Asian Journal of Information Technology 5(7): 678-680, 2006

© Medwell Online, 2006

Binary Insertion Sort: A Modified Way of Sorting

Md. Mosaddik Hasan, Md. Sazzad Hossain, Shib Nath Datta and Md. Abu Yousuf
Department of Computer Science and Engineering, Mawlana Bhashani Science
and Technology Umversity, Santosh, Tangail-1902, Bangladesh

Abstract: This study presents a technique for sorting data in an efficient way. The number of comparisons of
the proposed algorithm is less then the existing algorithm and it does not require extra memory space. So this
algorithm 1s very suitable for sorting large number of data item. For general case when we need to sort all the
data that means when all the data is newly inserted then our algorithm is better than any other existing algorithm
and when some data is inserted to a large amount of sorted data (e.g. voter management system or central
database system in a country) then our algorithm 1s very much better than the existing algorithms.

Key words: Binary search, ingertion sort, quick sort, merge sort, heap sort and divide and conquer

INTRODUCTION

Sorting 15 a very essential tool in computing. Many
computing system especially database-related systems
need to sort data frequently. The need of an improved
sorting algorithm 1s very crucial when the volume of data
to be sorted 1s very large. Voter management system or
central database system in a country, for example may
require sorting with respectto a key item. In this case
an efficient sorting technique can save
processing time.

Insertion sort"? finds the correct position of the
considered data by searching linearly with each of the
sorted data. In the proposed algorithm we used divide and
conquer method (Binary Search™) to find the position of
the considered data which decreases number of
comparison many times. Experimental result shows that
the proposed algorithm requires less number of
comparisons than the existing algorithms such as Quick
Sort, Merge Sort, Heap Sort, Radix sort ete.

much

FORMULATING ALGORITHM

To sort a data set we combined Insertion Sort and
Binary Search algorithm. The approach of the proposed
algorithm 1s quite similar to Insertion Sort. Insertion Sort
works the way many people sort a hand of playing cards.
Tnsertion Sort starts with an empty left hand and the cards
face down on the Table. Then Insertion Sort removes one
card at a time from the Table and mserts it into the correct
position i the left hand. To find the correct position for
a card Insertion Sort compare it with each of the cards
already in the hand. But our proposed algorithm finds the

correct position applying Binary Search algorithm. The
proposed algorithm 1s transcribed in Fig. 1.

Implementation of proposed algorithm: Tet us consider
the following data set as an example of sorting using
proposed algorithm.

Data set = {5, 2, 4, 6, 1, 3}. The step-by-step sorting
procedure using proposed algorithm is depicted in Fig 2.

Complexity analysis: The number of data movements,
however, can be varied depending on the distribution of

Alogrithm
Bii . (n.0)

a[0] = -ca;
fork =21tom;

Temp: =a[k], Beg: =1, End: =k-1;
‘While (Beg<=End)
{

Mid :=(Beg+End)/2;
if (Temp<a [Mid] and Temp>=a [Mid-1] or Temp—a [Mid]) then
{

p=mid;

break;
}
else if (Temp>a[Mid] and Temp<=a[Mid+1]) then
{

p=Mid+1;
break;

}
else if{ Temp>a[Mid]) then
Beg:=Mid+1;
else End:=Mid-1;

}
fori=k-1top
efi+1]=alil;
) a[p]:=Temp;
H

Fig. 1: The sorting algorithm

Corresponding Author: Md. Mosaddik Hasan, Department of Computer Science and Engineering, Mawlana Bhashami Science and
Technology University, Santosh, Tangail-1902, Bangladesh

Asain J. Inform. Tech., 5(7): 678-680, 2006

Steps:

(@

0 1

2

3

4

5 6

[== | 5

2

| 4

6

[1 T3 |

Beg =1, End = 1, Mid = 1, Temp =a [2] = 2, Temp<a [Mid] and Temp>=a [Mid-1]
8o, position=Mid = 1.
®)

0 1

2

4

[== | 2

5

| 4

6

5 6
[1]3|

Beg = 1, End =2, Mid = 1, Temp =a [3] = 4, Temp>a [Mid] and Temp<a [Mid+1]
8o, position =Mid +1=2.

