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Abstract: In this study, we propose a neural network model for the electrocardiogram (ECG) beat recogmition.
The description of the ECG signals consists of a multi-domain features which contain a set of meaningful and
non redundant parameters. The construction of the system is accomplished by a data-driven learning scheme
based on a clustering process to find an initial or coarse neuronal structure and a fine tuning hybrid learmng
algorithm, mecluding gradient descent nonlinear optimization procedure and a least squares optimization step.
The salient features of the system are an effective mechanism for variable learning rates and an adaptive metric
norm for the distance. The results of experiments show the good efficiency of the proposed solution.
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INTRODUCTION

With the advances of data acquisition systems, it has
become possible to collect and store huge amounts of
data in the biomedical domain. Moreover, due to the lack
of explicit relations among data and to the unstructured
nature of medical knowledge; the decision on a patient's
diagnosis based on heuristic and analytical symptoms of
an examination, requires more and more elaborated tools.
Among all the techniques,  the
Electrocardiogram (ECG) signal analysis remams one of
the most relatively inexpensive and easily accessible

biomedical

investigational tools in clinical cardiology.

For several computer-assisted ECG
mterpretation 1s playing an increasing role in assisting
cardiac diagnosis. Generally, automatic diagnosis can be

years,

viewed as a sequential process involving two steps: The
symptom extraction and the diagnosis task. Symptom
extraction 1s maimnly required to reduce data and to find
some qualitative and quantitative features. Nevertheless,
the lack of proper diagnostic criteria, which are usually
expressed in a natural language, leads to the difficulty of
formalizing medical knowledge in a computer program.
Artificial neural networks and fuzzy logic systems
have been studied extensively and applied in this field
Neural networks are well-known for their powerful
computational and learning abilittes but they do not
implement a transparent decision process to the user and
lack the ability of dealing with expert knowledge, while
fuzzy systems are by now famous for ther easy

interpretability. Tn this context, neuro-fuzzy systems are
defined in the form of IF-then rules trained by a learmng
algorithm of data driven type derived from neural
networks theory.

In this study, we present a neuronal system of ECG
beat recogmition using various features that are less
sensitive to morphological variation of the ECG. More
specifically, instead of real waveform, two different types
of feature sets are defined, namely, Auto-Regressive (AR)
model coefficients and Discrete Wavelet Transform
(DWT) based features of the related ECG beats. It will be
shown that the derived features are less sensitive to the
morphological variation of the ECG.

ECG WAVEFORM DESCRIPTION

Automatic ECG beat recognition can be performed
using decision-tree like approaches, artificial neural
networks and fuzzy systems based on various
features extracted from ECG beat, mainly in the
temporal domain, such as the width and height
of QRS complex, RR mterval, QRS area, etc. The
main difficulty 18 that these features are very
susceptible to variations in morphology and temporal
characteristics. Thus, it is necessary to define some
characteristic features i different domains that are
more robust to variations of ECG morphology. In
the present study, only two different features
describing isolated ECG beats are proposed as
candidates to form a compact representation.
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Linear prediction coefficients: A linear auto-regressive
model can be used m time series analysis to predict the
value of the next sample of a signal. The latter 1s taken as
a linear combination of the previous samples. The next
sample of the time series, §, is predicted as the weighted
sumn of the p previous samples 5S¢, 5,4, ..., Sy, and can be
given by the following expression:
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The transfer function of the model is given by,
H(z) = 3@ _4 az” @
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Where, a,, a,, ..., a, represent the moedel ceefficients

and p its order. The residual error, e, is defined as the
difference between the actual and the predicted values of
the next sample and can be expressed as,
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The weights can be computed by mimimizing the
mean square value of the residual errors over an analysis
window.

DWT based features: The Continuous Wavelet
Transform (CWT) is defined as the integral of the signal
s(t) multiplied by scaled, shifted versions of a basic
wavelet functions(t):

1 t-b '
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where a 18 the so-called scaling parameter, b 1s the

time localisation parameter. Associated with wavelet 1,

which is used to define the details in the decomposition,

a scaling function ¢is used to define the approximations.

To avoid intractable computations of the CWT, scales

and positions can be chosen based on a power of two, 1.e

dyadic scales and positions. The Discrete Wavelet

Transform (DWT) analysis

accurate!’. In this scheme, the parameters a and b are

given by:

is more efficient and

(ik)ez’:a=2b=k2,72={0,+1,%2,--}

This allows us to define
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A wavelet filter with impulse response g, plays the
role of the wavelet |y and a scaling filter with impulse
response h, plays the role of scaling function ¢. Thus, the
DWT can be described mathematically as:

o(ik) = 3 s(n)g,, (n)
a=2,b=k2, (jkje 7’

The detail at level j is defined as:

D;(t)= X c{l-k)w(t) ©

keZ

In practice, the decomposition can be determined
iteratively, with approximations being
computed, such that the analysed signal is decomposed

successive

inte many lower-resolution components. In the present
study, a five level DWT is defined and the normalized
variances of the details coefficients are used as features.

