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A Scheme of Combined Quad/Triangle Subdivision Surface
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Abstract: Subdivision has become a staple of the geometric modeling community allowing coarse, polygonal

shapes to represent huighly refined, smooth shapes with guaranteed contimuty properties. Unlike regular surface
spines, such as NURBS, subdivision surface can handle shapes of arbitrary topology in a umfied framework
which is important in designing aesthetically pleasing shapes. This study presents a scheme of combined

quad/triangle subdivision surface that has many important features resulting it’s superiority over some other
existing methods like individual triangle or individual quadrilateral subdivision schemes. In general, the scheme
produces mcer surface for combined quad/triangle meshes.
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INTRODUCTION

Usually when an artist using a 3D modeling package
wants to create a perfectly smooth surface, they must use
a NURBS (non-rational umform b-spline surface) patch.
This 1s a grid of control points joined by smooth curves
in three dimensions that approximates a smooth surface.
While this works, the main problem with these patches is
that 1if two are to be placed next to each other, the number
of vertices along their width and their height has to be
equal on both patches; otherwise discontinuities may
become visible in the surface of the final mesh. This gives
the artist another thing to worry about during creation
time. It also himits the artist to creating something that 1s
composed entirely of quadrilaterals, as opposed to using
a strictly triangular based mesh.

Subdivision surfaces can be designed so that they
will act on any arbitrary mesh. This way, an artist does not
have to worry about what size the patches on their mesh
are. Tt also allows the artist to no longer worry about how
the mesh 1s constructed: 1e. whether it 13 composed
entirely of quadrlaterals, triangles, or any n-sided
polygon. There are schemes that will break arbitrary
polygons into triangles, quadrilaterals, or into any other
arbitrary polygon.

Subdivision surfaces were mtroduced m 1978 by
both Catmull-Clark™ and Doo-Sabin'® methods. They both
generalized tensor product B-Splines of bi-degree three
and two respectively to arbitrary topologies by extending
the refinement rules to uregular parts of the control mesh.
Later in 1987 Loop generalized triangular Box splines of
total degree four to arbitrary triangular meshes!™.

The visual quality of a subdivision surface depends
m a cruclal way on the mitial or base mesh of control
vertices. For general shapes designers often want to

model certain region with triangle patches and others with
quad patches.

Both Catmull-Clark and Loop surfaces require that all
patches be quadrilateral or triangular, respectively.
However Catmull-Clark surfaces behave very poorly on
triangle-only base meshes. The resulting surface exhibits
annoying undulating artifacts. Similarly Loop schemes do
not perform well on quad-only meshes. Tt is often
desirable to have surfaces that have a combined
quad/triangle patch structure.

Designers often want the added flexibility of having
both quads and triangles in there model. Tt is also well
known that triangle meshes generate poor limit surface
when using a quad scheme, while quad-only meshes
behave poorly with triangular schemes. This study uses
the triangular and quadrilateral subdivision scheme. The
scheme is a generalization of the well known Catmull-Clark
and Loop subdivision algorithms.

Subdivision scheme for mixed triangle/quad
meshes are curvature continuity
everywhere except for isolated, extraordinary points
where this 1s first curvature continuity. The rules
used are the same as Stam/Loops scheme except
that an unzippering pass prior to subdivision is
performed. This smgle modification improves the
smoothness along the ordinary triangle/quad boundary
from first continuity to second continuity and creates
a scheme capable of
With a proof base on Lavin/Lavins” joint spectral
radius calculation to show our scheme 1s indeed
second continuity along the triangle/quad boundary.
However the that produce with
bounded curvature at the regular quad/ triangle
boundary are provided and the optimal masks that
minimize the curvature divergence elsewhere are also
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given. The visual quality of our surface with several
examples is demonstrated.

SURFACE SUBDIVISIONS

A surface is generally represented as a list of vertices
{x, v, z} and a list of faces where every face 1s a list of
indices into the vertex list. This kind of indexed data
structure is common in graphics as this facilitates the
rendering of polygons and explicitly separates the
topology from the geometric positions of the vertices.
Subdivision surfaces are polygon mesh surfaces
generated from a base mesh through an iterative process
that smoothes the mesh while increasing its density.
Complex smooth surfaces can be derived in a reasonably
predictable way from relatively simple meshes.

Quad subdivision: For quad subdivision, we start with
quadrilateral subdivision because this method 1s the most
similar to the curve method. For the case of curve
subdivision, two steps namely linear subdivision and
averaging are used.

