Asian Journal of Information Technology 5(6): 578-583, 2006

© Medwell Online, 2006

Entropy Reduction of Arabic Text Files

'Abdel-Rahman M. Jaradat, Mansour I Irshid and *Talha T. Nassar
'Department of Electrical and Computer Engineering, University of Sharjah,
P.O. Box 27272 United Arab Emirates
“Department of Electrical Engineering, Jordan University of Science and Technology
*Department of Computer Science, Jordan University of Science and

Technology, Irbid, 22110 Jordan

Abstract: In this study we consider several approaches for reducing the entropy as applied to Arabic text files.
First we apply the source mapping technique to produce a binary file which we tested the performance on such
mapping using both Huffman and Arithmetic coding. Next we implemented file splitting techmque for the
reduction of the nth-order entropy of text files which was proposed by the authors. The technique is based on
splitting the binary file into several subfiles each contains one or more bits from each codeword of the mapped

binary file. The resulting

subfiles were used to achieve better compression ratios when conventional

compression techmques are applied to these subfiles individually and on a bit-wise basis rather than on
character-wise basis. The technique was applied on Arabic text files and it was found that considerable
reduction in their entropy was achieved. Applying Huffman as well as arithmetic coding on the binary encoded

files showed promising results.

Key words: Arabic text, entropy, text file compression

INTRODUCTION

In conventional computer-based text compression
techniques, the characters in the alphabet of the input text
file are transformed into an arbitrary fixed-length binary
code such as the standard 8-bit ASCII code and
then the compression algorithm mampulates the
resulting binary text file on a character-wise basis
(byte-wise basis)™. As it is well known, high
compression ratios can be achieved by working on
higher-order extensions of the original text source by
finding the probabilities of the occurrence of all the
combinations resulting from two or more characters. But
mcreasing the order of extension from the Oth order to the
nth order requires mcreasing the mumber of combmations
to(256)n + 1 which is (256) 2 = 65536 combinations for the
1st order and (256) 3 = 16777216 combinations for 2nd
order compared to 256 combinaticns for the O™ order. This
mean that the higher-order extended sources requires from
the compression algorithms to deal with a very large
number of combinations which in tums requires very large
memories and very long execution times. On the other
hand, if a bit-wise source extension 1s used, the number of
combinations can be increased in smaller jumps as we
increase the order of extensions where the number of
combinations 1s equal to 2n+ 1 for the nth order extended

source, i.e. 2,4,8,16,32, ... etc. Tt is found that a very limited
research has been done on text compression based on a
bit-wise basis'”. Cne method based on bit-wise approach
has been proposed in' where a non-ASCII codewords are
assigned to the characters of the Arabic text so that it
would be more effective for the bit-wise run-length
compression algorithm. In previous work of the authors,
an efficient source encoding technique is proposed which
is based on mapping the non-binary information sources
with a large alphabet onto an equivalent binary source
using weighted fixed-length code assignments™”. The
weighted codes are chosen such that the entropy of the
resulting binary source multiplied by the code length is
made as close as possible to that of the original non-
binary source. It 1s found that a large saving in
complexity, execution time and memory size is achieved
when the commonly-used source encoding algorithms are
applied to the bit-wise nth-order extension of the resulting
binary source. This saving 1s due to the large reduction
in the number of symbols in the alphabet of the new
extended binary source where bit extensions of 1,2, 3, 4 ...
etc can be used in the bit-wise procedure instead of bit
extension of 8, 16, 24 ... in the character-wise procedure.
In this study, we apply the mapping technique on the
original text file and transform it into a non-ASCTI binary
file using a new codeword assignment method™. The

Corresponding Author: Abdel-Rahman M. Jaradat, Department of Electrical and Computer Engineering, University of Sharjah,

P.O. Box 27272 United Arab Emirates

Asian J. Inform. Tech., 5(6): 578-583, 2006

resulting binary file is split into several binary subfiles
each contains one or more bits from each codeword of the
original binary file. The statistical properties of the split
files were studied and it was reported that they reflect the
statistical properties of the original text file which is not
the case when the ASCII code is used as mapper'™. The
mteresting properties of the resulting spht files can be
used to achieve better compression ratios when
conventional compression techniques are applied to these
files individually and on a bit-wise basis rather than on
character-wise basis. The source mapping method and the
bit-wise nth order entropy of an Arabic text file 1s found
using the proposed mapping method and it is compared
with that resulting from using ASCI code mapping. Both
Huffman and Arithmetic coding were mmplemented and
applied to the mapped binary file. The file splitting
technique'” and the bit-wise nth-order entropy of an
Arabic text file is found for the individual split files.
Conclusions are given in section 4.

