less CPPI strategy to form a piecewise
linear goal-directed CPPT (GDCPPI) strategy. This paper applies Genetic Algorithm (GA) technicue to find better
piecewise linear GDCPPI strategy parameters than those under the Brownian motion assumption. The statistical
tests show that the GA strategy can outperform the Browman strategy.
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INTRODUCTION

Portfolio insurance 13 a way of mvestment with the
constraint that the wealth can never fall below a pre-
assigned protecting wealth floor. The optimal trading
strategy for a constant floor tums out to be the popular
Constant Proportion Portfolio  Insurance (CPPI)
strategy! and can be expressed as x, = m,(W-F) where x,
is the amount invested in the risky asset at time t, W, is
the wealth at time t, m, 13 a constant risk multiplier and F
15 the floor. This optimal strategy states that one should
invest more in the risky asset when the wealth increases.
In practice, a mutual fund manager generally sets up a
performance objective in terms of wealth or return at the
beginmng of an mvestment period. If a fund manager
follows the CPPI strategy, he will have a greater chance of
failing his almost reached goal when current wealth 1s
closed to the goal. The major reason 1s that CPPI strategy
only considers the floor but does not take the goal state
into account, while fund managers do have the goal state
in mind during the investment process.

Evidences show that an investor will change tus risk-
attitude under different wealth levels. CPPI strategy
demonstrates this phenomenon. Tn addition, some studies
showed that fund managers change their risk-attitudes
based on their performance compared to the benchmark.
However, there are contradictory observations among
these studies. Some studies observed that fund managers
take risk-seeking behavior when their performance is
worse than the benchmark while some other studies
observed that find managers take risk-averse behavior
when their performance is worse than the benchmark.

These contradictions in fact can be explained by
portfolio  insurance perspective and goal-directed
perspective, respectively. Goal-directed perspective
proposes that an investor in financial markets will
consider certain investment goal. A goal-directed investor
will take risk-seeking behavior when the distance from
current wealth to the goal 15 large and will take risk-averse
behavior when the distance from current wealth to the
goal is small. Obviously, a CPPT investor's risk-attitude
changmng directon 1s opposite to a goal-directed
investor's.

We therefore construct a goal-directed (GD) strategy
x, = my(G-Wunder constraint W < G, where G is the goal
and m, 1s a constant. The concept of GD strategy can also
be supported by Browne's study!™. We further combine
the portfolio insurance constraint and goal-directed
constraint as F<W,<G to construct a piecewise linear
goal-directed CPPL (GDCPPI) strategy, x, =m,(W-F),
F<W, < M and x, = m(G-W,), M = W, = G. The
M= (mF+ m,G)(m, + m,) is a wealth position at the
intersection of GD and CPPT strategies. This M position
guides investors to apply CPPI strategy or GD strategy
depending on whether the current wealth 1s less or greater
than M, respectively. In addition, if m,—e=, the piecewise
linear GDCPPI strategy reduces to the GD strategy and if
m, e, the plecewise linear GDCPPI strategy becomes the
CPPI strategy. That 1s, the piecewise linear GDCPPL
strategy is a generalization of both CPPI and GD
strategies.

Moreover, the optimal m, and m, can be theoretically
derived based on the Brownian motion assumption for
stock prices as in traditional CPPI strategy’™” and
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Browne's study™, respectively. There are some parameters
in the optimal formulas of m, and m, that need to be
estimated using historical data. However, the stock prices
in real financial markets might not follow the Brownian
motion assumption, especially in short-term periods. We
therefore apply Genetic Algorithms (GAs) to find good
parameter values in piecewise linear GDCPPI strategy
based on historical data to improve its performance. The
statistical test shows that the parameters found by GA are
better than those calculated from the techmque under
Brownian motion assumption.

MATERIALS AND METHODS

CPPI strategy: The formulation and solution of optimal
portfolio insurance problem will be described following
Grossman and Zhou's work!”. Assume there are two
assets: A risk-free asset such as a T-bill and a risky asset
such as a stock. Let the stock price dynamic be
dp/p. = pdt + adz, where p is the mean of return rates, o
1s the standard deviation of return rates and dz, is a
Browmnian motion at time t. The portfolio wealth dynamic
then 1s dW, = rW dt + x,(udt + 0dz,), where r 13 the risky-
free rate of return and x, 1s the dellar amount mnvested
the risky asset. Suppose an investor tries to maximize the
growth rate of expected utility of the final wealth under
the portfolio insurance constraint. The problem becomes:

sup lim L]11 E[YU{W)]
¥ T 'YT

SLW, 2 FVt<T,

(1)

where x denotes the set of admissible trading
strategies, O< y=< 1 and F > 0 is the floor. If F is fixed, the
optimal strategy to the above optimization problem is:

- M _ 2
Xp = m(wt F) ( )
Eq. 2 can be simplified as:
¢ =%y =my(W, ~FLW, >F, (3)

where m,= |/6°(1 -y) can be regarded as the investor's
risk multiplier, F is the protecting floor. This ¢, is the
popular CPPT strategy.