In order to perform the lmmear subdivision on a
polygonal face, we use Catmull-Clark splitting on each of
the face m the mesh. As for the first step we msert new
vertices at the midpoints of each edge of the face and one
new vertex at the centroid of the face. Then, with the view
to form m quads from the m-sided polygon, we connect
the required vertices as shown in Fig. 1.

After the linear subdivision is performed, one round
of averaging on the mesh is to be performed. This
operation on quadrilateral meshes is analogous to the
averaging operation for curves. For each vertex, we place
that vertex at the average of the centroids of all quads
containing that vertex. Fig. 2(a) shows the centroid
calculation for each quad and Fig. 2(b) shows the
composite rule formed by averaging the centroids
together.

We can implement this averaging as single pass over
the list of faces. Before the pass, we initialize each entry
of a Table of new vertex positions to have value {0, 0, 0}.
Next, for each quad g, we compute the centroid of q and
add this centroid’s position to the four entries in this
Table indexed by the vertices of q.

After processing all of the faces in the mesh, we
divide each entry m the Table by the valence of the vertex
assoclated with the entry. (This valence mformation can
also be computed during the centroid calculations.) Note
that dividing by the valence forces the coefficients of the
associated averaging rule (shown in Fig. 2 (b)) to sum to
one and makes the resulting subdivision scheme affinely
invariant.

-—

Fig. 1: Linear subdivision of polygonal faces for quad

subdivision schemes. After one round, all faces
are quads
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Fig. 2(a): Computation of centrmds with
denothing the position of the centroid

squares

Fig. 2(b): Averaging the centroids together generates the
composite averaging rule at an arbitrary valence
vertex

Figure 3 (left) illustrates an example surface produced by
subdividing a cube using this subdivision scheme. The
surfaces produced by this method are C° everywhere
except at extraordinary vertices where the surface is only
C'. Though the surface is smooth everywhere, the
shading of the surface varies rapidly near the valence
three vertices of the cube. These discontinuities are due
to the fact that the surface normals do not vary smoothly
in these regions. (Technically, the surface is strictly C")

Triangle subdivision: Many surfaces encountered in real
world are not composed of quads. Instead, the huge
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of
averaging(left). Catmull-clark subdivision (right)

Fig. 3: Subdivision a cube. Uncorrected

number of surfaces is composed of triangles as the base
modeling primitive. The quadrilateral subdivision is not at
all fit for these surfaces. So we should have an alternative
and that is the triangular subdivision scheme. Loop
subdivision is considered as a very popular subdivision
scheme for triangular meshes. Loop’s method can alzso be
represented in terms of linear subdivizion and averaging
scheme similar to that for quad meshes. Unlike the
quadrilateral subdivision method, the {triangular
subdivision scheme only processes surfacezs composed
enfirely of triangles. If is noteworthy that this requirement
is very simple to fulfill as all faces in the mesh can be
triangulated.

To perform linear subdiviszion on triangles, we insert
new vertices on the edge of each polygon using the hash
Table technique. Each friangle is then split into four
triangles as shown in Fig. 4. Notice that all new vertices
will have valence six in the mesh. Since triangular
subdivizion produces surfaces with valence six vertices
almost everywhere, valence six vertices are ordinary while
other valence vertices are extraordinary vertices.

Averaging for friangular surfaces iz similar to
quadrilateral surfaces. For each vertex in the mesh, we
place the vertex at the average of the centroids of all
polygons containing that vertex. However, we use a
weighted centroid for triangular surfaces shown in Fig. 5.
The centroid takes 1/4 of the vertex being repositioned
plus 3/8 of the two neighboring vertices. Notice that while
the centroid calculation for quads iz uniform (1/4 of all
vertices), the centroid calculation for triangles iz not
uniform and depends upon which vertex the ceniroid is
being accumulated into.

COMBINED QUAD/TRIANGLE

SUBDIVISION
The developed method subdivides surfaces
composed of nearly all quadrilateral polygons or

completely of friangles. However, thiz separafion of
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Fig. 4: Linear subdivision of triangles for triangular
subdivision schemes
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Fig. 5: Centroid calculation for triangles (lefi).