SOURCE MAPPING

In previous work, the authors successfully applied a
new source mapping technique to compress text files
using conventional compression techniques but working
on the binary file on a bit-wise basis rather than on a
character-wise basis™” and recently in” it was extended
to the compression of multimedia files. The mapping
technique is based on mapping each character in the
original text file into an 8-bit codeword based on the
frequency of occurrence of the original character. The
mapping 18 done by arranging the different characters of
the alphabet of the given text file in a descending order of
their probabilities of occurrence and then the codewords
are given to the different characters such that each
codeword 15 the 8 bits binary representation of the
position of that corresponding character in the list. The
most frequent character is represented by an 8-bit binary
sequence of all zeros (which 1s the binary representation
of decimal zero), the second most frequent character is
represented by all zeros but a one in the LSB of the binary
sequence (which is the binary representation of decimal
one) and so on. A source mapper for the Arabic language
(256 symbols) 1s designed according to the proposed
mapping tule and the probabilities and the assigned
codewords for the different characters are shown in
Table 1 (a sample of the characters 1s shown in the table).
Let the original mformation source S has an alphabet of
M = 2N symbols with probabilities {p0, pl, p2, ..., pM-1}
and let the equivalent binary source B has a probability of
PO for symbol O and a probability of P1 = 1- PO for
symbol 1. The Oth-order entropy of the original text file is

Table 1: The probabilities and the proposed code assignments for a sample
of the Arabic text alphabet

Character Probability Assigned code
Space 0.178 11111111
1 (alef) 0.112 11111110
J (lam) 0.0863 11111101
< va) 0.0578 11111011
;(meem) 0.0414 11110111
5 (noon) 0.0441 11101111
3 (waw) 0.0414 11011111
& (ta) 0.0373 10111111
i(ra) 0.0341 01111111
¢ (ain) 0.0265 11111100

calculated on a character-wise basis using the following
well-known entropy equation™:

255

H, ==Y p,logp, M
1=0

When substituting the probabilities of the different
characters of the Arabic language given in Table Iin (1),
1t 18 found that the entropy of the original text source is
4.74 bits/character. The Oth entropy of the binary file
which results from mapping the original source using the
above proposed mappmng method can be found by
calculating the probabilities of symbol 0 and symbol 1 of
the resulting binary source using the following equation:

P,= 08 P,= 02 @

where the first term gives the probability of symbol
0 1n the LSB and the second term gives its probability in
the next bit position and so on. By substituting the
probabilities of the orignal text symbols in equation 2, the
probabilities of symbol 0 and symbol 1 of the resulting
binary file are found to be 0.85 and 0.15, respectively. The
entropy of the resulting Oth-order binary source is found
by substituting the probabilities of 0 and 1 m the
following binary entropy equation:

H(B) =- P, log,P, — P, log,P,, 3

and it is found to be 0.609 bits/symbol. The entropy for n
bits of the bmary file 15 n times that of its Oth order
entropy, i.e., 0.6n bits/symbol. The entropy of the 8 bits
of the binary source which 1s equivalent to one
character of the original file is found to be 4.89
bits/character compared to 4.47 bits/character calculated
on character-basis for the original text file.

For comparison purposes, the entropy of the binary
source resulting from using the standard ASCTI code
mapper 1s calculated and it 15 found that the probabilities
of symbol 1 and symbol 0 are 0.44 and 0.56, respectively
and the entropy of the Oth-order binary source is 0.99

579

Asian J. Inform. Tech., 5(6): 578-583, 2006

—— ABCll code

8+ Arabic text source file

3 ¥ ¥ ¥ ¥ 1
5 10 15 20 25 30
Extention
Fig. 1: The n* -order entropy of the Arabic text file for
the proposed Code and the ASCI Code for
various bit extensions

8 Huffman coding applied to arabic text using
] code and the 8-filesplit

;

o
L

Awerage code length in bits per character
LA
L

Extention

Fig. 2: Average code length using Huffman coding and
the entropy curve for various bit extensions
when applied to the bmary encoded split files of
Arabic text

bits/symbol and the entropy of the 8 bits which is
equivalent to one character 13 7.9 bits/symbol which 1s
much greater than the entropy of the original source.
This comparison indicates that bit-wise compression
technique cannot achieve any compression when
applied to binary sources using ASCII code or any other
random code.

