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Abstract: We present in this study an algorithm of smoothing real noisy ECG signal based on the classical
wavelet denoising theory. The key idea of our proposed algorithm consists on generating a constructed
denoised ECG signal by extracting and combining the delimited QRS complexes from the 2nd level wavelet
denoising and the P and T waves from the 4th or 5th level wavelet denoising outputs. The used classical
denoising algorithm utilizes the 'VisuShrink' calculus rule and the 'soft' thresholding strategy. On the other
hand, the best suitable wavelet function and decomposition DWT level, for the denoising process, are
determined by the means of the mean square error value. Two synthesis parameters have been utilized: the
output SNR and the MSE values. We have applied our proposed algorithm to a set of MIT-BIH Arrhythmia
Database ECG records added to a simulated 5dB and 0 dB SNR white Gaussian noise where 1t has been noticed
an improvement of the input SNR (5 dB) to an output value of, generally, around 10 dB. To evaluate our
algorithm, a comparative study was carried out referred to the low pass Butterworth filter and the 4th and 5th
level classical wavelet denoising process. The obtamned results demonstrate the superior performance of our
proposed algorithm regarded to the tested filtering techniques where the output SNR remams in the most of
cases less than 7 dB in the case of the input 5 dB WGN.
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INTRODUCTION
As the maor pat of real signals the
Electrocardiogram  (ECG)  signal, the electrical

mterpretation of the cardiac muscle activity, 1s corrupted
by different types of noise: the 50/60 power line
interference, the Electromyogram (EMG) signal, muscle
artifacts, 50/60 Hz power line mterference and the baseline
wandering.. The EMG, a lugh frequency component, 1s
due to the random contraction of muscles which
generates millivolt-level potentials while the abrupt
transients of the baseline are due to sudden movement of
the body. The baseline wandering, a low frequency
component is due to the rhythmic inhalation and
exhalation during respiration. These different sources of
noise prevent considerably the accurate analysis of the
ECG signal and the eventual cardiac anomalies diagnosis.
As a usual pre-processing phase, the real ECG is band
pass filtered in order to remove the corrupted noise and to
recover the signal waves (P, QRS and T)". However, I.

Pan et @l showed that the QRS complex power spectrum
density-PSD-(5-15 Hz) overlaps with the muscle noise
while the P and T waves PSD overlap with the respiration
action and blood pressure at low frequency band
{usually from 0.1 to 1 Hz)®. Furthermore, the nom-
stationary behavior of the ECG signal, that becomes
severe in the cardiac anomaly case®, incites researchers
to analyze the ECG m both time and frequency plans
simultaneously. The ability of the wavelet transform to
explore signals into different frequency bands with
adjustable time-frequency resolution makes it a suitable
tool for the ECG signal analysis and processing™'". The
wavelet denoising process based on the great work of
Donoho and Jonhston has been widely utilized by several
researchers as an alternative to band pass filtering! 4,

Different works have been established for ECG noise
removing based on the wavelet denoising techmique
involving different parameters of the thresholding
process: the wavelet function, threshold calculus and
level decomposition ... Ronan La Page utilized the wavelet
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denoising ECG signal as the input reference signal for a
matching filtert"?. A Benazza et al introduced a
smoothing process to the approximation sequence which
improved the denoised signal estimation™. Xu and Yan
introduced a level-dependent threshold by using a
modified facter related to the power of corrupted noise!™!.
Ercelebi presented an ECG denoising algorithm based on
the second generation wavelet transform: Lfting based
discrete wavelet transform and level dependent threshold
estimation!”. Cherkassy and Kilts compared the
denoising accuracy and robustness of the different
techniques of wavelet based dencising process based on
Vapnik-Chervonenkis (VC) leaming theory whose the
basic idea was to order the wavelet coefficients according
to their magnitudes penalized by their corresponding
frequencies (scales)'™. In this comtext, we develop an
algorithm to remove the noise corrupting the ECG signal
using the wavelet denoising theory based on a different
approach. Our key idea was to construct a denoised ECG
signal by combimng the QRS complexes and the P and T
waves localized at well determmed wavelet denoising
levels. Our approach 1s to delimit the QRS complexes of
the 2nd level classical wavelet denoising and combine
them with the P and T waves of the 4th or the 5th level
wavelet denoising. The constructed dencised ECG signal
offers an improved output Signal-to-Noise (SNR) and
reduced Mean Square Error (MSE) values compared to a
set of tested classical filtering techniques (the low pass
Butterworth filter and the classical wavelet denoising
algorithm).

