Asian Journal of Information Technology 5(6): 640-646, 2006

© Medwell Online, 2006

A Heuristic Approach for Rescheduling of Meetings with A-Algorithm

'M. Sugumaran, K. 3. Easwarakumar and °P. Narayanasamy
'Department of Computer Science and Engineering and Information Technology,
Pondicherry Engineering College, Pondicherry-605 014, India
“Department of Computer Science and Engineering,

Anna University, Chennai-600 025, India

Abstract: Meeting scheduling is generally considered as one of the most common activities that takes place
in organizations. The basic problem in meeting scheduling is to find a common free time for all participants of
a particular meeting. Tt is an important activity in many organizations as most of the office workers spend much
of their times m meeting scheduling. It 1s a time-consuming, iterative and tedious task. There exists several
solutions in the literature for centralized calendar management and meeting scheduling, but they are of limited
success. In this paper, we propose a new approach based on A-algorithm using heuristic function for meeting
scheduling, which 13 performs effectively even in the case of larger problem mstances than the existing

algorithm.

Key words: Meeting scheduling, office automation, A-algorithm, artificial intelligence

INTRODUCTION

The research conducted at AT & T™M, reveals that
nearly 95 percent of the time an executive devotes in
mterpersonal communications: face-to-face meeting,
document processing and phoning. Office workers, other
than executives, also spend over four fifth of their time on
the above activities. Tt is realized that meetings are the
most time-consuming activity particularly for the
executives and managers. To work efficiently, office
workers need to manage the time and the entire schedule
of meetings instead of considering individual meetings.
Because of the inherent tedious, interactive, iterative and
time-consuming features, meeting schedule 1s to be
considered for automation. The benefits of automated
meeting schedulers are not only save time, effort on the
part of human, but also gives more efficient schedules.
Information management systems, such as data
commurications, electronic document communication
systems (e-mail), teleconferencing and sensor-based
systems like those used for energy conservation continue
to grow. To process the voluminous data, automation is
essential. As a factor of truth, the lay off software
engineers is due to the office automation. So, automation
1s essential for the problems like meeting scheduling.

The scheduler given in Sugihara et a/.™ generates all
solutions and then chooses the optimal one. Since the
timetable rearrangement problem in Sugihara et al? is

NP-hard™ and has been shown that the feasibility problem

is NP-complete. So, we use the concept of
A-algorithm™? to choose the best probable node among
the available nodes from the search tree for the expansion

and thus pruning the rest to get the solution quicker.
PROBLEM SPECIFICATION

Letn be a positive integer. A timetable of n meetings
1s an 8-tuple T(n) = (P, M,, <, t, p, w, T, p), where P = {1, 2,
...,m} is a set of m persons; M, = {m,, m,, ..., m,} 1s a set
of n meetings; < is a partial order on M,; t(m;) is the time
duration of meeting m;; p(m;) is a set of groups of persons
such that exactly one person in each group is required to
attend the meeting m,; w(m) 1s a set of tune instances at
which meeting m; can start; T(m,) is the starting time at
which meeting m; is scheduled; and p(m,) is the set of
attendants of meeting m, chosen from p(m,;). Further, the
schedule also satisfies the following four conditions:
Let m; and m; be any two meetings.

Cl: No person attends more than one meeting
simultaneously.

C2: If m;<m;, then m; starts after m; ends, in case
some persons attend both meetings m; and m;.

C3: For each group g £ p(m,), exactly one person can
attend the meeting m;

C4: m, can start at one of the time instances in w(m,).

C5: The time interval of a meeting is contiguous and
cannot be split across days.

Corresponding Author: M. Sugumaran, Department of Computer Science and Engincering and Information Technology,
Pondicherry Engineering College, Pondicherry-605 014, India

Asian J. Inform. Tech., 5(6): 640-646, 2006

0 2 4 6 8 10 12 14 16
1 m2 mdi
9 _e'm'_Z m3 3
3]..ml ni2
4 },T;l_% m4; m5
5 m3
6 =3 .-
7 m2 m4
g et m2

Fig. 1: Graphical representation of T(5)

C6: The venue of the meeting m; 15 one of the
agents’ site or near to them.