The nth-order entropy for the bmary source
resulting from the proposed mapping method and that

resulting from the ASCTI code is calculated for various
values of bit extensions where n takes values from 1 to 32
where a computer program 1s written to determine these
entropies by finding the probabilities of occurrence of
the 2n bit combinations in the binary file. Fig. 1 shows the
nth entropy as function of bit extensions for an Arabic
text file using the proposed source mapper and the ASCII
code mapper. As it 18 shown from thus Fig, the two
mappers give the same nth entropy for the 8, 16, 24 and 32
bit extensions and this result is as expected since these
extensions correspond to the Oth, 1st, 2nd and 31d
extensions based on character-wise entropy calculations
which are independent of codeword assignments. For bit
extensions which are not multiples of number &, the
entropy of the ASCII code 13 quite larger than that of the
proposed code specially for lower extension values but
the difference decreases as the bit extension increases.
For bit extensions lower than eight, there is a saving of
approximately two bits in the value of the entropy when
using the proposed mapping method. This saving in
entropy at low bit extensions can help in designing simple
compression techniques with large saving in complexity,
execution time and memory requirements’,

Huftman coding was implemented and tested on
the binary encoded file at various bit extensions. At an
extension of 1 bit, Huffman showed no compression.
Fig. 2 shows the average code length per character
achieved by Huffman compression algorithm when
applied to the binary encoded split files as compared

5

Arithmetic coding applied to arabic text using
code and the 8-filesplit

I
Lh
1

-
1

L)
1

Average code length in bits per character
w
Lh

134
Lh
1

2 T T) T 1
5 10 15 20 25 30
Extention

Fig. 3: Average code length using arithmetic coding

and the entropy curve for various bit extensions
when applied to the binary encoded split files
of Arabic text.

Asian J. Inform. Tech., 5(6): 578-583, 2006

with the minimum entropy curve. At higher bit
extensions, Huffman achieved values comparable to that
of the entropy.

Compression via arithmetic coding can achieve the
entropy limit. Fig. 3 shows the comparison of the results
achieved wvia arithmetic coding as compared to the
entropy when applied to the binary encoded text file. The
average code length achieved by arithmetic coding was
found to be identical to the value of entropy at every bit
extension.

FILE SPLITTING

To achieve more compression by reducing the nth
order entropy of the text file by spliting the mapped
binary file mto several subfiles and the total entropy of
the file is found by determining the entropy of the subfiles
and summing them up. To achieve compression ratios
below that of conventional methods, the compression
algorithm has to be deone on the subfiles rather than on
the whole binary file!. By examining the variation in the
probabilities of the binary symbols in the different bit
position, we find that the probabilities of symbol 1 and
symbol 0 in the least sigmficant bit of the codewords are
almost equal while the difference between these two
probabilities start to increase as we move towards the
most sigmficant bit where it 1s almost one for symbol 0
and almost zero for symbol 1. This means that the entropy
of the T.SB is nearly equal one while it is nearly equal zero
for the MSB and has values between zero and one for the
rest of the bit positions. This interesting fact leads us to
device a techmque which utilizes these wide variations
in the entropy of the different bit positions in the
binary text file.

The techmque 1s based on splitting the binary file
mto two, four or eight subfiles each of them contains
equal parts of the original file based on dividing the bits
of the codewords in specified manner.

The probabilities of symboel 0 and symbol 1 and the
corresponding entropies for the various bit positions are
shown in Table 2. The total Oth -order entropy HT of the
mapped binary file when it is split into 8 subfiles is found
to be 4.841 bits/character. This entropy value 1s
almost equal to the Oth-order entropy of the original
text file calculated on character-wise basis which is
4.782 bits/character. This is a very encouraging result
since we can implement simple compression techmques
working on a bit-wise basis and achieving compression
ratios comparable to that working on character-wise basis
but with much lower symbol combinations. Tt is obvious
from Table 2 that the four least significant bits have the
largest contribution to the overall entropy of the mapped

581

Table 2: The probabilities and the entropies of the different bit positions of
the proposed codewords in an Arabic text file

A, Bit Ps P B. Entropy
7 1.000 0.000 0.0000
3] 0.999 0.001 0.0097
5 0.924 0.076 0.3869
4 0.804 0.195 0.7127
3 0.726 0.273 0.8464
2 0.664 0.336 0.9213
1 0.586 0.414 0.9787
0 0.571 0.429 0.9855
Splitting into files for an arabic text
6] \—\l I~ N file using our code
1 \ \ - == 1ile split
535 \ I / Ny e 2-file split
ot VYA el splic
5. A —— 8-file split
4.5
§
g 47
3.5
34
254
2 1 1 T T 1
5 10 15 20 25 30
Extention

Fig. 4 The n -order entropy of the split Arabic text file
as function of bit extensions using the proposed
Code for the various splitting cases

binary file while the four most significant bits have the
lowest contribution where the contribution from the four
LSB is 3.732 bits/character and from the four MSB is 1.1
bits/character. Since it 18 very difficult to determine the
nth order entropy of the subfiles mathematically, a
computer program 1s written to determine these entropies
by finding the probabilities of the 2n bit combinations in
the each subfile and then substituting the results in the
entropy equation. The effective entropy of the whole split
binary file 1s equal to the sum of the individual entropies
of the subfiles. Fig. 4 shows the overall entropy of the
mapped binary file as function of bit extensions for one,
two, four and eight subfiles where the case of one subfiles
1s that of the un-split mapped binary file. It is obvious
from this Fig. that the three cases of split files give
overall entropy which 1s much less than that of the un-
split case except for bit extensions which are multiple of
number eight which 1s the length of character codeword.
Also it is obvious that as the number of subfiles increases
the entropy curve becomes more smother. For bit
extensions less than eight, the 8 subfile case gives the
lowest entropy which 1s nearly constant and it 13 almost

