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Abstract: Neural Network (WN) and Fuzzy Inference System (FIS) had been successfully employed in many
engineering applications and were adopted in identification and desigmng controllers for robotic manipulators,
the former because of its model-free feature and the other for its high flexibility. In this paper, we focus on the
application of a neuro-fuzzy techmque to bring certain advantages over neural networks and fuzzy logic control
for identification and tracking control of a robot manipulator which is a complicated multivariable nonlinear
dynamical system. Neural network has the ability to learn by adjusting the mterconnections between layers
while fuzzy inference system is a computing framework based on the concept of fuzzy sets, fuzzy if-then rules
and fuzzy reasomng. A Fuzzy Logic Controller (FLC) 1s combined with the neural network plant moedel tramed
on-line by the backpropagation algorithm using an adaptive learning rate. Simulations and some results are

showed and discussed.
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INTRODUCTION

Robotic manipulators are complicated nonlinear
dynamical systems, time varying with inherent unmodeled
dynamics, structured uncertamnties caused by imprecision
in the manipulator link proprieties and unforeseen loads
and unstructured one, such as nonlinear friction,
disturbances and the high-frequency part of the
dynamics™. Design of ideal controllers for such systems
13 one of the most challenging tasks in control theory
today, especially when mampulators are asked to move
very quickly while maintaining good dynamic
performance’.

In general, the control problem consists of obtaining
dynamic models of the robotic system and using these
models to determine control laws or strategies to achieve
the deswed system response and performance. A
conventional approach to solve the robotic control
problem is to use the computed torque algorithm!™.

The main problems with conventional control in
robotics control are: need for mathematics model of the
plant to be controlled, inability to face payload variation
and disturbances and existence of plant uncertainties or
sudden change of plant parameters leading up to
inaccurate controller.

The emergence of softcomputing or computational
mtelligence technology inspired by biological and human

inteligence 1s one of the most exciting and important
fields n engineering. There are several approaches in
configuring an mtelligent control system such as neural
networks which have the distinct learning and adaptive
capabilities, fuzzy logic control theory, which can emulate
human thinking and neuro-fuzzy control which possess
certain advantages over neural networks and fuzzy
logic control.

The using of FL.C for controlling a robot manipulator
1s justified from the following reasons: the dynamics of
robot 18 modelled by nonlinear and coupled differential
equations and FLC gives high flexibility for its many
degrees of freedom (shape and number of membership
functions, aggregation methods,
defuzzification methods, etc.). Fuzzy systems are suitable
for uncertain and approximate reasoming, especially for
the system with a mathematical model that is difficult
to derivel.

The universal approximation capabilities of multilayer
NN make it a popular choice for modelling nonlinear
systems. It has been shown™ that a neural network with
one hidden layer with an arbitrarily large number of

fuzzification and

neurcns in the hidden layer can approximate any
contimuious function over a compact subset of An
identification of a robot dynamics with feedforward NN
using supervised learning 1s adopted.
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DYNAMIC MODEL OF ROBOT
MANIPULATOR AND ACTUATORS

A robotic manipulator with n Degree Of Freedom
{(nDOF) can be modelled as a set of n rigid bodies
connected in series with one end fixed to the ground and
the other end freefl The bodies are jointed together with
revolute or prismatic joints. A torque actuator acts at each
joint. The dynamic equation of the manipulator using
Lagrange formalizsm is given by:

T=M(q)q+ V(q,9) +F(q.9) + G(q) + T4 @)

where Mi{qeR™ is the inertia matrix (symmetric and
positive definite), V (g, eR" is the cenfrifugal and
Coriolis vector, F(q,q) R" iz the vector of viscous
frictions and G{q)=R" is the gravity vector. QeR", teR"
and T,zR" are generalised coordinates, applied joint
torques and disturbance, respectively.

The dynamic equation of a 2DOF planar robot
manipulator (two links joined by rotary joints) shown in
Fig. 1 is derived by using Euler-Lagrange method as

follows:
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Fig. 1: 2DOF planar robot manipulator

where |, , 1, denotes the length of the two links, 1,1 are
the distances of the centers of mass of the two links from
the respective joint axes, m;, m, are the masses of two
links and m_;, m_;, are the masses of the rotors of the two
joints motors. The moments of inertia with respect to the
axes of the two rotors and the moments of inertia relative
to the centers of mass of the two links are denoted by
1, L and Iy, I, respectively. Also, it is assumed that the
motors are located on the joints axes with centers of mass
located at the origins of the respective frames.