transform  1s
time-frequency

Wavelet denoising: The wavelet
characterized by 1its adjustable

resolution!®*?”,

Continuous wavelet transform CWT: The CWT -Wi{(s,1)-
is the inner product of a time-varying signal f(t) and the
set of wavelets 1,(t); it is given byt

tfr)dt )]
5

Wi (s, T)=< f,‘PS,T>:LJ.f(t)‘P*(
5

7

The scaling and shifting the mother wavelet (1) with
a factor of s and T, respectively, generate a family of
functions called wavelets given by:

ws,xt):isqI(%) @

&

with s>0

Discrete wavelet transform DWT: The DWT consists of
applying the discrete signal to a bank of octave band
filters based on low and high pass filters h(n) and g(n)

respectively. The original time-varying signal f(t) would
be expanded using the following formula®®:

f(H)=3, 0, (00, 0+ 3 Y, d (KW, (D) 3
Where:
v (D =27y (27t - k) @
With:

dm=<f,y > =Yglnk) a_ @)

a (n)=<f,¢_, > =»h(2nk) a_ (1)
k

Where ¢(t) is called the scaling function associated
with the wavelet function (t) and 1s governed by the
following condition:

Tott.dt=1 ©

Denoising: The purpose of wavelet based denoising
process 1s to estimate the signal of interest s(1) from the
composite one f(i) by discarding the corrupted noise e(i)

[26-28)

f)=s@)+e) @

The underlying model for the noisy signal 15 the
superposition of the signal-s(i)- and a zero mean Gaussian
white noise with a variance of 0®. i.e., n(0, 0%).

The power spectral density-DSP- of a white noise is,
theoretically, constant with amplitude of ¢ along the
whole axis of frequencies; thus the detail sequences
(d. 1=1.L) are a white noise too. Therefore, the idea was
to recover the signal of interest-s(t)- by discarding the
noise detail coefficients using a suitable threshold which
is related to the noise variance.

Donohe and Jonhstone proposed the umversal
threshold, called by them *VisuShrink’, given by™*":

Thr = 54f2.log(N) ®

In the case of white noise, its standard deviation
can be estimated from the median of its lower
resolution detail sequence (d;) and is computed as
follows:

_ MAD(d, ) ©)
O 0.6745
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Construction of the dencised ECG signal

Fig. 1: The schematic of the denoising algorithm. CWD: classical wavelet denoising

where MAD 1s the median absolute deviation of the
corresponding sequence.

However, there exist two approaches of thresholding
process: ‘Soft’ and ‘Hard® thresholding algorithms
(T,s and Ty, respectively) expressed as follows,
respectively:

0 if [x|<Thr 10)
soft .
X+sgn(x).‘Thr‘ if ‘x‘ > Thr
0 if |x|=Thr
Twa = 1 |X| (1)
X if |X| > Thr
MATERIALS AND METHODS

Our proposed dencising algorithm 1s illustrated on
the Fig. 1 and is summarized by the execution of the
following two phases:

668

Pre-processing phase including: 1) ECG data collection
and noisy ECG signal generation with different SNR
levels; 2) high pass filtermg to suppress the DC
component, 3) determining the best suitable wavelet
function for the denoising process,

Smoothing phase including: 1) classical wavelet
denoising ECG signal using the “Universal® threshold and
‘Soft’ strategy; 2) delimiting the QRS complexes of the
2nd level (Lgrs) wavelet denoising; 3) decide which level
(Lpt) (4th or 5th) wavelet denoising will be used to localize
the P and T waves; 4) combining the determined QRS
complexes with the P and T waves of the Lpt (4th or 5th)
level wavelet denoising to generate the constructed
denoised ECG signal.