Risk attitudes: Evidences show that an investor will
change his risk-attitude under different wealth levels. In
particular, studies showed that fund managers change
their risk-attitudes based on their performance compared
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to the benchmark. However, there are contradictory
observations among these studies. Some studiest”
observed that fund managers take risk-averse behavior
when their performeance 1s worse than the benchmark (low
wealth risk aversion) while some other studies™’
observed that fund managers take risk-seeking behavior
when their performance 1s worse than the benchmark
(high wealth risk aversion). These two types of risk-
attitude are described as follows.

Low wealth risk aversion: An mvestor will become
risk-averse when his current wealth 1s low and will become
risk-seeking when his current wealth is high.

High wealth risk aversion: An mvestor will become
risk-averse when his cumrent wealth 15 high and wall
become risk-seeking when his current wealth is low.

The goal-less CPPI strategies demonstrate the low
wealth nsk aversion phenomenon. Goal-directed
perspective proposes that an investor in financial markets
will consider certain investment goal. A goal-directed
investor will take risk-seeking behavior when the distance
from current wealth to the goal (goal distance) 1s large and
will take risk-averse behavior when the goal distance 1s
small. Although low wealth risk aversion can be explained
by the CPPT strategy, high wealth risk aversion can not be
explained by CPPL. We argue that these contradictions
can be explained from two perspectives: the portfolio
insurance perspective and the goal-directed (or goal-
seeking) perspective. That is, low wealth risk aversion can
be explamned by portfolio insurance perspective. High
wealth risk aversion can be explained by goal-directed
perspective and will be exploited as follows.
Goal-directed strategy: In Browne's study™, one of the
investment problems 1s to maximize the survival
probability in danger zone or to maximize the probability
of reaching the goal before reaching the bankruptey point.
The model can be described as follows.

4

minP(t, > T, )sta< W, <b <y,
X

where x 1s the set of admissible strategies, P(») 1s the
probability function, a 1s the bankruptey pomt, T, 1s the
escape time when W, = a, 1,, is the escape time when
W, = b, 8, is the safe point and is generally set up
to be ¢fr, with ¢ being the mimmal consumption and
r being the risk-free rate of return. This model tries
to find an optimal trading strategy which minimizes
the probability of reaching the bankruptcy point
a before reaching the goal b. The optimal strategy
turms out to be:
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Xt:

L(S-W,)
T

where |1 is the mean of return rates for the risky asset.
If b—8 in fact can be regarded as the goal G that an
mvestor wants to achieve. Then we define a goal-directed
(GD) strategy as

N =%, =my (G~ W, LW, <G, (6)

where m, = 2r/-1 i3 a constant.

The GD strategy shows that an investor should take
ariskier action when goal distance (i.e., the distance from
current wealth to the goal) is large and should take less
risky activity when goal distance is small. This behavior
is consistent with the high wealth risk aversion. Tn other
words, the lugh wealth risk aversion can be explained by
this GD strategy.

Piecewise linear goal-directed CPPI strategy: As we
have noted that investors seem to have two different
types of wealth nsk aversion: the low wealth risk aversion
and the high wealth risk aversion. Intuitively, investors
will take different strategy when they posit different risk
attitude. That is, if their risk attitude is low wealth risk
aversion, they will adopt CPPI strategy. If their risk
attitude is high wealth risk aversion, they will adopt GD
strategy.

Recall that the constraint of CPPI strategy, W» F, 18
different from the constramnt of GD strategy, W,z G. In
addition, the objective of CPPI, maximizing the growth rate
of certain utility, is different from the objective of GD
strategy, maximizing the possibility of reaching the goal
first. Combining the two constraints F<W, and W.<G, a
new problem with constraint F<W,< G is derived. This
new problem can be regarded as containing two
objectives which are composed from the objectives of
CPPI and GD strategies. The CPPT and GD strategies are
depicted in Fig. 1.