DIRECT AND INVERSE KINEMATICS

Direct kinematics problem describes the end effector
position and orientation as a function of the joint
variables of the mechanical structure with respect to a
reference frame. The result of direct kinematics function
for a two planar manipulator is expressed by:

0 s, cp oacitacs
0 — +
T(q) = Cia B2 1% T d28n (3)
1 0 0 0
0 0 0 1

On the contrary, the inverse kinematics algorithm
congists of the determination of joint wvariables
corresponding to a given end eff'ector. The solution of
the inverse kinematics problem for two link planar
manipulator (Fig. 1)is

arccos{r/2)+arccos(x/r), q,=—2arccos{r/2) )

q,=

r=qx +y° 5)
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Fig. 3: Fuzzy control and on-line neural network
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Fig. 4: The fuzzy logic controller architecture
TRAJECTORY PLANNER

The trajectory planner computes a function g, (t) that
completely specifies the motion of the robot as it
traverses the path. We consider point to point motion to
plan a trajectory from gt,) to q(t), ie., the path is
specified by its imtial and final configurations. This type
of motion 1s suitable for materials transfer tasks when the
workspace is clear of obstacles. The problem here is to
find a trajectory that comnects an initial to a final
configuration while satisfying other specified constraints
at the endpoints (velocity and acceleration constraints).

Since the control action on the manipulator is carried out
inthe joint space, an inverse kinematics algorithm is used
to reconstruct the time sequence of jomt variables
corresponding to the above sequence n the operational
space (Eq. 4-5). To generate suitable joint space
trajectories we use the "Linear Segments with Parabolic
Blends method (LSPB). We specify the desired trajectory
1n three parts (Eq. 6). The first part from time t; to time t; 15
a quadratic polynomial. This results in a linear ramp
velocity (Fig. 2). At time t, (blend time), the trajectory
switches to a linear function. This corresponds to a
constant velocity. Finally, at time t-t, the trajectory
switches once again, this time to a quadratic polynomial
so that the velocity is linear. For convenience we suppose
that t, = 0 and q(tp = q(0) = O (L.e., robot must start and end
with zero velocity). The complete LSPB trajectory 1s
given by'™:

a 2 vV
2 1
-Vt
qt)= qf+q+f+\ft ty << tp—ty ©
at; a s
e = Fatd =t te—tp<t=tr

where ¢, and g; are an initial and final joint angle values
and t; 1s transition between two intermediate points.

CONTROL DESIGN

We can distinguish two main components in the
designed system (Fig. 3): a Fuzzy Logic Controller (FLC)
and a neural network identification structure of the plant.
The aim of the motion is to find the generalized joint
torques that allow execution of a motion q(t) so that

q(t) = g4t G

as close as possible, where q,(t) denotes the vector of
desired joint trajectory variables. Tracking control is
needed to make each joint track a desired trajectory. The
output of the FL.C, which is used for joint position control,
1s applied to the actuator (a de servomotor). The outputs
of the comntrol system are measured joimnt angles or
velocity. An on-line identification of robot manipulator
using neural networks is achieved.

Design of the conventional fuzzy logic controller: The
fuzzy controller’” is shown in Fig. 4. In this work, the
Mamdani method of inference is used with two control
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Fig. 5: Membership functions for input e

mputs x; (1 = 1, 2) and one output y,. Control mputs are
error position of the links and their derivations
(e, de/dt, e, de/dt) and the outputs are the joint torque
derivatives dv,/dt, dt,/dt. Fuzzy controller contains seven
fuzzy rules obtained as follows:

If (e 1s NS) or (de 1s NS) then (dt 15 PS)
If(e is PS) or (de is PS) then (dt is NS)
If (e is 7) and (de is 7Z) then (dt is 7))

If (e 1s NB) or (de 1s NB) then (dt 1s PB)
If (e is PB) or (de is PB) then (dt is NB)
If (de is PVB) then (dt is NVB)

If (de 1s NVB) then (dt is PVB)

Shapes of membership functions of input variables
and output variable are depicted m Fig. 5 and 6,
respectively.