Pre-processing phase
Data collection and noisy ECG signal generation: We
have opted, m our study, for the MIT-BIH Arrhythmia
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The denoised signals at different levels versus the original ECG signal
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Fig. 2: The comparison between the Classical Wavelet Denoising (CWD) of the noisy 0 dB ECG signal, at different levels
(2, 4 and 5) and the original ECG signal. a) In the top: the CWD at the 2nd level in continuous line; b) in the middle:
the CWD at the 4th level in discontinuous line; ¢) in the bottom: the CWD at the 5th level in discontinuous line

Database a commonly so-used free downloadable
manually annotated database. The database consists of
48 annotated records, obtained from 47 subjects studied
by the BIH Arrhythmia Laboratory between 1975 and
1979. Each record consists of dual channel ECG data and
is around 30 min long. The ECG signal is sampled at rate
of 360 Hz with 11-bit resolution over a 10 mV range®!..

The next step will consist on generating the noisy
version of the collected ECG data. This is achieved by,
simply, adding a white Gaussian noise with different SNR
levels.

Rejection of the DC component of the ECG signal: The
DC offset present at the original ECG signal growths
along the approximation sequences at successive levels
due to the low pass filtering that distorts considerably the
denoising process. Thus we have used the classical high
pass Butterworth filter, with a very low cut-off frequency
of around 1.8 Hz, to reject the DC component of the ECG
signal. The resulting signal (the original ECG with the DC
component rejected: DECG) (Fig. 1) is referred, along the
work, to the ECG reference signal.

Determine the best suitable wavelet function:
Determining the best suitable wavelet function, for ECG
denoising purpose, is achieved on the basis of the Mean
Square Error (MSE) value between the denoised ECG
signal ‘f,(i)” and the original with DC component rejected
signal ‘f,(1)’ given by:
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MSE(w,]) = %i(fo(i) —£,(i)) (12)

with w is the wavelet function, 1 is the level wavelet
denoising and N is the length if the ECG segment.

The signal f, is the original MIT-BIH ECG data signal
with DC component rejected (the reference ECG
signal)and the signal f, is the denoised ECG signal
obtained by the means of the classical wavelet denoising
using the ‘Universal’ threshold and ‘Soft” strategy.

Smoothing phase

Classical wavelet denoising: In our design, the
computations carried out on the MIT-BIH ECG data
records, with a length of 650 000 samples each, are
executed on segment by segment until the end of the
record. The segments are perfectly adjacent, i.e. with null
overlapping, with fixed size of 4096 samples (4096 = 2'%),
which in turns corresponds to a duration of around
11.38 sec.

Based on the visual inspection, we determine the
denoising level (e.g., level Lqrs) which best matches to
the QRS complexes and that (e.g., level Lpt) which best
correlates the P and T waves. The empirical studies show
that the 2nd Level wavelet denoising (Lqrs) corresponds
best to the QRS complexes while the 4th or 5th Level
wavelet denoising (Lpt) correlates best the P and T waves
as it is illustrated on the Fig. 2.

The QRS complexes detection: A routine designed
especially for the QRS complexes delimitation is used™.
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This routine is applied to the 2nd Level (Lgrs) which
captures best the QRS complex of the original free noise
ECG signal. Our QRS complex delimitation routine 1s

summarized as followsP:

¢ Detect the maximum amplitude-MAX-in each sub-
segment of 1024 (4096/4) samples and next calculate
the corresponding threshold-THRSQRS-given by:
THRSQRS =0.6 * MAX

Referring to tlus adapted calculated threshold the R
wave’s peaks are detected.
We should mention that searching the R peaks using

the adapted QRS threshold, within a sub-segment of 1024

samples, 1s aimed to better detect the R waves in the case

of huge Baseline Wandering (BLW) circumstance.