In a schedule T(n), the parameters<, t, p and w
represent the mput requirements of meetings, whereas ©
and p represent a schedule of meetings that satisfies all
the requirements. The assignment of rooms to meetings
can easily be incorporated mto the schedule by
considering rooms as pseudo-persons. For example,
selection of a room for m; from rooms R,, R, ..., R, is
represented by considering a group of corresponding
pseudo-persens in p(m,)*”.

Example 1: Let us consider the example given in
Sugihara et al!® for timetable T(5) of 5 meetings,
shown in Fig. 1.

P= §1,2,3,4,5,6,7, 8}, M, = {m,, m,, m; m,, ms}; m,
< m; and m, < m,.

t(m)= 2, t(m,) = 4, t(m,) = 3, tim,) = 3 and t(m;) = 2.

plm)= {{2.3}, {78}, plmy) = {{1}, {2}, {3}, {4}, {74
{81}, plms) = {23, {5}, {6, 7, 81},

p(my)= {1, 2}, {3, 43, 16,7, 8} and p(m) = {{1, 2}, {3,
43, 16,74

wim,)= {0,1,2 3, 4%, wim,) = {2, 3}, wim,) = {2,3,8, 9%,
w(m,) = {k2<k<12} and w(m,) = {k | O<k<16}.

t(m)= 0,1t {my) =2, t(my) =% t(m) =10 and
T(m:)=13.

olm,)= {3,8}, p(m,) = {1,2.3,4,7. 8}, p(m) = {2, 5. 6},
p(m,) = {1, 4,7} and

p(m)= 2. 4,6}.

The timetable rearrangement problem 1s done
iteratively. That is, from T(i), we can generate T(i+1) by
giving appropriate input parameters. For instance, the
mput parameters required for the new timetable T(n+1) by

rearrangementt 1s defined as

641

0 2 4 6 8 10 12 14 16
1 11? md mé
2 213 o3 - - 2
3 potiih m2 6
4 Em.'?. md [&)
5 m3
5 m3 m6
7 m md =
3 |_ml ngg i
Fig. 2: Graphical representation of T(6)
I1: atimetable T(n) =(P, M, <, t,p, W, T, p),
12: a partial order < on M,,; = M, v {m,.},
I3: t(m,+1), p{m,+1) and w(m,,,) and
T4: asetF (c M) of meetings whose start times are

fixed.

Example 2: Consider an instance to schedule a new
meeting m; on Examplel as per the following input
parameters.

I1: T(5) as in Example 1 (Fig. 1).

I2: m, < m., m,< m, and m;< m,.

I3: tmg) = 3, p(my) = {{1}, {3, 4}, {6}} and w(m,) =
{8,9,10,11,12%.

T4: F={m.}.

Now, Fig. 2 shows an optinum timetable T(6)
(P, M=, t,p,w, T, p"), where T'(m,) = 8, p'(mm,) = {2, 4,71,
T'(mg) = 11 and p'(mg) = {1, 3, 6}.

Note that in T(6), the start time of the meeting m, is
changed from 10 to 8 and an attendant of meeting m. is
changed from 6to 7.

THE NEW MEETING SCHEDULER

In this model, six operations such as CP (Change of
Person), XP (eXchange of Person), SL (Shuft Left), SR
(Shift Right), CSI (Continuous Shift Left and CSR
(Continuous Shift Right) are used to rearrange the
meeting scheduling. Based on these operations heuristic
value 1s determined. This heuristic value will be the
deciding factor for selecting next node in the search tree
expansion. We apply here the method of A*-algorithm
with this heuristic value for the generation of search tree.
This process will speed up the searching mn an
optimal way.

Generally, in A-algorithm, the function f is defined for
its value f(n) at any node n 1s the actual cost of an optimal

SL/CSL%

Asian J. Inform. Tech., 5(6): 640-646, 2006

>3

>SR/CSR

v
CP

Fig. 3: Operations applied in the search tree

path from the root node to the node n plus the cost of an
optimal path from node n to a goal node, that is, f(n) =
g(n) + h(n). The estimate of f can be given by

f(n) = g(m) + h(w),

where g is an estimate of g and h is an estimate of h. An
obvious choice for g(n) 1s the cost of the path in the
search tree from the root to n given by summing the arc
costs encountered while tracing the pointers from n to the
root, whereas the estimate h(n) of h(n) rely on heuristic
mformation from the problem domam. The function h(n)
is called as heuristic fimction™*".

