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Enhanced Configuration of OBB Orientation Based on Heuristic Approach
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Abstract: Oriented Bounding Box (OBB) 1s a rectangular volume generated based on arbitrary orientation. The
formation of this orientation is frequently obtained from the calculation of the covariance matrix. The previous
work shown that OBB is one of the preferred bounding volumes due to its capability on enhancing the
performance of object intersection algorithm especially in the field of virtual reality, animation, simulation,
games and robotic. In this paper, we describe a variant approach to compute a tight OBB volume using
heuristic. Therefore, to adjust the covariance matrix value, our method manipulates mean squared heuristically.
The generated covariance matrix value is then handed over to eigenvector function as an input to derive a new
OBB orientation. Our heuristic strategy has been implemented and we compare its performance in terms of
volume ratio and collision contact between objects composed of hundreds polygons at interactive rates. From
the conducted test, our conjecture on a slight adjustment to OBB orientation is probably potential to construct

an optimal OBB volume compared to previous approach.
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INTRODUCTION

The purpose of this work was to develop an optimal
Bounding Volume approach for virtual environment
application (MELAKA: A lustorical walkthrough
application) based on 3D objects generated from
triangulated surface points. Bounding Volumes (BV)
contribute much benefit to improve the performance of the
mtersection detection m large scaled environment.
Although, current hardware to some extent offers faster
intersection computation for complex data, the quest for
producing a real time and realistic intersection detection
m computer graphics applications has never come to
an end.

OBB frequently used in computer graphics
application as a mechanism to detect collision between
objects. Former research about OBB typify that sumpler
shape, fast intersection testing and good tight-fitting
volume type are the promising criterions that made OBB
as effective BV to check collision rather then the bounded
objects™.

Constructing the smallest OBB from a set of
triangulated surface points is a hard problem. Moreover,
poorly aligned principal axes of OBB will give quite bad
OBB fitting. As mentioned in™”, if our bounded object is
vertices of a cube, the OBB orientation was quit
unpleasant. This could be an isolated case due to the
equal statistical spread of vertices m all directions. This
condition suggests some heuristic to be applied such as

using weighted spread of vertices of the triangles on
convex hull facets™?. This is due to the fact that convex
hull is the smallest convex set containing all the points.
Thus, the return 13 a good fit OBB, but O(n log #) time are
required just to compute the convex hull.

The usage of principal component analysis to
compute principal axes of OBB commonly correlates to
maximal distribution of vertices, line segments or triangles.
If the input data has outliers even in small quantity, the
direction of maximal spread will change and enlarge the
OBB. Furthermore, the area of empty corners also
increases. As reported in®, uniform distribution of
vertices work convineing for simple models as well as the
distribution of triangle facet where the tessellation not
necessarily uniform. Both kind of distribution compute
covariance matrix in O(n) time. Therefore, we conduct
some experiments to probe the orientation of OBB on
several objects formed by hundred to thousand
triangulated surface points (Fig. 1). The result seems
unpleasant since the generated orlentation sometimes
formed unfit OBB. As shown m Fig. 1, the former
covariance approach creates unfit OBB for triangulated
surface model such as Santa and Horse. Once again, we
do check the possibilities to enhance the OBB volume by
making minor alteration to the generation of OBB principal
axes formed by hundred triangulated surface points.
Thus, we apply several modifications heuristically and
use the result as an input to the eigenvector function. The
results seem effective and we able to produce fit OBB
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Fig. 1: Several objects enclosed by OBB

volume for the mentioned models. On the other hand, it
is common to use heuristic that utilizes bounding box in
the field of animation, rendering and modeling®.

PREVIOUS WORK

Most of the common approach in Collision Detection
between n-body system is Bounding Volumes (BV). By
surrounding complex objects with BV, a number of
expengive primitive collision checking can be reduced. It
is the reason why certain researcher placing BV as a
coarze testing before implementing more accurate
collision checking™¥. The intersection between pairs of
object simply can be confirmed by checking their
intersection of BV. Consequently, if BV intersects the
bounded object has a potential to collide. Otherwise, the
bounded object will not collide at all. Beside its greater
function in collision detection, BV also play major role in
other field in computer graphics. Ray Tracing, Viewing
Frustum culling and Level of Detfail are the range of
examples that manipulates and utilizes BV for the sake of
performance development™®, On the other hand, first
exploration of BV was in the field of Ray Tracing!'.
Probably, Moore and Wilhems!™ extend the usage of BV
in Collision Detection.