+  Based onthe QRS complex morphology template™;
a backwards and forwards scanmng with respect to
the detected R wave peak allows the localization of
the QRS onset and offset respectively which permits
automatically to delimit the different QRS complexes
of the 2nd level ECG wavelet denoising.

Determining the specific wavelet denoising levels: To
decide which level (4 or 5) wavelet denoising captures
best the P and T waves (Lpt) we execute the following
procedure (Fig. 1): zeroing, first, the QRS complexes
(delimited in the previous step) of the 4th and the 5th level
wavelet denoising ECG signal which generates the two
signals F4 and F5, respectively. Calculating, next, the
Mean Square Emror (MSE) values between the signals
(F4 and F5) and the reference ECG signal (DECG) that
leads, based on the mimmum value of the MSE, choosing
which level (4 or 5) wavelet denoising will serve to localize
the P and T waves.

Constructing the combined denoised ECG signal: The
last phase of our proposed algorithim consists of
constructing the denoised ECG signal by combining the
delimited QRS complexes of the 2nd Level (Lgrs) with the
P and T waves of the 4th or 5th Level (Lpt). This is
accomplished by substituting the QRS complexes of the
Lpt level wavelet denoising signal by those of the 2nd
Level (Lgrs) wavelet denoising and keeping the P and T
waves.

RESULTS AND DISCUSSION

We discuss in this section the obtained results when
applying our proposed smoothing algorithm to a set of
ECG data records of the ‘MIT-BIH Arrhythmia Database’

corrupted by White Gaussian Noise (WGN), with different
SNR values and a set of real picked-up ECG data records
with unknown, a priori, corrupted noise energy. The
performance of the algorithm 1s evaluated based on the
MSE and output SNR criteria values. On the other hand,
the Bufterworth low pass filtering and the 4th and 5th
level classical wavelet denoising process are used to
assess the performance of our algorithm.

Preliminaries
Evaluation criteria values: We utilize both the output
SNR value and the MSE value between the constructed
denoised ECG signal and the original ECG signal with DC
offset rejected ( the reference ECG signal) to evaluate our
denoising algorithm.

The output SNR 1s given by:

il
pRA
SNR,,, =10log(—=—)

M, -1,

i=1

(13)

where f denotes the reference ECG signal) and f
represents the constructed  denoised ECG signal
whereas N is the length of the data segment (4096 in
our approach).

Denoising parameters determination: The Table 1
presents the MSE values between the different levels
classical wavelet denoising (using ‘Universal’ threshold
and ‘soft’ strategy) of the ECG signal and the reference
ECG signal n the case of an added 5dB WGN ECG. It 1s
noticed obviously that the wavelet function ‘Symlet 8’
provides the reduced MSE values along the different
levels. Thus, the wavelet function ‘Symlet 8" will be used
along the whole denoising work.

Simulation study

Synthesis study

Local analysis: We present in this paragraph the obtained
results of owr denoising algorithm application to short
duration 5dB neoisy ECG data segments representing,
each, a particular feature. The figure 3 shows a segment of
the ECG record “100.dat’ representing a normal sinus
thythm. The figure 4 shows a segment of the same record
representing a PVC (premature ventricular contraction)
while the figure 5 shows a segment contaimng a huge
baseline wandering (BLW).

