Asian Journal of Information Technology 5(7). 681-685, 2006

© Medwell Online, 2006

Proportional Share Resource Allocation with Latency-Sensitive Threads

V.1 Jyothi and 'S.K. Srivatsa
Sathyabama Institute of Science and Technology, Jeppiaar Nagar,
Chennai 600 119, Tamilnadu, India
"Madras Institute of Technology,Jeppiaar Nagar,
Chennai 600 119, Tamilnadu, India

Abstract: Systems need to run a larger and more diverse set of applications, from real time to interactive to
batch, on uniprocessor & multiprocessor platforms. The problem of inferring application resource requirements
18 difficult because the relationship between application performance and resource requirements is complex and
workload dependent. This study investigates a measurement-based approach to resource mference — employing
online measurements of workload characteristics and system resource usage to estimate application resource
requirements. A scheduling algorithm which provides low latency for real-time and interactive application is
presented. The schedulability of each process is enforced by a guaranteed cpu service rate, independent of the
demands of other processes. The resulting scheduler 1s implemented in the Linux kemel and evaluate its

performance using various application and benchmarks.

Key words: Share resource, latency, sensitive threads

INTRODUCTION

There has been much recent work on scheduling
techniques that ensure fairness, temporal isolation and
timeliness among tasksscheduled on the same resource.
Much of this work 1s rooted in an idealized scheduling
abstraction called generalized processor sharing!™".
Under GPS, scheduling tasks are assigned weights and
each task 1s allocated a share of the resource in proportion
to 1its weight. Thus each task’s designated share 1s
guaranteed (faimess) and any misbehaving task is
prevented from consuming more than its share (temporal
isolation). In addition, real-time deadliness can be
guaranteed (timeliness). The objective of this study 1s to
tune the latency parameter and also to obtain a
proportional share of the cpu in a multiprocessor
environment.

BACKGROUND AND RELATED WORK

(GPS based algorithms guarantees strong faimess in
uniprocessor environment. They do not generalize easily
to multi-resource environment such as multiprocessors
that are a common feature of typical internet servers.
Many recently proposed GPS-based algorithims such as
stride scheduling™, smart scheduling™, borrowed virtual
time[4] also suffer from this drawback when employed for
multiprocessors. The primary reason for this inadequacy

1s that while any arbitrary weight assignment 15 feasible
for umprocessor, only certamn weight assignments are
feasible for multiprocessors'®. In particular, those weight
assignment in which the cpu processing capacity
assigned to a single thread exceeds the capacity of a
processor are infeasible. This can result in starvation or
unfairness to a thread. A weight assigned to a thread is
said to be feasible if

Wi
2 W

] 1

<1
P

1ts requested share reduces to 1/p (which 1s the maximum
share an individual thread can consume). Weight
readjustment algorithm 1s invoked every time a thread
block or runnable. The algorithm examines the set of
runnable threads to determine if the weight
assignment 1s feasible.

Example 1: Consider a server that employs the borrowed
virtual time™ to schedule threads. BVT is a GPS-based fair
scheduling algorithm that assigns a weight w, to each
thread and allocates processing capacity in proportion to
these weights. To do so, BVT maintains a counter 3, for
each application that 15 incremented by g/w, every time
the thread is scheduled. At each scheduling instance, the
thread with the mimimum S, is scheduled. Assume that the
server has two processors and runs two compute-bound

Corresponding Author: V1. Jyothi, Sathyabama Institute of Science and Technology, Jeppiaar Nagar, Chennai 600 119, Tamilnadu,

India

Asian J. Inform. Tech., 5(7): 681-685, 2006

threads that are assigned weights w=1 and w,=10,
respectively. After 1000 quantums, S,=1000/1=1000 and
3,=1000/10=100. Assume a third cpu-bound thread arrives
at this instant with a weight w,=1. The counter for this
thread is initialized to S,=100. From this point on, threads
2 and threads 3 get continuously scheduled until s, and 5,
catch up with 3,. Thus although thread 1 has then same
weight as thread 3, it starves for 900 quanta leading to
unfairness in the scheduling algorithm.