In this approach, the heuristic function h(n) is
applied to the nodes of the search tree that counts how
many slots are not free and that will be determined by the
six operations stated earlier such a way that in a particular
duration (x, x + t(m,,,)), where x € w(m,,,), among the
persons in p(m,.,) for the current meeting m,.,. The
function h(n) 1s used primarily to choose the best
probable node among the available live nodes and thus
guide the search process in the optimal way.

Let m,., be the current meeting to be scheduled and
plm,.,) = {8, 2. ..., .} be the set of groups of persons to
be considered for scheduling of m,,,. Let p(m,.,) be the
set of attendees for m,,,, a set of candidates to be chosen
from p(m,.,) one person per group Further, let (x, x
+ t(m,,,)) be the current interval to be considered for the
meeting m,,;. These assumptions are used in the following
s8ix operations, shown in Fig. 3.

SL: Shifts meetings horizontally to the left. For each
person j € p(im,,) and each meeting m; £ (x, x + t(m,,,)), if

there is a time interval (s, s + t(m,)) to the left and disjoint
with (x, x + t(m,.,)) such that s £ w(m,) and no person in
p(m;) attends any meeting during (s, s + t{m;)), then
change the start time of m;to s.

SR: Shifts meetings horizontally to the right. For each
person j € p{m,,,) and each meeting m; € (x, x + t(m,,)), if
there 1s a time mterval (s, s + t(1my)) to the nght and disjoint
with (x, x + t(m,,,)) such that s £ w(m,) and no person in
p(m;) attends any meeting during (s, s + t(m;)), then
change the start time of m; to s.

CP: Changes person vertically within a group. This
operation makes free slots for the persons p(m,.,) in (x, x
+ t(1m,.,)) within groups. For each meeting m, € (x, x +
t(m,,)), 1f no person in p(my) except some persen j& plmy;)
attends m; and if there is a personkin {a|a, je g and g,
£ p(m;), k # j} who does not attend any meeting during
(T(my), T(my) + t(m,)), then change the attendant j of m, to k.

XP: Exchanges persons within a group among different
meetings. This malkes free slots for the current meeting by
making changes diagenally. For any two persons j, k e g,
m p(my) and J, k € g, inpim,) such that j € p(m;) and
kep(m,), then swap j and k between p(m;) and p(m,) if j is
free in (x, x +t(m,)) and k is free in (x, x + t(m;)).

CSL: Shifts the meetings m (x, x + t(m,,,)) as well as the
meetings to the left of this interval further to the left in
order so that each person j £ p{(m,.,) is free in (x, x +

t(m,.,)).

CSR: Shifts the meetings in (%, x +t(m,,,)) as well as the
meetings to the right of this interval further to the right in
order so that each person j € p(m,.;) 18 free m (x, x +

t(me)).

A-algorithm: The A-algorithm for the meeting scheduler
uses one heap and one set, called open-heap and
node-set, respectively. The heap 1s used to keep the
generated nodes with their heuristic values and node-ids.
The heap always has the most probable node or minimum
heuristic value node at the root so that this node always
gets generated before all other nodes. Whenever a node
is generated, it is inserted into the heap with its heuristic
value and node-id. The heap is always maintained such
that 1t satisfies the heap properties. Once a solution 1s
found for the current meeting, the open-heap and
node-set are initialized for scheduling the next meeting.
The node-set is used to keep the nodes of the search
tree as and when get generated. It 1s very useful to
reduce the time complexity of the algorithm by having

642

Asian J. Inform. Tech., 5(6): 640-646, 2006

constant time of checking, subtraction and inclusion. The
node-set 13 verified whenever a node 1s generated. Here
we do not require to check separately whether a particular
node is already expanded or not, since the heap having
the nodes which are not expanded and each node
configuration 1s unique.