The 3 Fig. 3-5 demonstrate obwviously the high
performance of our proposed algorithm for dencising the
ECG signal m different circumstances. However, a more
exhaustive analysis of our algorithm by applying it to a
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Table 1: The Mean Square Error (MSE) values of the classical wavelet denoising of a 0 dB noisy ECG signal, at levels (2, 3, 4 and 3), referred to the original
ECG signal with DC offset rejected

Wavelet level ‘db5’ ‘dbl10” ‘Coif5” ‘sym6” ‘sym8’ ‘bior3.5’
2 0.0118 0.0115 0.0115 0.0117 0.0116 0.0122
3 0.0115 0.0118 0.0118 0.0118 0.0113 0.0135
4 0.0156 0.0187 0.0155 0.0151 0.0142 0.0195
5 0.0220 0.0261 0.0211 0.0193 0.0185 0.0261

Noised ECG signal and original versus denoised ECG

mV

Fig. 3: Application of our denoising algorithm to a 5 dB noisy 11;181;1/;1&1 sinus rhythm ECG signal segment: at top) the noisy
ECG signal; at bottom) the comparison between the original DC offset rejected (in continuous line) and denoised
ECG signals (in discontinuous line)
Noised ECG signal and original versus denoised ECG
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Fig. 4. Application of our denoising algorithm to a 5 dB noisy ECG signal with a PVC: at top) the noisy ECG signal; at
bottom) the comparison between the original DC offset rejected (in continuous line) and denoised ECG signals
(in discontinuous line)

set of the “‘MIT-BIH Arrhythmia Database” ECG data ‘101.dat” and 103.dat’) added to the White Gaussian
records which, in turns, includes a large number of cardiac ~ Noise (WGN) with a total duration of 90 min containing
around 6222 annotated cardiac beats. We should note,
again, that the algorithm is carried out on a set of

successive, null overlapping, segments of 4096 samples

Overall analysis: We have treated a set of 3 MIT-BIH 1,14 11 38 sec) for the different MIT-BIH Arrhythmia
Arthythmia Database ECG data records (100.dat’,  {atabase ECG records.

cycles would evaluate deeply our algorithm.
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Noised ECG signal and original versus denoised ECG
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Fig. 5: Application of our algorithm to a 5 dB noisy ECG signal containing a huge BLW (base line wandering): a) the

noisy ECG signal; b) the comparison between the
ECG signals (in discontinuous line)
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Fig. 6: The variation of the output SNRs (in dBs) in the case of the 5 dB noisy MIT-BIH Arrhythmia Database records
computed along each ECG data segment of 4096 samples; a) at the top: the record ‘100.dat’; b) at the middle: the
record “101.dat’; ¢) at the bottom: the record 103.dat’

The Figs. 6 and 7 illustrate the obtained output SNR
and MSE values, for each 4096 samples ECG segment,
respectively, when applying our algorithm to the three
ECG data records corrupted by a 5 dB white Gaussian
noise while the Figs. 8 and 9 show the obtained output
SNR and MSE values, respectively, in the case of a 0 dB
added white Gaussian noise.

The Figs. indicate some anomalies of our proposed
algorithm (minimum values of the output SNRs and
maximum values of the MSE); the analysis of the specified
segments yields to that the major limitation of our
algorithm is obviously the presence of huge Baseline
Wandering (BLW). This is because, essentially, of the

limited performance of the delimited QRS complex routine
that depends on local maxima and can not pursuit the
huge variation of the baseline over a short duration of
time. Nevertheless, our proposed algorithm shows
performance superiority for noisy ECG signal filtering.

Comparative study: We have used the low pass
Butterworth digital filter, with a cut-off frequency of 45
Hz™ and the 4th and 5th level classical wavelet denoising
process to evaluate our proposed algorithm performance.

We divide this comparative section into 2 sub-
paragraphs: The first one emphasizes the evaluation of
our proposed algorithm for a short segment of ECG data
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Fig. 8: The variation of the output SNRs (in dBs) in case of the 0 dB noisy MIT-BIH Arrhythmia Database records
computed along each ECG data segments of 4096 samples; a) at the top: the record ‘100.dat’; b) at the middle: the

record ‘101.dat’; c) at the bottom: the record ‘103

representing a normal sinus rthythm while in the second
section a set of the MIT-BIH Arrhythmia Database ECG
data records are analyzed.

