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Abstract: Nonlinear filters are currently used in many applications where the performance of linear filters is
unacceptable. The quadratic Volterra filters are introduced as simplest models for the analysis and the
identification of nonlinear systems. In this paper, a comparative study of the performances of the LMS and RL.S
algorithms in the identification of quadratic Volterra systems is presented. A simulation based on a test model
1s used to show the powerful feature of the RLS algorithm. Moreover, the convergence speed of each algorithm
1s evaluated according to the variation of the mean-square error criterion on linear and quadratic kernels of the
Volterra filters. Also, the effect of noise on the detection feature of the LMS and RLS algorithms are considered

in this study.
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INTRODUCTION

The linear modeling is widely used in signal
processing applications because of its implementation
simplicity!™3. However, the are many situations in which
linear filters perform poorly. For this reason, nonlinear
filtering has been applied by many researchers to analyze
and study various phenomena such as: EMG signal
processing,  characterization  of  semi-conductor
components, etc™. From the various categories of
nonlinear filters, we find the mtensive use of Volterra
filters to handle the small non linearities in the scientific
literature™. Quadratic Volterra filters are the simplest
polynomial filters which correspond to the first nonlinear
term in the expansion. These filters, requiring a limited
amount of knowledge of high-order statistics, lead to
realizations of reasonable complexity. Two nportant
features make quadratic Volterra filters very attractive.
The first one 1s that the output of a Volterra filter depends
linearly on the coefficients of the filter. This property
permits an easy extension of linear adaptive algorithms to
Volterra filters. The second characteristic results from
representing the non linearity by means of
multidimensional operators working on products of input
samples. This last feature 13 largely used to describe the
filter behavior in the frequency domain by means of a type
of multidimensional convolution™. Thus the discrete
Volterra filter can be considered as a mathematical
description that extends the well-known linear approach

for the analysis and synthesis of nonlinear systems™.

In this study, a comparative study of the TMS and
RLS adaptive algorithms applied to quadratic Volterra
filters is presented. These algorithms are used to estimate
the linear and quadratic Volterra kernels. Moreover, an
nvestigation of the effect of additive noise on the
usefulness limits of the LMS and RLS algorithms 1s
considered.

The volterra series: In This study, the general Volterra
theory 1s presented. In the Volterra series representation
of a nonlinear system, the output y(n) of a discrete causal
time-mvariant nonlinear system 1s expressed as a function
of the input sequence x(n).

y()=t,+ 3 b (m )x(n-m, )+

my =0

i h, (ml,mzx)(n—mlx)(n —m2)+ et

where h,(m,,...,m,) is the Volterra kernel of the p™ order.
In'-***, these kernels are supposed to be symmetric
{(ie., hm,,...,m,) does not change for the p! possible

permutations of m,...., m, indices).
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In the rest of this work, the 2nd order truncated
Volterra series 1s used.
ADAPTIVE QUADRATIC
VOLTERRA FILTERS

Figure 1 represents a quadratic Volterra model where
the input x(n) and the output y(n) are related via a second
order truncated Volterra series. E(n) is the measured error
and y(n) the estimated output.

In this study, the TMS and RLS adaptation
algorithms are used for the determination of h,(m,) and
h,(m,,m,) kernels. These two algorithms are presented in
the following section.

)= 3 b fmox)fn-m)
+3 S h(mem)(n-m)x(n-m) 9

my =0mgy=m

A
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The LMS algorithm: The LMS algorithm assumes input
vectors uncorrelated over time with stationary input and
output signals. This algormthm adapts the lmear and
quadratic Volterra kemnels using the steepest descent
algorithm which minimizes e’(n) at each time n. The
adaptation equations for the quadratic Volterra filter are
given by:

i de’(n)

hl(ml,n+1):h1(mpn) T oh, (ml,n) 3

=h, (ml,n)+ u, e(n) X(H*ml)

for linear kernels h,(m,) and

b o)

hz(ml,mz,nJrl)—hz(ml,mz,n)7m (4)
2 1= 22

=h, (ml,mz,n) + uze(n)x(n —m, )X(n 7m2)

for quadratic kernels h,(m,,m,).

pul et p2 are positive constants that control the
convergence speed and filter stability. It 13 shown in the
reference’ that LMS algorithm converges quadratically if
the constants p, and p, satisfy the condition

2
O< b, <—— )]
My, Ly %

T

with A, the largest eigenvalue of the autocorrelation
matrix of the input x(n),
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Fig. 1: Quadratic volterra model”
or the condition
2

Y

k=0

0<“‘1:“2< (6)

with A, the eigenvalues of the autocorrelation matrix R,

The choice of pul and u2 given by the expressions of
Eq. 7%, These values are adopted i our simulation part,
with 0=, «,<2.