The algorithm starts with the heap having the
schedule T(n) as the root node. The iteration of the
algorithm begins by removing the root node from the heap
and designated as the current node. If the current node
15 not the solution node, the operations CP, XP, SL, SR,
CSL and CSR are applied to this current node to generate
a set of new nodes. These new nodes are verified for
duplication with the node-set. If the nodes are not
already available in the node-set, heuristic function is
applied and then inserted into the heap, attached as
successors to the current node and then nserted into the
node-set. The next iteration of expansion starts by
removing the root from the heap and treated as the current
node. If the heap is empty, it declares no solution for the
request and the process 1s termimated. If the current node
is a solution node, the current meeting is scheduled
permanently and this configuration 1s treated as the root
node for the next meeting request, otherwise the
process continues.

Algorithm 1
Schedule(w(m,,,), p(m,..))
M wi(m,,,) — a set of starting time instances for m,,,
M plm,,,) — a set of group of persons considered for
Hmy.,

Tnitialize the open-heap and the node-set
Create a search tree, G, starting with the root node s
of the schedule T(n)
Insert s into the open-heap and node-set
while(answer is not found)
begin
if{open-heap 15 empty)
print the error message and exit
n-delete the root of the open-heap
if(n is a goal node)
schedule the meeting m,,, and exit
generate a set M of successors which are not in
the node-set by applying the operations:
CP, ¥XP, SL, SR, CSL and CSR on n; insert into
the node-set
for each node 1 M, apply the heuristic function
and establish a pointer to n
insert the nodes of M into the open-heap according
to their heuristic values

end
end Schedule

643

Example: Let us consider Figure 4, it shows the search
tree for the generation of schedule T(6) from T(5). The full
generation of the tree 1s not required, but it 1s shown here
that how the A-algorithm performs better than computing
all solutions and select the optimal one. The nodes are
given unique numbers to identify the order n which the
nodes are getting generated and these numbers are given
at the left side of the nodes.
nodes are given at the right side. The nodes with heuristic

The heuristic values of the

value greater than or equal to zero are used to form the
actual search tree.

The A-algorithm starts with the root node 1, the
configuration T(5). The operations CP, XP, SL, SR, CSL,
and CSR are applied when a node 1s expanded. Consider
the Example 2, with four input parameters (I1-14). From 12,
m; can be scheduled only after m,. For m,, the starting
instance is w(m,) = {2, 3, 8, 9}. Since m, is scheduled at
the time instance &, the possible starting instances for m;
are {8, 9, 10,11, 12} — {8, 9, 10% = {11, 12}. That s, the
time instances 11 and 12 alone can be considered for
the meeting ms.

When heunistic values are applied to the time
mstances 11 and 12, both are having heuristic value 2. So,
the time instance 11 is considered first for scheduling of
meeting mg in (11, 11+3). In (11, 14), the meetings already
scheduled are {m,, m.}, but we are not concerned merely
with the meetings m (11, 14) alone. That 1s, we are
applying the operations to those persons who have been
scheduled in (11, 14) and also their meetings so as to get
fi{m,). To schedule m,, the persons in p(m,) = {{1}, {3,
4%, {61}, we have to find one person who 13 free from each
group of p(mg). The person 1, is not free in (11, 14) and
there 1s no substitute for him. So, the meeting m, 1s to be
moved out of (11, 14). m, can not be moved to the right as
1t has 12 the only starting time available and fall m (11, 14).
So, m, has to be moved to the left of (11, 14). Since, we
are trying m, to schedule in (11, 14), m, can be moved to
(8,11). The attendees of m,, p(in,) = {1, 4, 7}, are free. So
m, 1s moved to (8, 11). Now, the person 6 1s required to be
free in (11, 14). But the person 6 is scheduled for m;. m;
can not be moved as it is fixed (T4). The only possibility
1s to have a substitute for the person 6 in m,. So, for m,,
the person 6 1s changed to 7. Now m; 1s scheduled with
p(mg) = {1, 3, 6}. The process of arriving schedule T(6) is
shown in the Fig. 4.

When the node 1 1s expanded, four nodes, 2, 3, 4 and
5, are generated as successors. Nodes 2 and 4 have the
same value, but node 4 has been selected as the current
node. Exploration of this node gives the solution node
(node 6) marked with 2% The rest of the exploration of
nodes 1s not required as this heuristic leads to optimal

Asian J. Inform. Tech., 5(6): 640-646, 2006

)
=
iz *
o B
o =
o ¥
B
5l =2
-+ 3 - &
k]
'a SL m4:8-Left shifting m4 to time instance §
-9 CP m5:6:7-Change of person 6 to 7 for m5
“ — -Solution path by A*
&

% =Solution node

Fig. 4: Search tree

solution. The correctness of the algorithm 15 obtamned n
the following theorems.