Local comparative analysis: We emphasize our analysis
in this paragraph on a short duration 0 dB noisy ECG data
segment representing a normal sinus thythm in order to
assess the filtering effect of our proposed algorithm
compared to the techniques stated previously. We have
considered the temporal segment [1710..1715 sec] of the

.dat’

MIT-BIH Arrhythmia Database ECG data record ‘100.dat’.
The Fig. 10 illustrates the application of our algorithm as
well as the low pass Butterworth and the 4th and 5th level
classical wavelet denoising to the noisy 0 dB ECG signal.
We should mention that the plots are shifted successively
by -2.5 mV for better view.

Visually, it is obvious that our proposed denoising
algorithm provides better results compared to the tested
methods (low pass Butterworth filter and classical wavelet
denoising). The Table 2 presents the output SNR
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Fig. 10: The application of different denoising techniques to a 0 dB noisy ECG signal of the MIT-BIH Arrhythmia
Database ECG data record 100.dat” (from up to down): a) the noisy ECG signal; b) the original DC offset rejected
ECG signal (the reference ECG signal); ¢) our proposed denoising algorithm result using the wavelet function
‘Symlet8’; d) the low pass Butterworth filtering, e) the classical wavelet denoising (CWD) at level 4; e) the

classical wavelet denoising (CWD) at level 5

and MSE values, between the denoised and the reference
ECG signals, obtained for each method. Again, the
obtained results demonstrate the higher performance of
our proposed algorithm for denoising ECG signal
compared to the classical wavelet denoising method and
the low pass Butterworth filtering.

The overall comparative analysis: The overall
comparative analysis was carried out on the set of the 3
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MIT-BIH Arrhythmia Database ECG data records
(°100.dat’, “101.dat’ and “103.dat’) treated previously.

The Tables (3 and 4) summarize the obtained output
SNR and MSE values, respectively, for each approach
applied to the 3 ECG data records, with a given input 5
and 0 dB WGN noise. The obtained results showed on
Tables 3 and 4 coincide with those obtained in the case of
short segment of ECG data (Table 2). This ensures, again,
the performance superiority of our proposed denoising
algorithm.
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Table 2: The obtained Output SNR and MSE values for each tested filtering method applied to the 5dB noisy ECG data segment [1707..1718 sec] of the
MIT-BIH Arrhythmia Databasec ECG data record “100.dat”

Denoising method Our proposed algorithm LP butterworth filter 4th level classical wavelet denoising
Output SNR (dB) 9.7489 6.6807 5.9663
MSE ( x1073) 0.98377 1.4 1.5

Table 3: The obtained output SNR (in dBs) values (Mean + Standard Deviation —STD-) for each tested filtering method applied to the set of MIT-BIH
arrhythmia Databases ECG records (‘100.dat’, “101.dat’ and ‘103.dat’)

Method record Input SNR (dB) Our proposed algorithm LP butterworth filter 4th level classical wavelet denoising
100 dat 5 9.1024+0.7742 5.4718+0.8253 4.8539+ 0.7078
101 dat 5 9.8608+1.0835 6.7585+1.1487 6.8030+0.8668
103 dat 5 11.6784+0.7827 9.1075+1.0418 7.9001+0.7596
100 dat 0 5.3646+0.9009 0.4493+0.8367 1.7172+0.6288
101 dat 0 6.2985+1.3872 1.7625£1.2072 3.6197+0.8741
103 dat 0 8.3863£1.0676 4.0971+1.0606 4.5037+0.7581

Table 4: The obtained MSE values (x 10®) (Mean + Standard Deviation —STD-) for cach tested filtering method applied to the set of MIT-BIH arrhythmia
Databases ECG records (*100.dat’, *101.dat” and “103.dat”)