PROPORTIONAL SHARE RESOURCE
SCHEDULING FOR MULTIPROCESSOR
ENVIRONMENT

System model: Consider a p-processor system that
services N tasks. At any mstant, some subset of these
tasks will be runnable while the remaining tasks are
blocked on /O or synchronization events. Let n denote
the number of rummable tasks at any mstant. In such a
scenario, the cpu scheduler must decide whuch of these n
tasks to schedule on the p processors. We assume that
each scheduled task is assigned a quantum duration of
Qe @ task may either utilize its entire allocation or
voluntarily relinquish the processor if it blocks before its
allocated quantum ends. Consequently, as is typical on
most multiprocessor systems, we assume that quanta on
different processors are neither synchromzed with each
other, nor do they have a fixed duration. An important
consequence of this assumption is that each processor
needs to individually invoke the cpu scheduler when its
current quantum ends and hence, scheduling decisions
on different processors are not synchronized with
one another.

Given such an environment, assume that each task
specifies a share &) that indicates the proportion of the
processor bandwidth required by that task. Since there are
p processors in the system and a task can run on only one
processor at a time, each task cannot ask for more than
1/p of the total system bandwidth. Comsequently, a
necessary condition for feasibility of the current set of
tasks is as follows :

@1 <

1
EJQJ P

This condition forms the basis for admission control

i1 our scheduler and is used to limit the number of tasks
1 the system.

Latency-sensitive threads: Threads are monitored in
terms of virtual time, dispatching the runnable thread with
the earliest effective virtual tine. However, a latency

sengitive thread is allowed to warp back in virtual time to
malke it appear earlier thereby gain dispatch preference.
The warpback; flag can be set directly by a system call,
causing the thread to run warped normally. The highest
priority or most latency-sensitive thread i is dispatched
immediately after being signaled, executed with a warp
value W, ensures that it runs for up to its warp time limit
L, before being preempted by the second most latency-
sensitive thread, unless 1t blocks first. If this thread
requires t<1,, microseconds of processing time to respond
to the event, its response time 1s t+c where ¢ 1s the context
switch time, including any mnterrupt disable time latency.
The response time assumes there are no other threads of
the same priority that are dispatched during the same time.
If there are other such threads, the response time is
increased in the worst-case by the sum of the response
times of all the other threads. For lower priority threads
the worst case dispatch latency and response time is as
above, plus the worst-case dispatch latency and response
time 1s as above plus the worst-case times for all lngher or
equal priority threads. If a higher priority thread 1 fails by
goimng into an infinite loop, its response time processing
from the standpoint of lower priority threads and their
response time calculation 1s L;, after which 1t 1s unwarped
and presumably preempted by other well-behaved
threads. Thus assuming the unwarp time requirements are
such that the higher priority threads can only be
dispatched once within the application scheduling
window, the worst case is the sum of all the 1;’s for all
higher or equal priority threads.

The Warp limits of a thread specify limits on the CPU
dispatch preference the thread can use, limiting the
amount it can temporarily warp the scheduling from its
weighted fair sharing.

The response time of a thread 1s the real time from
when a signaling event occurs for that thread until it has
dispatched and handled that event.

The key parameters per thread, weight, warp, warp
time limit and unwrap time requirement, are set to achieve
the desired behavior for the application.

Scheduling mechanism: The proposed algorithm worlks
as described below.