Finding tight-fitting bounding box or OBB in
particular iz not straightforward. The previous solufions
for the optimal OBB orientation basically depend on
statistical spread of the polygons. In two-dimensional
space, rotating calipers algorithm seems promising to
calculate minimum area of rectangular™¥, The operation
of the algorithm is O(x) time. In order to compute tight-
fitting rectangular, four lines are constructed. These lines
are derived from four extreme points of the polygon. After
that, they will be rotated until one of them coincides with
an edge of the polygon. The area of new rectangle is then
compared to the previous rectangle area to determine the
smallest rectangle.

In three-dimensional space, the best posszible known
algorithm for finding an optimal OBB is by ORourke!"™.,
Unfortunately, this O(n”) algorithm (where n is the number

of vertices in the model) is not easy to implement and
inappropriate for real-time application™", Instead of this
algorithm, a heuristic solution is cited in™. Once the OBB
orientation not optimal or in other words loose-fitting, the
solution is to realign the OBB to only one principal axes
which is given the smallest volume. The other two axes
are constructed from the projection of all vertices onto the
perpendicular plane to the selected axizs. Generally, there
are three ways to elect the mentioned axes. First, OBB is
constructed based on all principal axes. This is similar to
the original algorithm of OBB. Second technique uses the
largest eigenvalue as the principal axes. The other two
axes are then created from the projection of all verfices in
the model. The last approach manipulates the shortest
principal component to be the main orientation. The
remaining two axes are built in the same way of Max-
principal-Component Box. The conducted experiment
shows that, Min-Principal -Component Box performs better
compared to two previous strategies. Meanwhile, Max-
principal -Component B ox expands the volume of OBB due
to the longest possible direction.

Barequet'™ offers two other approximate strategies
on the subject of computing tight-fitting Box. As stated
in®® the first algorithm is not easy to implement. It needs
& (ntl/c*) time in order to compute approximate
minimum-volume bounding box of # pointsz in space. The
second algorithm presented by Barequet' iz a coarse
approximation, lezs efficient but easy to implement
compared to the first algorithm. The running time of the
alternative algorithm is O(NlogN+N/e%). At first, a
tight-fitting Axis-aligned Bounding Box (AABB) is
computed. Afterward, a farthest distant pair of points on
two parallel sides of AABB is then picked to be the main
OBB orientation. Likewise, the second axis iz then
computed from the minimum sides of the AABB. Finally,
the last axis is assembled from cross product of the first
two axes. From the given steps, the algorithm seems to be
easier to implement. However, the usage of exhaustive
grid based search research needs prior calculation quite
a few properties such asg convex hull and initial
approximation of minimum bounding box™. Moreover,
according to Ericson®™, using original algorithm cited in®
will produce near optimal OBB compared to given
algorithm.

Another way of algorithm to handle minimum
tight-fitting OBB is presented in"®. The algorithm
manipulates Powell’s quadratic convergent optimization
method. The convergence rate to produce minimum OBB
depends on initial conjecture for axis and angle of each
direction®. Moreover, the authors state that the method
iz zimple and does not need special prior calculation
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Fig. 2: Comparison of bounding box volume for 14 objects based on previous and enhanced OBB orientation
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Fig. 3: A number of detected collisions between two complex objects enclosed using previous and enhance OBB

such convex hull or initial approximation of bounding
box™. Brute-force approach is probably an extra algorithm
to compute OBB fitting™. By using certain interval
resolution, the rotation of space orientation 1s sampled
and the best sample should be saved. Then, the OBB
orientations can be improved by sampling them through
resolution until changes can be

submterval no

discovered.