Theorem 1: If the operations CP, XP, SL,, SR, CSL and
CSR are applied to the Algorithml, it correctly finds an
optimal solution if any exists.

Proof: Letus consider Fig. 3. The operations CP, XP, SL.,
SR, CSL and CSR are used to enumerate all possible states
for the current meeting, m,,,. As the algorithm starts with
the root node and the operations are applied mn each level
of the search tree, it generates a finite number of nodes on
each level. The heap always has the mimmum value or the
most probable node at the root for expamsion and
removed each time of expansion.

Case (i): If slots are free for p(m,,,) in (x, x + t(m),
Algorithm 1 finds the solution and that is the optimal one.

Case (ii): If slots are not free for p(m,,,) in (x, x + t(m,,,)),
then the four operations CP, XP, SL, SR CSL and CSR are
applied to enumerate all possible states for the current
meeting, m,,, from the current node.

The algorithm starts with the root node and the
operations are applied at each level of the search tree. As
the operations correctly capture all possible states from
the root and the nodes are stored without duplicates into
the heap, it generates a finite number of nodes on each
level. Since the heap is used to get the most probable
node for expansion and removed, it leads an optimal
solution in a fewer levels of expansion, otherwise ends up
with the empty heap.

644

Theorem 2: The heuristic function used in the Algorithm
1 gives the optimal solution.

Proof: Let L(n) be the minimum cost incurred on applying
the operations to arrive n from the root. When this is
proved, the optimality of the algorithm follows since when
z(solution node) 15 chosen at line &, L(z) will give the
minimum cost operations required to reach z from the root.

Basis Step (i = 1): The first time we arrive at line 8, the
root 1s chosen. Since L(root) is zero, L(root) is the
mimmum cost operations from root to root.

Inductive step: Assume that for all kk < i, the k* time we
arrive at line 8, L(n) 18 the mimmum cost operations from
root to 1.

Suppose that we are at line 8 for the i® time and we
remove n from the top of the heap with minimum
value L{n).

First we show that if there 13 a sequence of
operations applied from the root to a node w whose cost
is less than I.(n), then w is not in the heap (that is, w was
previously removed from the heap and expanded at line 8).

Suppose that, by contradiction, w 1s 1 the heap. Let
P be a minimum path from the root to w, x be the node
nearest to the root on P that is in the heap and u be the
predecessor of x on P. Then u 1s not n the heap, so u was
chosen at line 8 during a previous iteration in the while
loop. By the inductive assumption, L{u) is the minimum
cost operations from the root to u.

Now L(x)<L(u) + h(u, x), where h(u, x) is the heuristic
value from uto x

<cost of P

< L(n).

But this inequality shows that n is not the node in
the heap with minimum L{n). This contradiction completes
the proof that if there is a path from the root to a node w
whose cost 15 less than L(n), then w 13 not in the heap.

COMPLEXITY OF HEURISTIC SEARCH

The runmng time of heuristic search algorithms
depends on the quality of the heuristic function and is
proportional to the number of nodes expanded. The effect
of admissible heuristic function 1s to reduce the effective
branching factor of a heuristic search relative to the
complete search from the search tree”. It is observed that
the most probable nodes give shorter solution than other
nodes. So, the nodes which are not most probable need

Asian J. Inform. Tech., 5(6): 640-646, 2006

not be considered for expansion. In case, most probable
nodes are not available then the version of IDA (Iterative-
Deepening-A)® could be used to perform a series of
depth-first searches, pruning a path and backtracking
when the cost f(n) of a node n on the path exceeds a cut-
off threshold for that iteration. IDA also guarantees an
optimal solution if the heuristic function is admissible.
IDA requires memory that 1s linear n the maximum
search depth.

RESULTS AND DISCUSSION

The main goal of this work is to compare the
performance of our approach with Sugihara approach™
when rescheduling of meeting takes place. For any given
meeting, m,,, if there 1s no solution for any of the starting
time instances in w(m,,,) from the root configuration, then
rescheduling or rearrangement of previously scheduled
meetings are take place in both Sugihara™ as well as in
our approach.