Method record Input SNR (dB Our proposed algorithm LP butterworth filter 4th level classical wavelet denoisin,
100 dat 5 0.00098+8.38 * 10°° 0.0015+£9.88 * 10> 0.0016£9.7492 * 10>
101 dat 5 0.0011£1.676 * 10* 0.0016£2.57 * 10°* 0.0016+1.8102 * 104
103 dat 5 0.0012+1.308 * 10 * 0.0016£2.39 * 10 # 0.0019+1.8102 * 104
100 dat 0 0.0015+1.291 * 10~* 0.0027+£1.76 * 10°* 0.0023+1.2331 * 104
101 dat 0 0.0017£3.614 * 10 * 0.0028+4.82 * 10 # 0.0023+2.6788 * 104
103 dat 0 0.0018+2.767 * 10~* 0.0029+4.40 * 10* 0.0027+2.8431 * 10
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Fig. 11:Denoising of real noisy ECG signals with different SNR levels; original ECG (in red) and denoised signal
(in black): High SNR (in the top), Medium SNR (in the middle) and Low SNR (in the bottom)
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Fig. 12: Smoothed (low pass filtered) (in red) versus the combined denoised (using our algorithm) (in black) of the
original low SNR ECG signal (of the Fig. 11-c)
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Experimental study: We discuss in this section the
application of our denoising algorithm, which was applied
to a set of ECG data records added to a simulated white
Gaussian noise, to the real ECG signals with unknown, a
priori, noise energy. The analysed real noisy ECG signal
is extracted from the GBM laboratory ECG data basel™
sampled at rate of 200 Hz with 8 bits resolution. The figure
11 illustrates 3 ECG signals with three different SNR levels
(high (HSNR) (in the top), medium (MSNR) (in the middle)
and low (LSNR) (in the bottom)) compared to the
correspending denoised ECG signals using our algorithm.

To assess the performance of our proposed
algorithm, the low pass Butterworth filter was used to
smooth the low SNR (LSNR) ECG signal shown on the
Fig. 11-¢c. The Fig. 12 shows the denoised ECG signal,
using our dencising algorithm, (the black trace) compared
to the low pass filtered version one (the red trace).
Visually, the denoised ECG signal is smoother whereas
the low pass filtered signal shows some undesirable peaks
mainly on the 3rd, 4th and 5th T waves. Agan, our
denoising algorithm shows satisfactory results and
provides better performance than the classical band pass
Butterworth filter for the real picked-up noisy ECG signal.

CONCLUSIONS

We have developed an algorithm of filtering noisy
ECG signal based on the classical wavelet denoising
technique. Our key 1dea of the proposed algorithm 13 to
construct a denoised version of the input noisy ECG
signal by combining two specific levels wavelet denoising
outputs. Our 1dea 1s argued by the fact that the different
waves (P, QRS and T) spectra of a normal ECG signal
occupy different frequency bandwidths. We have
exploited this property by studying the different levels
wavelet denoising outputs. Empirical studies, using a best
suitable wavelet function (‘Symlet 87), showed that the
QRS complexes are well preserved m the 2nd wavelet
denoising level while the P and T waves, conjointly, are
best preserved in the 4th or 5th level. We have utilized, in
the study, a set of records of the ‘MIT-BIH Arthythmia
Database’ added to white Gaussian noise with different
SNR  levels. Our proposed algorithm provides a
satisfactory efficiency even in the case of low SNR ECG
signals although some limitations faced in detecting some
QRS complexes in huge baseline wandering situations. A
comparative study was carried out on the classical low
pass Butterworth digital filter and the classical wavelet
denoising at the 4th and 5th levels. This comparative
study demonstrates the superior performance of our
proposed algorithm for smoothing the noisy ECG signal.
A more robust QRS detection routine might solve the
practical
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encountered problems mainly the presence of huge
baseline wandering. Furthermore, our algorithm allows, in
fact, the realization of a denoising model for smoothing
real picked-up noisy ECG signals with unknown a-priori
noise sources power and circumstances (EMG, muscle
artifacts ...).
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