CONSTRUCTION OF HEURISTIC OBB
ORIENTATION

In this section, we describe the process of finding
OBB orientation derived from heuristic approach. The
main difference of our method from the methods so far is

568

the generation of covariance matrix before computing the
eigenvectors. To start with, all polygons composed from
more then three edges should be triangulated. Using
Principal Component Analysis method (PCA), prior
calculation 1s required n order to build OBB orientation.
Imtially, we calculate mean and covariance matrix of the
triangulated surface pomts models. Refer to the previous
study conducted by Gottschalk et al!"! and Gottschalk!™,
there are three types of elements used to compute
covariance matrix namely as vertex points, triangle facets
and convex hull facets. In our case, we focus to 3D
models formed by triangulated surface points. Now,
denote %, ¥ and Z correspond to the points of
the surfaces, p, C; and n represent mean, 3 by 3
covariance matrix and number of triangles, respectively.
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The following steps explain the above process (Eq. 1 and
2) and the procedure to construct the principal axes of
OBB and its bounding box.

1 =
Letu=—=>7>3p, tq; +¢ 1y
3n i
1 n
Let C;=— % e P, Tqq tL I, ] @
3n i=0

*» Replace each p, q and r with p-p, g-p and r-p,
respectively.

»  Compute the eigenvectors of symmetric matrix C; and
normalize the value before using them as a
principal axes.

* The eigenvectors basically will be likely to align the
principal axes with the geomefry of object. For
example we have a set of triangulated surfaces of an
ellipze; an eigenvector of the covariance matrix will
be aligned with the long axis of the ellipse (Fig. 1).

* In order to construct bounding box, project all
vertices onto the principal axes and find the extreme
vertices along each axis.

As mentionedin the previous gection, the covariance
matrixes really depend on the distribution of surface
points and confribute to the nearly approximate approach.
The sensitivity to the presence of the outliers sometimes
retumns very unpleasant OBB direction. The only
guarantee that mentioned in"# is that the construction of
OBB orientation should be within the convex hull of the
point clouds. Therefore based on heuristic conjecture, we
enhance the construction procedure of the OBB
orientation variant from covariance matrix proposedin®®]

It is known that covariance is a measure of how much
the deviations of two variables linked. It can take any
values range from negative infinity to positive infinity.
Given two such random wariables X, and X, where both
of the variables are measured from the specific reference
points namely as mean p, and p,. Thus if (3-1,) and
(X,-py)are strongly (positively)matched, they indicate that
both X,and X, are increase or decreaze concurrently
together. If the value is negative, one of the variable
increase and the other decrease. Once the value ig zero, it
indicates that both two variables are independent of each
other. Meanwhile, a larger positivevalue of covariance is
a good detector of a strong link between two variables.
On the other hand, a smaller positive value iz a sign that
one of the variables has a fair chance to be closed
to its mean when the other variable takes infinity values
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(positive or negative). Tt is obvious here that the above
properties deduce that covariance 1s quite sensitive to the
scales of the variables under investigation.

Heuristic approach: Our strategy basically mampulates
mean squared instead of standard deviation to form a
sinilar concept as Correlation Coefficient (Eq. 3). This is
to ensure that a larger positive or negative value of
covariance can be produced. Our conducted experiment
shows that the eigenvector function tends to produce
justify orientation of OBB if we use larger covariance
value as an mput. Total operation required to alter the
covariance matrix is O(n) time. Meanwhile it is known that
elgenvector 1s a non-null vector wherein if we scale it by
some amount, the direction of the vector is unchanged
rather than making it longer. In this case, it 1s pointless to
scale the eigenvector values in order to obtain justify
orientation. The details about eigenvector are beyond the
scope of this study. Therefore, mstead of using original
covariance matrix explained in Eq. 2, we replace each of
the covariance matrix elements with the version of
covariance quoted in Eq. 3. The rest follows easily as
mentioned in the given steps (Step 1-5).

S (%)% w)

Cov(X,.X,)=| = Wi @
1My

IMPLEMENTATION AND RESULT

To evaluate our approach, all experiments given in
this section have been conducted on a PC with 2.8 GHz
Pentium IV 1 GB mam memory. In general, we performed
two types of experiments. The first experiment measures
bounding box volume derived from OBB orientation
both previous and enhanced approach. The following
experiment quantifies number of intersection recorded on
a pair of objects witlhun 5000 frames.