FEEDFORWARD NEURAL NETWORKS (FNIN)
FOR PATTERN RECOGNITION

Feedforward neural networks have been mncreasingly
used in many areas to solve real-word problems. This is
mainly due to their universal approximation capabilities, 1.e
to the property that any continuous function can be
approximated within an arbitrary accuracy by means of a
neural network, provided that its topology includes a
sufficient number of hidden units®*. Basically, a typical
FNN 15 a nonlinear regression technique, which s
determined by performing a training process where the
goal 15 to find the parameters that mimimize a suitable error
function. This 18 achieved by using a given number of
pattern-target pairs that are samples of the input-output
relationships to be approximated.

In the study under consideration, we limit ourselves
to address classification problems of different ECG beats
via a class of RBF network. One reason of our choice is
that they form a unifying link between function
approximation, regularizatior, noisy data interpolation,
classification and density estimation. Tt is also the case
that tramming RBF networks is usually faster than multi-
layer perceptron networks.

The construction of RBF networks 1s usually solved
i two steps. First, the basis function parameters
(positions and widths or spreads of the basis functions)
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may be determined by unsupervised clustering
algorithms; they can also be obtained through growing
and pruning procedures’™”; or they can be evolved using
evolutionary algorithms®®. Second, the final layer weights
are determined by least squares optimization which
reduces to solving linear system. Tt is well known that the
problem of selecting the appropriate number of basis
functions remains a critical issue because it controls the
complexity and hence the generalization ability of RBF
networks. For instance, few basis functions give poor
prediction on unseen data, 1.e. poor generalization, since
the model has limited flexibility. On the other hand, an
RBF network with too many basis functions yields poor
generalization since it is too flexible and fits the noise in
the traimng data. Thus, the well-known trade-off bias-
variance which highlights the importance of optimizing
the complexity of the model in order to achieve the best
generalization via a compromise between the conflicting
requirements of reducing bias while reducing variance at
the same time.

On the other hand, there is a clear evidence that the
classification/regression error made the RBF networks
depend strongly on the shape of the kemel fimctions
constituting the hidden layer™". More specifically, it
seems more reasonable and beneficial if diagonal
covariance matrices could be incorporated into the basis
functions so that complex data distributions could be
represented efficiently without the need of having to use
a large number of basis functions. In this way, the range
of spreads of a hidden unit is ellipsoidal and the
traditional RBF network 1s extended into an Ellipsoidal
Basis Function (EBF). Moreover, taking a useful
normalization variation gives rise to a generalized or
Normalized Ellipscidal (NEBF)
representation. To make the NEBF network more effective
i handling complex classification/regression tasks, an
effective data-driven hybrid learning scheme is proposed.
The identification of an initial neuronal structure is
accomplished by an unsupervised maximum-entropy
clustering process. The mitial neuronal model can be fine
tuned by an efficient two stage Hybrid TLearning
Algorithm (HLA) combining Gradient-Descent (GD)
optimization with least squares based on singular
decomposition (SVD). The SVD i1s a very stable algorithm
to handle numerical computation problems associated
with the inversion of ill-conditioned matrices. In order to
speed up the learning process while avoiding local
minima, the proposed GD optimization uses a variable
learning rate for every parameter, depending on the
progress of the cost function to be minimized.

Assume we have a complex nonlinear multi-input and
multi-output (MIMO) relationship where [x;, x5, ... x|

Basis  Function
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€ X R is the vector of input variables and ye Yo R® is the
vector of output variables. In the multi-input and multi-
output NEBF network given in Fig. 1., the overall output
is defined as:

H H
§,(x)=260, /30 @
Where j=1.2,...,m;I1=12,.  Hand1=12,.. 1
6, =Mexp{-(x )" /(o] ®

Here, we assume that ¢, € X, 8, >0 and f; € Y, with X
and Y;are the variation domains of the input x; and output
y,. Tespectively. It is important to notice that since each
basis function is described by the vectors ¢; = [c,,....¢n]"
and 6,= [0,,,...,6,|" of centre and width, it is able to match
the local shapes of the underlying clusters that can exist
in nonlinear relationships. In this way, the NEBF network
becomes efficient because it can develop local adaptive
metric norms.