©

0 1

2

3

4

5 6

[1214

| s

[6 [113]

Beg=1, End = 3, Mid = 2, Temp =a [4] =6, Temp=>a [Mid] and Temp! <a [Mid+1],
Beg=Mid +1=3, Mid = 3, Temp>a [Mid] and Temp = a[Mid+1]
So, position =Mid + 1 =4.

@

] 1

2

3

4

5 6

[240561]3]

Beg=1, End = 4, Mid = 2, Temp =a [5] = 1, Temp<a [Mid] and Temp! >a [Mid-1],
End = Mid -1= 1, Mid = 1, Temp<a [Mid] and Temp > a[Mid-1]
So, position =Mid =1.

O]

4] 1

2

3

4

5 6

=11

2

| 4

5

6 [31

Beg=1, End = 5, Mid = 3, Temp =a [6] = 3, Temp<a [Mid] and Temp>a [Mid-1],
So, position = Mid =3,

@ 0 1 2 3 4 5 6
[=e= 11 [2]3]4]51]6]
Fig. 2: The sorting process
400000 - Comparison graph . .
350000 4 ok o e » we have used Binary Search algorithm. We know that
2 300000 _:_ gg;;i:?“ﬁm sort . complexity of Binary Search algorithm is log n.
% 2500004 Se, find position of -
£ 200000
Q3 150000 31" data we used log 1 comparison
100000 - 2" data we used log 2 comparison
50000 3™ data we used log 3 comparison
0 T r T T 1
0 2000 4000 6000 8000 10000 12000

Values of n

Fig. 3: Complexity of quick sort and current algorithm
for 1000<n<10000

Number of Tnputs

Number of comparisons

Proposed Quick
m n algorithm sort
100 1000 695 10784
200 2000 1529 23704
300 3000 2416 37429
400 4000 3337 51678
500 5000 4282 66316
600 6000 5248 81264

Fig. 4 Comparison Table where m is a number of new
data and n 1s the number of existing sorted data

data, which 15 not taken mto account in determimng
complexity. To find the correct position of a desired data

679

n" data we used log n comparison
So, total mumber of comparison 1s,
log 1+log 2+log 3 +...Hog n

=log (1 x2x3x.xn)

=log (n!)

=nlogn

So, the complexity of the proposed algorithm 1s n log
n for all cases.

Suppose, I voter management system we have to
entry new data before every election. Consider that the
system has n voters at this time we have to insert m
voters into this system.

For 1* data we have to compare log (14n) time

For 2" data we have to compare log (2-+n) time
For 3" data we have to compare log {3+n) time

For m™ data we have to compare log (m + n) time

Asain J. Inform. Tech., 5(7) : 678-680, 2006

So, the total number of comparison

=log (1+n) + log (24n) + log (3+n) +...+
log (m+n)

=log {(1+n) (2+n) (3+n)... (m +n)}

= log (m+n!/n!)

But, Quick sort, Heap sort will compare n log n times.
When m<n and m is very large then

log (m+n!/n!)<<nlogn.
So, in this case our algorithm 1s very much better.

Performance analysis: The average case complexity of
Quick Sort algorithm is 1.4 n log n but worst-case
complexity is O (n)!"*. The complexity of Merge Sort
and Heap Sort is O (n log n) but they require extra memory
space!'!. But our algorithm’s all cases complexity is i log
n and doesn’t require extra memory. The complexity curve
for some number of data items 15 1llustrated in Fig 3. From
the complexity curves we observe that our algorithm
requires less number of comparisons than quick sort.

When small number of data is inserted into large
number of sorted data, this algorithm sorts the data set
much more efficiently than the existing methods, which is
shown in the Fig. 4.

680

CONCLUSION

The most significant aspect of the current algorithm
1s that 1t requires minimum number of comparison than
existing algorithm. Tt is especially very much better than
existing algorithms for those systems, which have to
insert new data frequently. Tt is also better than other
algorithm where whole dataset 1s sorted. So, we hope that
one can save much processing time using this algorithm
for sorting.

REFERENCES

1. Lipschutz, S, 2002. Data Structures. McGraw Hill
Book Company.

2. Horowitz, E. and S. Sahmi, 1998. Fundamentals of
Computer algorithms. Galgotia Publications Ttd.,
New Delhi.

3. Tomas, H. Cormen and E. Charles Leiserson, 2004.

Introduction to Algorithms. Prentice-Hall of India
Private Ltd., New Delhi.