Consider Table 1, for scheduling the meetings m,.
For the first five meeting requests, the meetings are fixed
without wusing the rescheduling process in both
approaches, whereas for the sixth meeting, the
rescheduling process take place in both approaches. The
A-approach generated 3 nodes to fix m, from T(5),
whereas Sugihara’s approach (Sugihara et al, 1989)
generated 42 nodes.

Tt is observed that the A-algorithm with relevant set
of operations inside the interval generates least mumber of
nodes than A*-approach with common-set of operations
m the 3rd, 4th columns of Table 1 and Sugihara approach.
Another observation is that the number of nodes
generated and the cost may vary based on the selection
of node from the set of nodes having same heuristic
value. If we look at the Fig. 5, nodes 1 and 6 are having
same heuristic value. Node 1 has only 3 children whereas
node 6 has 5 children. Node 6 1s chosen for expansion
because it has least cost. Even though node 7 is the
solution node as well as the first child, the scheduler has
to completely explore the node 6 and choose the
optimal one.

In order to restrict the generation of some nodes
which are not the most promising nodes, relevant set
of operations could be used. In Fig. 5, the root node has
6 children. Among the six children, nodes 1 and 6 are

Fig. 5: A* with commen-set of operations

SL.m4:8

3J33:4
b 4

Fig. 6: A* with relevant-set operations

obtained by relevant-set operations. Nodes 1 and 6 have
same heuristic value but node 6 has least cost, so node 6
1s chosen for expansion. The relevant operation SL m, 8
is applied to the node 6, node 7 is obtained, a solution
node. If we look at the node 6 of Fig. 5, the children 8 to

Table 1: Comparison of A* algorithm, based on number of nodes generated, with Sugihara approach for rescheduling

A* with

Common-set of operations

& relevant operations
outside of interval

mi Sugihara approach

Common-set of operations ~ Relevant-set of operations
within the interval within the interval

mo6 42 11

11 3

Asian J. Inform. Tech., 5(6): 640-646, 2006

11 are not obtained by relevant operations. Hence, further
expansion of node 6 13 stopped. The process of
generating a solution by relevant-set operations is shown
in Fig. 6. The variations in the number of nodes generated
and the cost of generation could be avoided when the
relevant-set operations are applied mstead of common-set
operations in the search tree expansion

CONCLUSION

In this study, we have discussed the scheduling and
rescheduling of meetings for office automation and
mmplemented with A-algorithm to speedup the solution
mstead of computing all solutions. Our approach performs
better in practice than the earlier approach’” by pruning
the branches of the search tree using heuristic. A chooses
only one branch or node in each level of the search tree
for expansion. By reduction of the search space, over
head operations involved 1n the processing also reduced.
The proposed approach with A-algorithm gives the
solution with optimum or near optimum rearrangement
without checking all solutions. Even for the larger problem
mstances, that 1s, the mumber of persons, mumber of
meetings and number of starting instances increase this
approach performs better.

646

REFERENCES

Teger, S.L., 1983. Factors unpacting the evolution of
office automation. Proceedings of the IEEE,
71: 503-511.

Sugihara, K., T. Kikuno and N. Yoshida, 1989. A
Meeting Scheduler for Office Automation. TEEE
Transaction on Software Engin., 15: 1141-1146.
Garey, M.R. and D.S. Johnson, 1979. Computers and
Intractability: A Guide to the Theory of NP-
Completeness. San Francisco, CA: Freeman.
Nilsson, N.J., 1990. Principles of Artificial
Intelligence, Narosa Publishing House.

Rich, E. and K. Knight, 1995. Artificial Intelligence.
Tata McGraw-Hill.

Russell, S.J. and P. Norvig, 2004. Artificial
Intelligence-A Modermn Approach. 2nd Edn., Pearson
Education Series in Artificial intelligence.
Sugumaran, M., K.5. Easwarakumar and
P. Narayanasamy, 2003. A New approach for Meeting
Scheduling using A-Algorithm. Proceedings of the
IEEE TENCON Intemational Conference on
Convergent Technologies for Asia-Pacific Region,
1:419-423,

Korf, RK., 2000. Recent Progress in the Design and
Analysis of Admissible Heuristic Functions.
American Association of Artificial Intelligence.