HYBRID LEARNING SCHEME

The learning process is performed in two phases.
Firstly, a clustering algorithm is used to find a coarse
model that roughly approximates the underlying mput-
output relationship. Secondly, parameter optimization
procedure is performed for a better tuning of the initial
structure. In principle, once an appropriate structure is
identified, the learning task can be acomplished by any
suitable training algorithm such as the standard
Backpropagation Algorithm (BPA). However, because of
slow convergence speed of pure BPA, in the following a
more efficient training method, namely the combination of
gradient descent with least squares optimization
procedure will be used.

Structure identification by clustering: From the available
traming data that comtain N mput-output samples, a
regression matrix X and an output matrix Y are
constructed

X:[X1="'=XN]T= Y:[YI="'=yN]T &

Since the study under consideration deals with a
classification task, the clustering process uses only the
input portion of the data is used to discover an
underlying structure generating the data. Clustering is a
technique to partition a set of samples into exactly ¢
disjoint subsets. Samples in the same cluster are somehow
similar than other samples in other clusters. One way to
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Fig 1. Architecture of the NEBF network

make this problem a well defined one 1s to define a
criterion function that measures the clustering quality of
any partition of the data.

Among the clustering methods, the Fuzzy c-means
algorithm™" is one of the most popular. In FCM method,
the loss (objective) function is defined as follows:

=Y

i=1

m
1k

(10)

D=

2
uidy
k

with d, = ”xk-v . and u , denotes the grade of
membership input vector k to fuzzy cluster 1, v, 18
interpreted as prototype of cluster i defined by {u,} and
weighting exponent m controls the extent of membership
sharing between fuzzy clusters. Form=1, FCM converges
m theory to the traditional c-means solution. To mimmize
Eq. 10 subject to normalized condition:

iuik =1 an
1=1

For each input vector k, using the Lagrangian
multiplier method, for m > 1, local minimum of Eq. 10 was
demonstrated!" if and only if

1
Wy = o
toefa ) 12
Z ik
i=1 d]k
_ LR, (13)

i N
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The FCM algorithm 1s characterized the parameter m
that determines the behaviour of the clustering algorithm.
The larger m 1s, the fuzzier 1s the partition. In this research
work, we have used m = 2.

Parameter optimization procedure: The parameters
obtamed by the identification procedure can be optimized
or fine tuned by a variant of gradient descent optimization
techmques. This 1s achieved by an iterative two stage
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forward-backward optimization algorithm. Tn the forward
stage, with the ellipsoidal basis functions being constant,
the weights of the last layer, i.e the functional models f;
1=1,..,Handj=1...,m are identified by solving a least
squares problem. Then, in the backward stage, the
functional models are fixed and the parameters of the
ellipsoidal functions ¢;, 64, T =1,.., H; 1 = 1,..,n are
updated by an effective nonlinear Gradient-Descent (GD)
optimization technique, which requires the computation of
the derivatives of the objective function to be minimized
with respect to the parameters ¢; and 6,.

The optimization algorithm uses a variable step
learning rates. Given a set D = {(x",d")}",_, , such that
¥ e X o R eYe R the objective 1s to find sub-systems
¥, (x") in the form of (7), such that the Mean Squared Error
(MSE) function

a4

18 mimmized. The problem is reduced to the adjustment of
the f; and the mean ¢, and variance 6, of the ellipsoidal
functions, so that the MSE 1s minimized.

Now it can be seen that the network output ¥, and
hence E, depends on ¢, and 6, only through ¢ where ¥,

f,. b and \; are represented by the following equations:
g =3 13
Yi= éfij‘lfl
v, =(0./b) and b=34, 16
i=1
The Derivatives of E w.rt ¢; and 6, are given by:
w_mww_g(mEe g
de, A, do; = 83}] dd, |dc,
OE B30 g 0EY | g
do; o4, do; = ay] ag, |doy

Finally, the results of the chain rules are written as
follows:

9E ’

E11:A.{2.¢1-(Xl G )/(Gﬂ) } 9

9E : ’

N Y T G
with A_(i(y]_dj)'(fij_yj)/b].
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Fig. 2: ECG signals of four classes: (a) Normal sinus rhythm beats; (b) Non-conducted P-wave; © Premature ventricular

contraction beats; (d) Right bundle brach block beats

S level wavelet decomposition
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Fig. 3: Five level discrete wavelet decomposition of an ECG signal

Let us assume that the task is to find an optimal vector of
parameters w which mimimizes some objective function