Asian J. Inform. Tech., 5(6): 578-583, 2006

8 7 8-files spliting for arabic text file

—— ASCll code
=== ee Our code

5 10 15 20 25 30
Extention

Fig. 5: The n" -order entropy of the split Arabic text file
as function of bit extensions using the
proposed Code and the ASCIT code for the &
subfile splitting cases

equal to the Oth order character-wise entropy of the
original text file and this interesting property can be
utilized to device a simple method for determining
the Oth order entropy for
having large number of alphabets. The two-subfile case
has the best entropy properties for values of bit extension
lying between 8 and 16 where its entropy at the 8 and 16
bit extensions is less than that of the corresponding Oth

character-wise sources

and the 1st character-wise entropy of the original text
file. Moreover, the entropy of the two-subfile case at the
12 bit extension is equal to4 bit/character compared
to 4.75 bit/character for the un-split binary file and
compared to 4.74 bit/character for the Oth order character-
wise entropy and compared to 34.42 bit/character for the
1st order character-wise entropy. This means that a good
compression can be achieved at the 12 bit extension of the
two-subfile case where the compression algorithm deals
with 212 = 4096 binary combinations compare with 216 =
65536 binary combinations required for the 16 bit
extension (1st order character-wise extension). The four-
subfile case has the best entropy properties for values of
bit extension greater than 16 where it has the least values
of entropy compared with the other cases. This case has
an entropy of 3 bit/character at the 24 bit extension
compared with 3.76 bit/character for the corresponding
2nd order character-wise extension and an entropy

of 2.3 bit/character at the 32 bit extension compared with
3.05 bit/character for the corresponding 3rd
character-wise extension. The reduction in the entropy of
split file below that of the original text file 1s due to the
fact that when extending the different subfiles by n bats,
the actual extension mn the ongimal text file 13 2n, 4n and &n
bits for the two, four and eight subfiles cases. For
comparison purposes, Fig. 5 shows the nth-order entropy
of the split Arabic text file as function of bit extensions
using the proposed Code and the ASCIT code for the 8
subfile splitting cases which shows that this file splitting
technicque works only with specific codeword assignment
methods similar to that proposed n this study.

order

CONCLUSION

In this study, we implemented source mapping on
Arabic text and demonstrated the achievements m
lowering the entropy of the mapped text file using both
Huffman and Arnthmetic coding techmques. Next file
splitting technique was applied on the mapped binary file.
The nth-order entropy of these subfiles are determined
and it is found that their sum is less than that of the
original text file for the same values of extensions. The
reduction in the entropy of the resulting subfiles can be
exploited to device compression algorithms with better
compression rtatios. This can be done by applying the
conventional compression techniques to the subfiles
individually and on a bit-wise basis rather than on
character-wise basis. By applying the techmque to the
same text file but with ASCI mapping, it 1s found that this
file splitting techmique works only with specific codeword
assignment methods similar to that proposed in'™.

REFERENCES

1. Bell, TC., J.G. Cleary and T.H. Witten, 1990. Text
Compression, Prentice-Hall, Englewood cliffs NT.

2. Salomon, D., 2000. Data Compression: The Complete
Reference, Springer-Verlag, New York.

3. Lynch MF., 1973, Compression of bibliographic files
using an adaptation of run-length codmg,
Information Storage and Retrieval, 9, pp: 207-214.

4. Elabdalla, A M. and M.I. Irshid, 2001. An efficient
bitwise Huffman coding techmique based on source
mapping Computers and Electrical Engineering, 27,
pp: 265-272.

5. Jaradat, AM. and M.I. Trshid, 2001. A simple
binary run-length compression technique for non-
binary sources based on source mapping Active
and Passive Electronic Components, pp: 211-221.

582

Asian J. Inform. Tech., 5(6): 578-583, 2006

Taradat, AM., MI Irshid and T.T. Nassar, 2006. A 8 Cover, TM. and I.A. Thomas, 1991. Elements of

File Splitting Technique for Reducing the entropy of Information Theory, New York: John Wiley and
Text Files, accepted for publication, Tntl. T. Tnform. Sons.
Tech.

Sharieh, A.A., 2004. Enhancement of Huffiman
Coding for the Compression of Multimedia Files, Intl.
I. Inform. Tech., pp: 211-213.

583