We can see that CPPI strategy only considers the
floor and GD strategy only considers the goal. In addition,
there 1s a wealth position M projected from the
mtersection of these two strategies and the value of M
can be calculated by

_ myF+m,G

M (7

my + 1M,

M seems to be a natural dividing pomt for changing
strategies. Since CPPI considers only the floor F but
not the goal G, an investor can apply CPPI strategy
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Fig. 1: The piecewise linear GDCPPI strategy

when W, < M. On the other hand, since GD considers
only the goal G but not the floor F, an mvestor can apply
GD strategy when Wt>=M. We therefore build a piecewise
linear GDCPPI strategy as:

0,W, <F
m (W, -FLF<W, <M
m, (G - W, . M<W, <G.

(8)

0; =x;

Tt can be seen that the piecewise linear GDCPPT
strategy 0, combines portfolio insurance perspective and
goal-directed perspective, as the segments la and 2b in
Fig. 1. Note that 6, is a generalization of both CPPT and GD
strategies. In particular, if m—e, M = (m,F + m,G)/
(m+ m,) = F and the constramt M=<W,< G for GD segment
will be F<W,= G. Therefore, piecewise linear GDCPPI
strategy reduces to GD strategy. If m,—oe, M=(m,F + m,G)/
(m,+ m,) = G and the constraint F<W, < M for CPPI
segment will be F<W, < G. Therefore, piecewise linear
GDCPPI strategy reduces to CPFI strategy.

Traditional CPPT strategy is based on the assumption
of Brownian motion for stock prices. Browne's study™ for
goal seeking objective also made this assumption. When
nvestors try to apply these above strategies, the
parameter values are generally obtained by the long-term
expectation method. That is, the mean and variance of
return  rates
historical data.

However, the historical data might not follow the
Brownian metion'"”. Better m, and m, parameter values in
plecewise linear GDCPPI strategy might be directly
obtained using other data driven optimization methods
with historical data. Genetic algorithm is the method
chosen to search better m, and m, parameters values in
this study due to its success in many applications.

are the long-term expectations from
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Procedure Basic GA
Initiglization; Generate 8 random population of n chromosomes
‘While (termination condition is not satisfied)
Evaluation: Evaulate the fitness of each chromosomes in the populaticn
locp (do genetic applications k times for sach generation)

Select two chr according to their fitness
[ = Croasover selected chr to form new offsprings
with a crogsover rate

Mutation: Mutate each position in sach new offspring with a mutation rate
endloop
Replacement: Replace chromosomes in parent population with new offspring
endwhile
Report the best solution (chromosome) found
endprocedure

Fig. 2: The basic genetic algorithm

Genetic algorithms: Genetic Algorithms (GAs) were
proposed by Holland m 1975 from Darwin's theory of
evolution: survival of the fittest!"'!. Genetic algorithms use
an evolutionary process resulting m a fittest solution to
solve a problem. Genetic algorithms are computationally
simple and powerful and show promising outputs in many
applications.

The basic genetic algorithm: To solve a problem with
genetic algorithms, an encoding mechanism must first be
designed to represent each solution as a chromosome,
e.g., a binary string. A fitness function is also required to
measure the goodness of a chromosome. Genetic
algorithms search the solution space using a population
which 1s simply a set of chromosomes. During each
generatior, the three genetic operators: selection,
crossover and mutation, are applied to the population
several times to form a new population. Selection picks
two chromosomes according to their fitness: a fitter
chromosome has a higher probability of bemng selected.
Crossover recombines the two selected chromosomes to
form new offsprings with a crossover rate. Mutation
randomly alters each position in each offspring with a
small mutation rate. New population is then generated by
replacing some chromosomes of the population with new
offsprings. This process 1s repeated umtil some
termination conditior, e.g., the given mumber of
generations, 1s reached. Fig. 2 shows the pseudo code of
the basic genetic algorithm.

Financial applications of genetic algorithms: Financial
applications of genetic algorithms are starting to show
promising results. Bauer used genetic algorithms to
generate trading rules which are Boolean expressions with
three of the ten allowed time series!™. Colin applied
genetic algorithms to find the lengths in the moving
average crossover strategy!'?. Deboeck studied methods
of using genetic algorithms to train a neural network
trading system™.

In this study, we will apply genetic algorithms to
search satisfactory m, and m, strategy parameter values in
piecewise linear GDCPPT strategy.