588

J(w) In the case of the neural system under consideration,
all the parameters defining the ellipsoidal functions are
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stacked in a single vector w. The optimization algorithm is
a variant of gradient descent in which each parameter w,
has its own step size and the step sizes are adapted
during the optimization process, depending on the
learning performance and more specifically on the
progress of the objective function and on the sign of its
derivatives at successive iterations. Let t be the iteration
mdex. Then, if the objective function has decreased
between iteration t-1 and t, the following rule is applied to
update each step size 1),

ol aJ

n(t)= P, (t -1),if a—w(t—l)a—m(t)>0 an

'm, (t 1), otherwise

where =0 and y<1 are two coefficients. Hence, the step
size 1s increased 1if the derivatives have kept the same sign
during two iterations and it is increased if the sign of the
derivative has changed, because a jump over a minimum
has occurred. The parameters are then updated by

o
ow

1

w0 1) = (1), () @)

If now the objective function has increased between
iterations $t-1% and $t$, all step sizes are decreased
simultaneously

n;(t)=8n;(t-1) vj
w0l

For the study under consideration, the following
numerical empirical values of the coefficients are used:

A=12,v=085=05 @4

THE RESULTS OF NUMERICAL EXPERIMENTS

The MIT/BIH arrhythmia database'? has been
considered in the experiments because 1s widely accepted
as a standard in the evaluation of methods for the
automatic recognition of the ECG signals. The MIT-BIH
ECG records are two-channels, 30 minutes duration,
sampled at 360 samples per second and annotated by

Table 1: MTH-BIH arrhythmia data base selected beats

Class Record No. Description

0 100 Normal Sinus rhythm beats

1 102 Non-Conducted P-wave

2 106 Premature Ventricular contraction beats
3 118 Right bundle branch block beats

Table 2: Rates of misclassification

Class Learning Test
0 1.5

1 0.5 1

2 1.5 1

3 1

Total 1.125 1.5

Table 3: Comparative results of ECG beat classifiers

No. of beat types Efficiency
MLP1 13 8.5
MLP2 12 92.0
MLP-Fourier 3 98.0
SOM-SVD 4 922
Proposed NEBF 4 98.5

trained cardiologists. Four different types of ECG classes
including Normal (N), Non-conducted P wave (P),
Premature Ventricular Contraction (PVC) and Right bundle
branch bock (R) beats are selected for this work from a
subset of four ECG records (files numbered 100, 102, 106
and 118). An example for each beat type is shown in
Fig. 2. Table 1 shows the records selected from the
MIT-BIH arrhythmia database. Since most beats belong
to the normal smus rhythm and the number of some
arthythmia types is very small, we have deliberately
limited the number of patients to provide approximate
proportions of different arrhythmia cases taking part in
experiments.

The selected ECG beats being classified have been divided
in two groups: one used for the leamning purposes and the
other for testing the performance of the classifier. The
total number of beats used in learning is equal to 800 with
200 for each class. The testing was performed on 400
beats with 100 for each class. The feature vector is of size
ten: 5 AR coefficients and the variances of detail signals
of a 5 level DWT decomposition that corresponds to the
‘Daubechies-2” wavelet. An example of decomposition 18
llustrated m Fig. 3. For the FCM algorithm, we have
usedc = H =8 clusters, which are equal to the number of
ellipsoidal basis functions. Table 2 shows the average
misclassification rates for the tramng and testing
datasets. The average misclassification rate for both
learning and test sets is very small and the recognition
rate in the test mode is approximately 98.5%. Tn order to
compare the obtained results with other techniques,
Table 3 summarizes the comparative results between the
following classifiers: Multistage systems using MLP
(MLP " Fourier and MLP MLP-Fourier”; Self-crganizing
maps and singular value decomposition (SOM-SVD)',
However, 1t 1s interesting to mention that patients and
rhythms selected in all compared experiments were
different. Hence fair comparison of the classifiers and their
results 1s very difficult. Moreover, since different numbers
of beat types have been used m the above methods, the
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second column of 2 gives the number of these beat types

or classes and column 3 shows the overall

recognition rate.
CONCLUSION

This study points out the ECG beat recogmition in a
systematic way using the NEBF network in order to
improve the quality of the diagnosis. The construction of
the network system is solved in two steps: The structure
identification step and the parameter adaptation step. The
learning algorithm uses a variable learming rate depending
on the progress of the cost function. The recognition of
the and different beats representing the
arthythmias has been done with good performance. In
order to recogmze other beat types, the integration of
various features is under way. To fully automate the
heartbeat recognition method presented here,
automatic heartbeat detection module is also required.
This will be the object of our future work.
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