Each task m the system is associated with a share &,
a start tag 5,and a finish tag F. When a new task arrives,
its start tag is initialized as S=v, where v is the current
virtual ttime of the system. When a task runs on a
processor, 1its start tag 13 updated at the end of the
quantum as 5= S; + ¢/&), where q is the duration for which
the thread ran in that quantum. If a blocked task walkes up,
its start tag 18 set to the maximum of its previous start tag
and the virtual tumne. Thus, we have

682

Asian J. Inform. Tech., 5(7): 681-685, 2006

Si= max(S,v) if the thread just woke up
S, + /@ if the thread is run on a
processor

After computing the start tag, the new finish tag of the
task is computed as F= S, + ¢/, where g is the maximum
amount of tume that task 1 can run the next time it is
scheduled. Note that, if task 1 blocked during the last
quantum it was run, it will only be run for some fraction of
a quantum the next time it is scheduled and so g may be
smaller than g, ..

Initially the virtual time of the system 1s zero. At any
instant, the virtual time is defined to be the weighted
average of the CPU service received by all currently
rummable tasks. We set v to the maximum of its previous
value and the average CPU service received by a thread.
That is,

B E@J.SJ
v=max| v, Z@J

If all processors are idle, the virtual time remains
unchanged and 1s set to the start tag of the thread
that ran last.

At each scheduling instance, the algorithm computes
the set of eligible threads from the set of all innable tasks
and then computes their latency parameter.

A task 1s eligible if it satisfies the following

condition.
59 elp | Yoy P
Qe Qo 29,

Latency parameter: A thread 1 1s more latency-sensitive
than another thread j 1s classified as higher priorty,
meaning it gets higher priority to dispatch and run when
the two (or more) threads are competing for the CPTJ.

The warp value per thread 1s set using the following
algorithm :

1. Set the current warp value to 0 and consider the
lowest priority level p.

2. Set the warp value W, for all threads 1 at priority p to
the current warp value.

3. Go to the next priority level, p-1. Increment the
current warp value by L/w, where L/w, 15 the
maximum value across all threads at priority p-1.

4. Tf more threads, go to step 2, else Terminate.

Low priority interactive threads may operate with a
warp time limit of 0 so they may have fairly long execution

‘Weight assignment

Fig. 1: Proportionate allocation

No. of loops per sec

1 2 3 4 5 6 7 8
No. of background tasks

Fig. 2: Processor share received by dhrystone task

times occasionally without losing their warp. The latency
sensitive thread 1 1s dispatched immediately after being
signaled and combined with a warp value W, that ensures
itrung for up to its warp time limit before being preempted
by another thread. Warp limits can be used 1 conjunction
with the scheduler to determine whether the application
threads are in fact executing within the execution
parameters that the developer is executing.
Moultiprocessor scheduling: In multiprocessor
environment, each processor runs the earliest EVT thread
of all the rurmable threads, but adds a migration penalty
M for each thread that ran most recently on another
processor. Thus, if thread 1 most recently ran elsewhere,
its EVT for dispatch locally 1s

E =A — (warp?W;: 0) + M

This favors migrating a latency-sensitive thread to an
available processor to achieve lower latency because of
its higher warp value. The value M is set small on
machines where fast response is critical and larger when
throughput 1s the primary purpose of the multiple CPUs.

Performance evaluation: The performance of the
algorithm was verified by a sertes of simulation
experiments. The workload for our experiments consisted
of a mix of sample applications and benchmarks. These
include: i)mpeg-play, the Berkeley software MPEGI
decoder, 1) mpg 123, an audio MPEG and MP3 player,

683

Asian J. Inform. Tech., 5(7): 681-685, 2006

3000 -
8 2500
2
g 000 —= = —-= n
g 1500 -
&]
8 1000
%ﬂ 500 4
0
1 2 3 4 5
No of tasks
Fig. 3: Real-time taska with background jobs
Table 1: Performance of three test programme
Measure Mpeg-play mpg 123 dhrystone
CPU share 5 20.5 65.5
Dispatch latency 0.005ms 5.02ms 265. 1ms
Table 2: Performance of three test programme
Measure Mpeg-play mpg 123 dhrystone
CPU share 6.1 30.0 63.9
Dispatch latency 540.0ms 10.0ms 269.9ms
iii)Dhrystone, a compute-intensive benchmark for

measuring integer performance, 1v)gee, the GNU C
compiler, v)RT task, a program that emulates a real-time
task and vi) Imbench, a benchmark that measures various
aspects of operating system performance. We used Linux
kernel version 2.2.1.4 for our experiments.