051 052
u, = et W, =——"—r 0
R R

The RLS algorithm: The direct evaluation of the RIS
solution for both linear and quadratic coefficients of the
adaptive Volterra filter by minimizing the cost function:

0y =¥ M [ y(k)-H{n)X(K) T ®

k=0

at each time n, requires O(N°) multiplications per
iteration™”, by using the matrix inversion lemma given by
Schur, this computation complexity can be reduced to
O(N"®! multiplications per iteration which is still very
large compared to the quantity ON®M of the LMS
solution.

The RLS solution using Schur algorithm!” is

given by:

C{n)=2"C"'{n-1)-A"K(n)X"(n)C"'(n-1)

with & a weighting factor which is a positive constant less
than ( often very near ) unity.
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A simulation of the LMS and RLS algorithms is
presented m the following section. This smmulation
permits to compare the performances of this two
algorithms in the representation of the nonlinear systems
with the quadratic Volterra model.

RESULTS AND DISCUSSION

In this study, we present a comparative study of the
performances of both LMS and RLS algorithms applied to
the 1dentification of quadratic Volterra systems.

In order to compare the performances of LMS and
RLS algorithms, we use a quadratic Volterra model. this
model, corrupted by additive noise, 18 defined with a
second order truncated Volterra series of the linear
coefficients:

5(¢11):1219-1222, 2006

h

21

(2)]=[065,-0.35]

(1)
and quadratic coefficients:
H, = [, (L1).h, (1.2).h,(2.2)]=[05,-05,0.25]

The simulation conditions are: a gaussian input, an
output of a unity variance and input signal-to-noise ratio
equal to 30dB. The variance of the gaussian additive
noise is fixed to 2.14*10".

Figure 2 shows the learning curves of the Volterra
coefficients estimated by LMS and RLS algorithms.
Figure 3 shows the curves of the quadratic error on the
estimation of linear Volterra coefficients by LMS and RLS
algorithms. This error is given by Mathews and Lee!™:

0.9 e TMS 0.051
I | JE— LMS
0.8 ——RIS 0 RLS
0.71 . 0.05-
& 0.67 f g 011
: o
= 0.5 = 0,151
£ 041 g 02
2 03 M 0259
0.2 031
o011 0354 W
o , . : : . 04 . . ' , .
0 50 100 150 200 250 0 50 100 150 200 250
Number of iterations Number of iterations
S 0057 LMS
! e ———————— T ——RLS
0T N . —_ i i 0
\_,,-._.\w B '_'\ . L
r -0.51 |
— a ~ R ! A
g ] Y & -l g '
g — RL§ el 1.54in (
g -6 E il 1! v
240 {
3 o Y
25950 ) 1
-101 -3 h‘v‘
12 - r r r 1 35 . y r T 1
0 50 100 150 200 250 0 0 100 150 200 250
Number of iterations Number of iterations
l4 -------- IMS
121 A ——RLS
g §
e
HAW
o
' \‘\m
2 )
0 B
2 r r T r .
0 50 100 150 200 250
Number of iterations

Fig. 2: Estimation of the Volterra kernels by LMS and RLS algorithms
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Fig. 3. Quadratic error on the estimation of linear
coefficients by LMS and RLS algorithms
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Fig. 4: Quadratic error on the estimation of quadratic

coefficients by TLMS and RLS algorithms
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Figure 4 shows the curves of the quadratic error of
quadratic coefficients by both algorithuns. This error 1s
given by Mathews and Lee!”!:

3 3 [k ml,mz,n]—hz[nl} N

my =l my=m

qu [n]H =10log

2 2

> Y (bnl)

my =lmg=m

The curves pattern of Fig. 2 shows that both LMS
and RLS solutions converge to the optimal solution. A
divergence of LMS algorithm with important disturbances
is observed on the first iterations, but the algorithm
converge well in the rest of the iterations. The
disturbances are negligeable for linear coefficients and
umportant for quadratic coefficients.

The pattern of the error curves of Fig. 3a and 3b,

defmed by Eq. 10, shows that the LMS and

RLSalgorithms perform the same for linear coefficients.
This 18 explammed by the convergence of V1 and Vrl errors
with the same speed and towards the same limit-37dB.

The curves of the Fig. 4a and 4b concerning the
ertors on quadratic coefficients demonstrates the
superiority of the R1.S algorithm over the LMS algorithm
regarding the quadratic coefficients. This is clear from the
difference of-240dB between quadratic errors Vq and Vrq.
The curves represented in Fig. 2-4 show that the RLS
algorithm is more efficient than the L.MS algorithm in the
identification of Volterra systems.

CONCLUSION

In this study, we have shown, through a simulation
study, that the RLS algorithm is more powerful than the
LMS algorithm m the identification of quadratic Volterra
systems. Moreover, it is shown that the adaptive noise
has a direct effect on the algorithm convergence towards
the optimal solution.
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