RESULTS AND DISCUSSION

The main experimental purpose m this study tries to
justify that we can find out better piecewise linear GDCPPL
strategy by GA technique (generates GA strategy) than
Brownian technique (generates B strategy).

Some parameter values are derived by two pretests.
The first pretest tries to decide a swtable pair of year
length and v values for Browmnian techmque, where v 1s
defined in Eq. (1). The year length is decided to calculate
the expected values of return rate u and variation o°. ITn
turn, the p,0° and ¥ will be used to calculate the
parameters m, and m, in piecewise linear GDCPPT strategy
for Browmean technique, where m, 1s defined m Eq. (3) and
m, 1s defined in Eq. (6). The pretest shows that the year
length is 8 and v 13 0.1. The second pretest tries to decide
the learning length for GA learning and it shows that the
better learning length is 100 trading days.

Five stocks are randomly selected as experimental
targets from 30 components of Dow Jones Industrial
Average (DIIA), namely, American International Group
(AIG), IBM, Merck (MRK), HP (HPQ) and Exxon Mobil
({OM). We also randomly select 5 starting learning dates,
which are 1999/12/13, 2001/6/6, 2002/2/27, 2003/4/28 and
2004/12/03. Three different floors in the experiments for
plecewise linear GDCPPI strategies are pre-assigned and
calculated by the ratios of floor to mitial wealth, which are
0.7, 0.8 and 0.9. Also 3 different goals n the experiments
for piecewise linear GDCPPI strategies are pre-assigned
and calculated by the ratios of goal to initial wealth, which
are 1.1, 1.2 and 1.3. The testing length is always 30 days.
The risk-free rate of return 15 0.0001 per day. There are
(5*5%3%3=) 225 cases and then generates 225 samples for
statistical tests.

GA learning design: The purpose of applying GA
technique in this optimization process is to search
satisfactory strategy parameter values m, and m, to attain
better investment performance, 1e, the rate of return in
this experiment. In order to show GA's capability, we
execute GA searchings for 225 circumstances by 5 stocks,
5 testing dates, 3 floors calculated by ratios of floor to
initial wealth and 3 goals calculated by ratios of geal to
initial wealth as defined above. The traiming length 15 100
days as derived from the above GA pretest.

In addition, each m, and m, strategy parameter will
both be encoded as a 7-bit long gene in a GA
chromosome. Therefore, the length of each chromosome
is 14-bit long. If the decimal value of each gene is D, each
gene will be decoded as values within [1.0,13.7] calculated
by (10+D)/10. Moreover, better m, and m, values implies
better nvestment performance of piecewise linear GDCPPI
strategy. The fitness function is to maximize the
investment rate of return. The other important GA
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parameters are as follows: the population size is 40, each
run executes 20 generations, crossover 1s two-point,
mutation rate 1s 0.001 per bit and selection method 1s
mntegral roulette wheel selection.

GA statistical testing results: We use the paired-samples
t test to validate whether GA strategy can outperform B
strategy. The null hypothesis 1s H;: roig (0)x101.,(0). The
testing results are described as follows. The t value for
the whole 225 samples m testing period 1s -2.303. The
significance value (p value) is 0.011, which is statistically
significant. Then, we can reasonably reject the null
hypothesis. That is, the GA strategy can outperform the
Brownian strategy.

CONCLUSION

Traditional portfolio insurance strategy such as CPPT
does not consider the goal perspective and may fail an
almost reached goal as the result. Although current
Browne's study™ considers the similar goal-seeking
objective, it still does not consider both the objectives of
floor protecting and goal seeking. This study combines
the concept of CPPI strategy and the goal-directed
strategy derived from Browne's study to form a piecewise
linear goal-directed CPPI (GDCPPI) strategy under
constramt F<W < G. This new strategy in fact extends the
strategy solution space and can satisfy those two
objectives. In addition, piecewise linear GDCPPI strategy
reduces to the GD strategy when m,-< and reduces to the
CPPI strategy when m,~<e. This study also make some
experiments to show that the GA techmque can
outperform the Browmnian techmique sigmficantly m order
to find out better piecewise linear GDCPFI strategies.
Our future work will be on the generalization of our
piecewise linear GDCPPT strategy to a piecewise nonlinear
one. This would allow us to search for better strategies
from a larger strategy space. In addition, the piecewise
framework can be used n formulating different objectives
for different conditions. This would allow the model to
adapt to user needs. We are convinced that piecewise
linear GDCPPI strategy represents an interesting
perspective and the extension of piecewise strategy
concept 18 worth exploiting 1 the future.
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