We first demonstrate that allocation of processor
bandwidth to applications in proportion to their shares
and in doing so, it also isolates each of them from other
misbehaving or overloaded applications. To show these
properties, we conducted two experuments with a number
of dhrystone applications. In the first experiment, we ran
two dlrystone applications with relative shares of 1:1:,
1:2,1:3, 1:4, 1:5, 1:6, 1:7 and 1:8 in the presence of 20
background Dhrystone applications. As can be seen from
Fig. 1, the two applications receive processor bandwidth
in proportion to the specified shares.

In the second experiment, we ran a Dhrystone
application mn the presence of mereasing number of
background Dhrystone tasks. The processor share
assigned to the foreground task was always equal to the
sum of the shares o fthe background jobs. Figure 2 plots
the processor bandwidth received by the foreground
application remains stable irrespective of the background
load, in effect isolating the application from load in
the system.

Each task receives periodic requests and performs
some computations that need to finish before the next
request arrives ; thus, the deadline to service each request
1s set to the end of the peried. Each real-time task requests
CPU bandwidth as (x,y) where x 1s the computation time
per request and y is the inter-request arrival time. In the

684

experiment, we ran one RT task with fixed computation
and inter-arrival time and measured its response time with
increasing number of background real —time tasks. As can
be seen from Fig. 3, the response time is independent of
the other tasks running in the system. Thus predictable
allocation for real-time tasks can be supported.

Table 1 shows the performance of three test
performance of three test programs, Mpeg-play, mpg123
and dhrystone. As expected, Mpeg-play has dispatch
latency comparable to the Linux context switch time and
a CPU share according to its CPU consumption per
period. mpgl23 has longer response time than Mpeg-play,
but 1t 1s still acceptable for interactive threads and far
superior to the batch response time of dhrystone.

Table 2 shows the performance of the same three test
programs, but with Mpeg-play having failed into an
infinite loop. Here, mpgl 23 and dhrystone continue to
receive a similar share of the CPU and comparable
response time as they do without the failure.

Our experimental results showed that the algorithm
can achieve proportionate allocation, performance
1solation at the expense of a small mcrease in the
scheduling overhead.

CONCLUSION

In this study, we presented a proportional share
scheduling algorithm with latency sensitive threads for
multiprocessor servers. This algorithm aims at weighted
fair sharing among competing threads and protecting
against low-latency threads. The resulting scheduler
trades strict fairness, guarantees for more practical
considerations. We 1mplemented the scheduler in the
Limux kemel and demonstrated its performance on
real work loads.

REFERENCES

Parekh, A K. and R.G. Gallager, 1993. A generalized
processor sharing approach to flow control in
integrated services networks — the single node case.
[EEE/ACM Transactions on Networling.
Waldspurger, C.and W.Wethl, 1995 Stride
Scheduling Proportional-share
resource Management. Technical Report, MIT.
Nieh, I. and M.S. Lam, 1997. Smart Schedulers. In
Proceedings of the 16th ACM Symposium on
Operating Systems.

Duda, K. and D. Cheriton, 1999. Borrowed Virtual
Time(BVT) scheduling. In proceedings of the ACM
Symposium on Operating Systems.

Deterministic

Asian J. Inform. Tech., 5(7): 681-685, 2006

Adler, M. and M. Paterson, 2004, Aproportionate Fair
Scheduling With Good Worst-case Performance.
Chandra, A. and P. Shenoy, 2000. Surplus Fair
Scheduling. Tn Proceedings of the Fourth Symposium
on Operating System Design and ITmplementation.

7.

685

Tones, M.B. and I. Regehr, 1999. CPU Reservations
and Time Constraints. In proceedings of the Third
Windows NT Symposium.