Bounding box volume: Prior to quantifying the bounding
box size, Table 1 shows properties of each bounding box.
The table also illustrates number of vertices and triangles
for each bounded object. In Fig. 2, we calculate bounding
box size for 14 objects namely as Dragon, Santa, Bunny,
Diamond, Cow, Horse, kDop, Ellipse, Sphere, Dinosaur,
Venus, Hand, Skull and Teapot (Appendix 1). The given
graph (Fig. 2) shows that the enhanced OBB derived from
slight modification to the OBB orientation tend to produce
a justify volume compared to previous approach. This

especially true to irregular objects that have gradual
outliers such as Santa, Dragon, Horse, Cow and Hand.
The volume ratio between two different approaches
recorded as 11.35, 1510, 33.59, 10.16 and 9.00 %,
respectively. For nearly symmetry object such as kDop,
our approach performs superior where the volume ratio is
45.22% smaller compared to previous approach. Likewise,
the situation also happened for Diamond and Sphere,
though the volume ratio 1s fairly small

Intersection test between two objects: In order to
quantify the needs of OBB to be tight-fitting, we have
conducted a head-to-head collision testing between two
rotating objects. Both objects have been enclosed by the
OBB volume. Figure 3 demonstrated that our approach
performs well for almost every head-to-head intersection
testing. For enhanced approach, about 14 experiments out
of 16 show number of detected collisions recorded not as
much of the previous OBB orientation. This 1s about
3-30% collisions. Moreover, the number of detected
collision for irregular objects bounded by enhanced OBB
work as good as the symmetry objects. In our experiment,
we sometimes tried to detect collision between the
combination of irregular and symmetrical objects and the
result is fairly well. Therefore, we probably can ascertain
that the tightness OBB be likely to contribute more
accurate intersection testing. The tightness OBB almost
benefit to test nearly collide situation due to small nmumber
of empty comers. On the other hand, the worst case
scenario for our approach is for the combination Dinosaur
vs Dimmosaur and Dmosaur vs Box. This 1s happened simce
our enhanced OBB orientation produced OBB volume
larger then the previous approach.

CONCLUSION

In this study we have presented a heuristic method
to alter the orientation of OBB principal axes by using
heuristic. Our approach is made possible by slight
modification to the scaled version of covariance. We have
implemented our enhancement OBB orientation and the
overall results seem fairly good The results show the
volume ratio 1s about 9-45% smaller compared to the
previous OBB approach particularly for irregular type
objects. On the other hand, the number of detected
collision for head-to-head collision is about 3-30% fewer
then the original OBB due to smaller volume of
OBB.Currently, we are mvestigating the potential of our
version OBB to be embedded to our historical
walkthrough application. Moreover, we are also probing
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Tablel: The properties of objects and bounding box for enhanced and original OBB

Height Width Length

Previous Enhanced Previous Enhanced Previous Enhanced
Objects Vertices Triangles ORB OBRB OBBR OBB ORB OBRB
Diamond 320 588 0.222343 0.222336 0.356889 0.340775 1.051348 1.024323
Bunny 453 948 0.969898 1.005375 0.688816 0.798426 1.235673 1.050434
Cow 2903 5804 0.696178 0.628157 0.32861 0.325818 1.046015 1.041451
Dinosaurs 14050 28094 0.582603 0.967378 0.32861 0.408615 1.171376 0.853384
Dragon 1257 2730 0.792891 0.690179 0.43370 0.419751 0.998569 1.006241
Ellipse 482 992 0.448604 0.548176 0.548176 0.548176 1.000063 0.999908
Hand 1055 2130 0.294874 0.266625 0.691888 0.701635 1.054081 1.046016
Horse 48485 96966 0.791957 0.827638 0.362445 0.453129 1.99708 1.0151
Kdop 1639 2550 1.293402 1.001497 1.206684 1.00000 1.173228 1.001497
Santa 18946 37888 0.460625 0.485559 1.179239 0.999999 1.187043 1.177098
Sphere 467 992 0.998747 0.997976 0.998359 0.998644 1.0000 1.00000
Skull 30224 60339 0.819837 0.844627 0.69104 0.69104 1.059414 1.093672
Teapot 1177 2256 0.501743 0.505622 0.62212 0.62212 1.005361 1.005127
Venus 711 1418 0.384088 0.37479 0.486836 0.490418 1.001789 0.994132

the potential of our approach to be merged with another
bounding volume based on discrete orientation polytopes
concept.
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