The proposed fuzzy sets presented here are NB:
Negative Big, NS: Negative Small, Z: Zero, PS: Positive
Small, PB: Positive Big. Fuzzy sets NVB (Negative Very
Big) and PVB (Positive Very Big) are introduced to
elimmate too big changes of joint angles and torques.

On-line identification using neural network: On-line
system identification methods used are mostly based on
recursive unplementation of off-line methods for models
that are linear in the parameters such as least squares. In
order to relax the linearity in the parameter assumption,
Neural Networks (NNs) are being widely employed for
system 1dentification, since these networks leamn complex
mappings from a set of examples. NNs present an excellent
candidate for modelling nonlinear systems. A feedforward
NN with one hidden layer using supervised learning was
trained for this purpose. The well-known backpropagation
algorithm with adaptive learning rate™ is employed to train
the network for wupdating synaptic weights. The
supervised learning is used for identifying process
models from mput/output data. The identification
procedure with NNs 1s used to reproduce the behaviour
of the robot manipulator and the actuators. If we suppose
that the process is described by the following non-linear
discrete tume difference Eq:

a() = q(t—1),...,q{t —n) (L), ®

T(t—1),.., Tt —m)

The process output q(t) at time t depends both on its
past nvalues q(t-1) (1= 1,...,10) as well as the past m values
of the imput t(t-1) (§ = 0,...,m). The series-parallel
identification model (Fig. 8) corresponding to the process
represented in Eq. 8 has the following form™:

q(t *1),,(1(1; 7]’1):1(1:):
T(t—=1,..,t(t—m)

qn(wat):fw m==n 9)

s

The trammng process for neural network
nonparametric modelling can be expressed uniformly as
the mimmization of an error measure, typically sum-
squared error, between the neural network output and the
process output. If the sampled process data are collected
over a period [0,T], the cost function I(w.t) 1s the

following:

1w, - 3 [an-a, (w0 10)
-0

The mimmization is carried out with backpropagation
algorithm through time. The relative factor x(t) defined as
follows:

_ANw,t) T w ) -T(w,t-1)
COI(w.t) I(w,t)

(1)

x(t)
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is employed to adjust leaming rate term ¢ at each iteration
according the following formula:

n(t)[1+u e_%(t):l for xty <1 (12

nit+1)=
n(t)[l—U e_xm] for %ty 20

ve [0,1]

RESULTS

Let’s consider the 2DOF planar manipulator shown
in Fig. 1. The parameters of the robot manipulator and
joint actuators are taken as:

li=1=1[m], 1, =1, =0.5[m],
my ~mj, = 50 [kg]
110121102:10 [kgm?]. My, ~mm, = kel ,

T, = Im, = 0.01 [kgm?], ky, =k, =100.

The desired trajectory in operational space 1s given
by way pomt (Fig. 9). Actual robotic trajectory 1s
presented i the same figure with a solid line. Transition
between two intermediate way pomts 1s governed by
trapezoidal joint velocity profile. A quite satisfactory
control result is obtained, although only seven rules are
used to design the fuzzy control law. The proposed fuzzy
controller is able to track well the path.

The identification of the robot mampulator is
performed in on-line mode during the fuzzy control of
manipulator. Neural network contains 10 sigmoid neurons
in hidden layer and 4 linear neurons in its output layer.
The proposed algorithm started from the same iutial
learmng rate 1 = 0.03 for both Layers (ludden and output).
The best results were obtained with v = 0.8.

Comparison between actual and reference trajectory
for both joints are shown m Fig. 10 and 11. The errors
tracking have bigger values at the beginning. This 1s due
to initialization of the neural network with random number
values. However, after short time (about 2 s) the neural
network output follows the robot trajectory with
small error.

CONCLUSION

This study has demonstrated the applications of
neural network and fuzzy logic system for the
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identification and control of a robot manipulator. Fuzzy
logic controller was used for robot position control and
neural network was proposed for on-line identification of
the robotic manipulator dynamics during the motion
control. On-line parameter traiming s derived using the
gradient descent method with adaptive learning rate. The
effectiveness of the proposed hybrid identification and
control scheme has been confirmed by simulated results.
The simulation results show that the designed fuzzy
controller and neural network are able to provide
satistactory performance for both trajectory tracking and
1dentification capabilities. The neuro-fuzzy control is an
attractive and usefull tool in robotics field.
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