Repositioning the vertex at the average of these
centroids generates the friangle averaging rle

{right)

subdivizion schemes between the two mostly commonly
used modeling primitives is unnecessary. Some surfaces,
such as cylinders/tori, are naturally parameterized by
quads while other surfaces are more conveniently
parameterized by triangles. To remedy this problem, Stam
and Loop®™ presented a subdivision scheme that unified
these two methods (quads and friangles) into one
subdivizion scheme that produces Catmull-Clark
subdivicion for all quadrilateral surfaces, Loop
subdivision for all triangular surfaces and generates
smooth surfaces when both quads and friangles are
present in the surface. Here a variant of Stam and Loop’s
method except recast the scheme in terms of a generalized
averaging pass has been applied. The mixed quad/triangle
subdivision scheme produces Catmull-Clark subdivision
on all quadrilateral surfaces, a variant of Loop subdivision
on all triangular surfaces and smooth surfaces when the
model containg both quads and friangles.

Once again the scheme has been formul ated as linear
subdivizion and averaging. During linear subdivizion, we
gplit all quadrilateralzs as done for Catmull-Clark
subdivizion (Fig. 1) and all friangles as in Loop
subdivision (Fig. 4).

Averaging precedes as before with centroids for
quads computed as the average of the four vertices and
for triangles as in Fig. 5 (left). However, each centroid is
weighted by the angular confribution of that polygon in
the ordinary case. For instance, the ordinary case for quad
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Fig. 6: Quad/Triangle subdivision is performed using the
centroids from quad and triangle subdivizion
weighted by their angular contribution. The
resulting subdivision rule along a ordinary
quad/triangl e boundary

S

Fig. 7: Subdivision of a combined quad/triangle surface

subdivizion iz four quads containing a vertex so the
weight is 2w/4=m/2. Likewise, for triangular subdivizion
there are six triangles containing a vertex in the ordinary
casze o0 the weight for triangles iz 2 w/6=m/3. Finally, we
normalize by the sum of the weightz of the polygons
containing each vertex.

In the case of vertices contained by only quads or
only triangles, thizs method produces the same resulis as
the uncorrected quad and friangle averaging methods
respectively. Notice that at the boundary where a triangle
and a quad meet, linear subdivision will generate the
polygonal structure shown in Figure 6 (right) all
along the edge.

In Stam and Loop’s study on quadiriangle
subdivision, the authors define the polygonal
configuration in Figure 6 to be an ordinary boundary
between the two surfaces since that structure iz replicated
along the entire interface between quads and triangles
(Fig. 7). The averaging rules (applied after linear
subdivizion) chozen by Stam and Loop are alzo shown on
the right of Fig. 6.

They analyzed the smoothness of the surface at this
edge and showed that the surface is C' across the edge.
From this ordinary boundary, they generalized their
subdivigion scheme to vertices containing an arbitrary
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number of quads and triangles. The subdivision scheme
that is presented here for quads and triangles differs in
the rules used at extraordinary vertices; however, the
rules used here reproduce the subdivision rules of Stam
and Loop’s method along the ordinary boundary and,
therefore, share the same smoothness results along
that edge.

To generate everywhere, the
correction term as shown below is presented.

winyn,) = {

where n/n, is the number of quads/iriangles containing
the vertex. This correction generates Catmull-Clark
surfaces with all quadrilateral models and a variant of
Loop surfaces with models composed completely of
triangles. However, the combined correction term

12/(3n+2n,) is not smooth at vertices contained by only
three friangles. Hence, we use a piecewise function for
w(n,n) that uses the correction value for Loop
subdivision at this valence to generate a smooth surface.
Stam and Loop also provided a correction term Table in
their study that was generated by an optimization method
in an attempt to produce surfaces of bounded curvature
at low wvalence vertices. Interestingly, the polynomial
correction term used here is a surprisingly good
approximation of that correction Table even though the
rules differ slightly at extraordinary vertices. Instead of
performing own optimization, the provided correction term
is used for simplicity. Fig. 7 illustrates an example surface

smooth surfaces

1.5 n=0,n=3
12/(3n+2n) otherwise

composed of quads and triangles subdivided several
times using combined quad/triangle method.

CONCLUSION

The surface subdivision scheme that allows both
quadrilaterals and triangles has been presented in this
study. This is in conirast to other subdivision schemes
which generate meshes which are either all triangles or all
quadrilaterals. Artists often want to keep both triangles
and quadrilaterals in their models. Also it is well known
that triangles in a base mesh create artifacts in the refined
meshes when a quad-based subdivision scheme is used.
Both triangles and quadrilaterals are simultaneously
incorporated in the subdivision scheme because the
gscheme is bazed on a decomposition of the rules into a
linear step followed by smoothing.
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